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Abstract: Based on the meteorological statistics from 2014 to 2017, this paper adopts the DEA-Tobit Two Step method to 

estimate the innovation efficiency of China meteorological science and technology and then analyses its influencing factors. It 

is found that during 2014-2017, Beijing has been at the forefront in innovation efficiency of meteorological S&T, followed by 

Tianjin. Some other provinces and cities have a decline in technology efficiency. Therefore, pure technology inefficiency still 

remains a major problem faced by most provinces and cities. Meanwhile, it also reveals that innovation efficiency of 

meteorological S&T is significantly and positively impacted by scientific research input and academic structure, but without 

any significant linear interrelationship with economic development and government influence. 
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1. Introduction 

As an important measure of efficiency, the scientific and 

technological innovation capability is attached great 

importance by foreign institutions to evaluate an institution 

or a discipline. Generally speaking, there exist few 

evaluations of innovation capability of meteorological S&T 

from a global perspective. Although the Chinese government 

have expanded investment in S&T in recent years, it is still 

unclear what is the innovation efficiency of meteorological 

S&T, and whether its development is balanced among 

different regions, and what are factors essential to improve 

the efficiency, and what needs further researches. 

As the two main evaluation methods for innovation 

efficiency at present, parametric method is represented by 

Stochastic Frontier Analysis (SFA) and nonparametric 

method is represented by Data Envelopment Analysis (DEA) 

[1]. Chen Xingxing (2016) constructed the efficiency model 

of China’s energy consumption and output and measured the 

correspond efficiencies of various provinces in China with 

the SFA. He found that their efficiencies of energy 

consumption and output were annually decreasing and 

greatly varied from each other [2]. Chen Yongjun, Zhang 

Feilian, Liu Shang (2015) constructed the measurement 

model of S&T innovation efficiency of industry, university 

and research by taking SFA as the method, measured the 

innovation technology efficiency levels of 25 

industry-university-research entities from 2007 to 2014, and 

meanwhile, analyzed the impact of production through 

regression analysis [3]. Overseas scholars such as Kohl S, 

Schoenfelder J, Fügener A, etc. (2018) mainly applied DEA 

in the healthcare industry and hospital data. They reviewed 

262 articles on health care, focused on hospital data and 

provided important information about DEA settings [4]. DEA 

analysis framework based on feedback mechanism, 

Ouenniche J, Carrales S (2018) evaluated the efficiencies of 

British commercial banks and found that, on average, 

commercial banks operating in the UK, whether domestic or 

foreign, had not yet reached acceptable overall technical 

efficiency, pure technical efficiency and scale efficiency 

levels [5]. Wolszczak-Derlacz J, Parteka A (2011) used the 

two-stage DEA method to study the efficiency of European 

public higher education institutions on account of data from 

259 educational institutions in seven European countries 

from 2001 to 2005. It was found that there were considerable 

differences in efficiency scores within and among countries. 

In addition, economies of scale, number and composition of 
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colleges, funding sources and gender staff were key factors 

influencing the efficiency of these institutions [6]. In view of 

data from 35 countries in 2007 to 2011, Guan J, Zuo K (2014) 

used the network DEA method to conduct transnational 

researches on innovation efficiency. They compared the 

innovation efficiencies of countries, highlighted the 

weaknesses of innovation efficiency and guided the 

improvement of innovation efficiency at the national level [7]. 

Chinese scholars such as Fan Hua, Zhou Dequn (2012) 

applied the reward-variable DEA model to measure the 

efficiency of Chinese provincial S&T innovation from 

2000-2007, finding that S&T innovation efficiency was 

characterized with cyclical fluctuations, and the eastern 

regions were technologically advanced with higher 

innovation efficiencies than that of the central and the 

western regions. However, S&T efficiencies in the western 

provinces had increased rapidly, catching up and even 

surpassing the eastern provinces [8]. Combining with the 

actual research data and adopting DEA, Zhao Shukuan, Yu 

Haiqing, Kong Shunlong (2013) evaluated the innovation 

activities of 151 high-tech enterprises in Jilin province from 

four aspects: efficiency, effectiveness, scale return and 

projection analysis. They found that the comprehensive 

innovation efficiencies of these enterprises were low and 

greatly varied from each other. The scale efficiency was the 

main reason leading to the low overall efficiency of 

innovation [9]. 

In consideration of the rare researches on the innovation 

efficiency of meteorological S&T, the writers of this paper, 

based on the meteorological statistics of various regions in 

China from 2014 to 2017, measure the innovation efficiency 

of meteorological S&T by applying the DEA model, and then 

analyze its influencing factors with Tobit model, and finally 

propose corresponding policies and suggestions to improve 

the innovation efficiency of meteorological S&T. 

2. Indicator System and Data Sources 

The S&T innovation efficiency is the conversion rate of 

S&T input and output, namely, the S&T innovation output 

obtained from unit innovation input, or the unit innovation 

input consumed to get the output under the certain 

technological innovation environment. In brief, S&T 

innovation is a complicated system with multiple input and 

output factors [8]. From an economic point of view, the 

production Douglas function shows that the input mainly 

includes capital investment, labor input, and technological 

progress, and the output is mainly the GDP. In the field of 

meteorological S&T, the innovation of that is also a system 

with multiple input and output factors. Considering the 

availability of data, we select the total amount of research 

fund as the capital input and the number of meteorological 

professional technicians as the labor input, which reflects the 

investment in S&T innovation; and we consider the number 

of SCI papers and research projects and S&T achievements 

as the S&T innovation output, thus to establish the indicator 

system for the innovation efficiency of meteorological S&T. 

The data involved in this study are all from the China 

Meteorological Statistics Yearbook in 2014-2017 with the 

research objects including 31 provinces and cities. 

3. Modelling 

3.1. DEA Model 

The basic idea of Data Envelopment Analysis (DEA), the 

method evaluating the relative effectiveness of input-output 

data [10], is adopting the linear programming method to 

measure the relative effectiveness of comparable units of the 

same type on the basis of multiple input and output indicators. 

DEA and its model were proposed in 1978 by American 

operations researchers, A. Charnes and W. W. Cooper. This 

method has been widely used in various industries and 

sectors, and has great advantages in dealing with 

multi-indicator inputs and outputs. DEA is expressed as the 

ratio of output to input, which attempts to maximize the 

efficiency of the service unit by comparing the efficiency of a 

particular unit with that of a similar set of units proving the 

same service. In this process, some units that achieve 100% 

efficiency are referred to as relatively effective ones, while 

others with efficiency scores below 100% are taken as invalid 

units. Thus, we can compare the innovation efficiencies of 

meteorological S&T in different provinces and cities 

according to the results of the DEA model, identify relatively 

inefficient units, measure the severity of inefficiency, and 

explore ways to reduce inefficiency via the comparison 

among units. 

The reason why DEA model is employed in this paper is 

that DEA has the obvious advantages in dealing with 

multi-input and -output problems. Its main performances are 

as follows: (1) DEA is a non-parametric method. There is no 

need to know the specific function form of input and output, 

and to estimate each parameter; (2) The weight in DEA 

modeling is not subjectively determined by the individual, 

but calculated by the model according to the optimization 

criteria to ensure its objectiveness; (3) The evaluation of 

DEA model is not subject to the measurement units so as to 

avoid the different results caused by dimensionless methods; 

(4) DEA model can judge the effectiveness and 

ineffectiveness of decision-making units, which provides 

them with quantitative information for improvement [11]. 

The organization in DEA, generally referred to as the 

measured performance, is called the decision-making unit 

(DMU). The most commonly used model is the CCR model 

that evaluates the techniques and the overall efficiency of 

DMU. However, CCR model also has its shortcomings. On 

the premise of the unchanged scale returns and owing to the 

in-line procession of effects resulted from investment and 

scale changes, it is impossible to distinguish the influencing 

factor of the innovation input efficiency and the investment 

change, namely, the “pure technical efficiency” (PTE) or the 

scale change, that is, the “scale efficiency” (SE) [12]. As a 

consequence, this assumption needs to be further relaxed to 

obtain the BBC model. For all DUMs, the common BBC 
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model (based on input orientation) can be shown as: 

min�,� [�	 − �(
��� + 
���)] 

s. t.
��
� ∑ ����� �!" − �� = �	�∑ ��$�% �!" + �� = �$	%�� ≥ 0; �� ≥ 0; �� ≥ 0;∑ �� �!" = 1i = 1,2, … , n; j = 1,2, … ,m; r = 1,2, … , s

      (1) 

Among it, n represents the number of DMU; m and s 

respectively the number of input and out variables; $�%(. = 1,2, … ,/)  and ���(0 = 1,2, … , �)  respectively the 

input and the output factor; ��  and ��  respectively the 

slack variable (the difference variable of the input item) and 

the residual variable (the excess variable of the output item); �	  the effective of 123	 ; �  the infinitesimal amount; and	
� = (1,… ,1)� [13-14]. In accordance with the optimal 

solutions �∗, �∗�, �∗�, �∗, the DEA efficiency of DMU can be 

measured. The conclusions are as follows: 

(1) If �∗ < 1, 123%		is valid for non-DEA; 

(2) If �∗ = 1 and 
��∗� + 
��∗� > 0, 123%	  is valid 

for weak DEA; 

(3) If �∗ = 1 and 
��∗� + 
��∗� = 0, 123%	  is valid 

for weak DEA; 

(4) If ∑ �%∗:%!" �∗⁄ < 1, the scale returns increase; 

(5) If ∑ �%∗:%!" �∗⁄ = 1, the scale returns remain unchanged; 

(6) If ∑ �%∗:%!" �∗⁄ > 1, the scale returns decrease. 

3.2. Tobit Model 

On the basis of employing the DEA method to obtain the 

efficiency values of S&T innovation in various provinces and 

cities, and in order to further evaluate the impact of the 

technological innovation environment on the efficiency of 

S&T innovation, the authors of this paper choose to use the 

Tobit model for analysis. The basic structure of the Tobit 

model is as follows: 

<� = =>�?� + ��, <� > 00, <� ≤ 0 	(i = 1,2, … , n)       (2) 

Among it, <�  shows the efficiency value; ?� , the 

explanatory variable vector; >�, the parameter vector to be 

estimated; and ��~B(0, CD) [12]. 

4. Empirical Analysis 

4.1. Evaluation of the Innovation Efficiency of 

Meteorological S&T Based on DEA Model 

The writers of this paper calculate the S&T innovation 

efficiencies of 31 provinces and cities by using Deap2.1 and 

taking advantage of the input and the output data of 

meteorological S&T innovation in these places. During the 

calculation process, it is found that if the indicators, scientific 

and technological achievements of some cities value zero, we 

should process the original data that show zero or negative 

value in the DEA model. Shen Jiangjian, Long Wen (2015) 

summarized four methods to deal with the negative output in 

DEA model and proved the best effect of primary 

transformation [15]. Even so, in consideration of the great 

number of zero values of original data involved in this paper 

and the troublesome primary transformation process, the 

authors prefer the second method to turn zero values into a 

small number to process, which also will not change the 

original result. Hence, 0.01 is selected to get the innovation 

efficiency values of meteorological S&T innovation in each 

province and city. The results are shown in Table 1. 

Table 1. Innovation Efficiency Values of Meteorological S&T in Various Provinces and Cities (2014-2017). 

Regions Technical Efficiency (TE) Pure Technical Efficiency (PTE) Scale Efficiency (SE) 

Year 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 

Beijing 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Tianjin 1.000 0.916 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.916 1.000 1.000 

Hebei 0.580 0.889 1.000 0.945 0.590 0.900 1.000 0.968 0.983 0.988 1.000 0.976 

Shanxi 0.563 0.853 0.689 1.000 0.732 0.898 0.708 1.000 0.769 0.950 0.973 1.000 

Inner Mongolia 0.440 0.345 0.611 0.450 0.447 0.375 0.749 0.466 0.984 0.919 0.816 0.966 

Liaoning 1.000 0.843 1.000 0.752 1.000 0.853 1.000 0.754 1.000 0.988 1.000 0.998 

Jilin 0.491 0.985 1.000 1.000 0.806 1.000 1.000 1.000 0.608 0.985 1.000 1.000 

Heilongjiang 0.345 1.000 1.000 0.919 0.665 1.000 1.000 0.922 0.519 1.000 1.000 0.997 

Shanghai 0.973 1.000 0.784 0.894 1.000 1.000 0.794 0.897 0.973 1.000 0.987 0.996 

Jiangsu 0.575 0.800 1.000 1.000 0.676 0.802 1.000 1.000 0.850 0.998 1.000 1.000 

Zhejiang 0.695 1.000 0.738 0.992 0.695 1.000 1.000 1.000 1.000 1.000 0.738 0.992 

Anhui 0.514 0.629 0.749 0.903 0.551 0.676 0.767 0.908 0.934 0.930 0.977 0.995 

Fujian 0.553 1.000 1.000 1.000 0.797 1.000 1.000 1.000 0.694 1.000 1.000 1.000 

Jiangxi 1.000 0.474 0.801 1.000 1.000 0.499 0.801 1.000 1.000 0.950 1.000 1.000 

Shandong 1.000 0.633 1.000 0.296 1.000 0.704 1.000 0.533 1.000 0.899 1.000 0.555 

Henan 1.000 0.342 0.455 0.728 1.000 0.659 0.750 0.736 1.000 0.518 0.607 0.989 

Hubei 0.901 1.000 0.754 0.981 1.000 1.000 0.754 1.000 0.901 1.000 0.999 0.981 

Hunan 0.318 0.677 0.919 0.782 0.346 0.678 0.928 0.790 0.918 1.000 0.990 0.989 

Guangdong 0.643 1.000 1.000 1.000 0.649 1.000 1.000 1.000 0.990 1.000 1.000 1.000 

Guangxi 0.492 1.000 0.596 0.796 0.532 1.000 0.616 0.857 0.924 1.000 0.967 0.928 

Hainan 0.650 1.000 0.854 0.482 0.749 1.000 0.873 0.827 0.868 1.000 0.978 0.583 

Chongqing 0.409 0.403 0.611 0.574 0.592 0.603 0.842 0.778 0.691 0.669 0.725 0.738 
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Regions Technical Efficiency (TE) Pure Technical Efficiency (PTE) Scale Efficiency (SE) 

Year 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 

Sichuan 0.482 0.682 1.000 1.000 0.487 0.759 1.000 1.000 0.991 0.899 1.000 1.000 

Guizhou 0.456 1.000 1.000 0.910 0.663 1.000 1.000 0.920 0.687 1.000 1.000 0.989 

Yunnan 0.680 0.725 0.453 0.280 0.873 0.788 0.541 0.375 0.779 0.920 0.838 0.746 

Tibet 0.244 0.440 0.764 0.250 0.738 1.000 1.000 0.472 0.330 0.440 0.764 0.530 

Shaanxi 0.518 0.769 0.301 0.617 0.618 0.805 0.305 0.623 0.837 0.955 0.987 0.989 

Gansu 0.926 0.388 0.423 0.731 0.988 0.402 0.428 0.810 0.937 0.964 0.989 0.903 

Qinghai 0.433 0.492 0.875 0.621 0.774 0.596 0.876 0.631 0.559 0.825 0.999 0.984 

Ningxia 0.543 0.715 1.000 1.000 1.000 1.000 1.000 1.000 0.543 0.715 1.000 1.000 

Xinjiang 0.488 0.597 0.869 0.919 0.495 0.597 1.000 1.000 0.987 0.999 0.869 0.919 

Average Value 0.642 0.761 0.814 0.801 0.759 0.828 0.861 0.848 0.850 0.913 0.939 0.927 

 

Innovation efficiency evaluation mainly includes 

comprehensive technical efficiency, pure technical efficiency 

and scale efficiency. And pure technical efficiency reflects the 

production efficiency of the DMU at the optimal scale under 

certain input factors; while scale efficiency presents the gap 

between actual and the optimal scale. It is generally believed 

that the pure technical efficiency times scale efficiency is 

comprehensive technical efficiency. What’s more, the 

comprehensive technical efficiency is an overall measurement 

and evaluation of the resource allocation ability and resource 

utilization efficiency of DMUs; the pure technical efficiency 

shows the production efficiency influenced by management 

and technology and other factors; and scale efficiency presents 

the production efficiency affected by the scale. The 

comprehensive technical efficiency value is 1, indicating the 

integrated and effective input and output of DMUs, that is to 

say, units under inspection achieve both technical scale 

efficiency simultaneously. But if the pure technical efficiency 

value is 1, it proves the effectiveness in utilization of the input 

resource at the current decision-making level. And the 

fundamental reason for failing to achieve comprehensive 

effectiveness lies in the invalid scale.  

It can be seen from Table 1 that the comprehensive technical 

efficiencies of Beijing, Tianjin, Liaoning, Jiangxi, Shandong 

and Henan in 2014 were effective, taking the frontier in 

meteorological S&T innovation system. Besides, Shanghai, 

Zhejiang, Hubei, Guangdong, Hainan, Yunnan and Gansu 

exceeded the national average value of comprehensive 

technical efficiency and maintained a relatively stable trend. 

From vertical perspective, there is a certain growth in the 

comprehensive technical efficiency level of various provinces 

and cities in 2014-2017 with average values of 0.642, 0.761, 

0.814, 0.801, which means that on the premise of same output, 

the meteorological S&T departments of various provinces and 

cities in China have a potential of saving from 35.8% in 2014 to 

19.9% in 2017, further indicating the saving in meteorological 

S&T investment in terms of the national average. In the 

meantime, both the pure technical efficiency and scale 

efficiency are greatly promoted, respectively from 0.759 in 

2014 to 0.848 in 2017 and from 0.850 in 2014 to 0.927 in 2017.  

Meanwhile, it also can be seen from Table1 that the 

effective DEA units in 2014 included: Beijing, Tianjin, 

Liaoning, Jiangxi, Shandong and Henan; in 2015 included: 

Beijing, Heilongjiang, Shanghai, Zhejiang, Fujian, Hubei, 

Guangdong, Guangxi, Hainan and Guizhou; in 2016 included: 

Beijing, Tianjin, Hebei, Liaoning, Jilin, Heilongjiang, Jiangsu, 

Fujian, Shandong, Guangdong, Sichuan, Guizhou and 

Ningxia; in 2017 included: Beijing, Tianjin, Shanxi, Jilin, 

Jiangsu, Fujian, Jiangxi, Guangdong, Sichuan and Ningxia. 

However, Inner Mongolia, Anhui, Hunan, Chongqing, 

Yunnan, Tibet, Shaanxi, Gansu, Qinghai and Xinjiang are all 

non-DEA effective units during these years and all with 

obvious fluctuations in values of the comprehensive technical 

efficiency, pure technical efficiency and scale efficiency, 

which indicates their relatively larger input but lower 

efficiency compared with that of other provinces and cities 

under a certain output condition. Further analysis found that in 

terms of interprovincial regions, these three efficiencies of 

Beijing have remained at the level of 1 from 2014 to 2017, 

which shows that compared with other regions, Beijing has 

achieved the minimal input in meteorological S&T, taking the 

best production frontier for innovation efficiency of 

meteorological S&T. In addition, the efficiency values of 

Tianjin over the years are all above 0.9, which is very close to 

the production frontier. And its average value of 

comprehensive technical efficiency has reached 0.979 with a 

slight decline in 2015, keeping Tianjin occupying the best 

production frontier in other years. 

 

Figure 1. The Average Value Decomposition of the Static Efficiency of 

Various Provinces and Cities in 2014-2017. 

Figure 1 demonstrates the average value decomposition of 

the static efficiency of various provinces and cities in 

2014-2017. Owing to the dense distribution of provinces and 

cities, it doesn’t show the names of the specific provinces and 
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cities with specific points. Just the corresponding analysis is 

carried out. In this figure, the horizontal axis means the scale 

efficiency and the vertical axis means the pure technical 

efficiency, and the dotted line means the pure technical 

efficiency and the scale efficiency represented by the national 

average of technological innovation efficiency in 2014-2017. 

Correspondingly, provinces and cities are divided into four 

categories: A, B, C and D. Region A includes Beijing, Tianjin, 

Hebei, Shanxi, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, 

Jiangxi, Hubei, Guangdong and Guizhou, nearly occupying 42% 

of all provinces and cities in China, which is the most 

concentrated distribution; Region B with lower scale 

efficiency includes Jilin, Heilongjiang, Hainan and Ningxia; 

Region C with lower scale efficiency and pure technical 

efficiency includes Shandong, Henan, Chongqing, Yunnan, 

Tibet and Qinghai; Region D with lower pure technical 

efficiency includes Inner Mongolia, Anhui, Hunan, Guangxi, 

Sichuan, Shaanxi, Gansu and Xinjiang. Therefore, it is not 

difficult to find that provinces belonging to Region B and D 

account for 38.71% of all national provinces, indicating that 

there is a skew in the technical efficiency among some 

provinces and cities; provinces in Region C and D take up 

45.16% of all national provinces, which explains that the 

technology inefficiency remains a major problem confronted 

by most provinces and cities, especially for provinces and 

cities in Region C; provinces in Region A and D account for 

67.74% of all national provinces, implying that the majority of 

provinces perform well in scale efficiency. 

The annually comprehensive technical efficiency as well as 

the variable coefficient of decomposition items are calculated 

in order to investigate the differences in technical efficiency 

among provinces, as shown in Figure 2. As can be seen from 

this figure, within the research scope, the variable coefficient 

of the overall technical efficiency and the scale technical 

efficiency both began to decline from 2014, and then to rise 

after 2016. Besides, both the increase and the decline rate of 

the variable coefficient of the comprehensive technical 

efficiency are greater than that of the scale efficiency, which 

manifests the gradually shrinking differences in the 

comprehensive technical efficiency and the scale technical 

efficiency of the meteorological S&T innovation among 

provinces in 2014-2016. However, after 2016, the difference 

gap is further expanded, and the difference in the overall 

technical efficiency is greater than that in the scale of technical 

efficiency. Relatively speaking, there are almost no major 

changes in the variable coefficient of pure technical efficiency. 

That is to say, there have been no major changes in the ability 

of a given input to achieve maximum output in recent years. 

 

Figure 2. The Variable Coefficient of Decomposition and the Static 

Efficiency Value of Various Provinces and Cities in 2014-2017. 

4.2. Analysis of Influencing Factors of Meteorological S&T 

Innovation Efficiency Based on Tobit Model 

The analysis of the influencing factors of innovation 

efficiency focuses on the role of key elements played in 

improving innovation efficiency in innovation system [16]. 

For the meteorological field, this paper takes the influences of 

economic development, scientific research input, academic 

structure, and government influence on the meteorological 

S&T innovation efficiency into consideration [8]. And what’s 

more, in view of the data availability, the economic 

development status is expressed by the growth rate of GDP in 

each region, and the scientific research input is showed by the 

growth rate of the total amount of funds in each region. The 

academic structure is represented by the proportion of 

graduates with master’s degree or above in each region and the 

government influence is conveyed by the growth rate of the 

amount of S&T funds issued by the local government.  

Combined with the actual situation of this paper, since the 

efficiency value of multiple DMUs in the dependent variable 

is 1, within the efficiency boundary of DEA and in the case 

where such a plurality of samples become a certain limit value 

within a specific range, the conventional method can’t be used 

to explain the nature difference between the limit value and 

the non-limit value. Hence, we confine the limit value of DEA 

efficiency, 1, and then create the following Tobit model: 

<� = >	 + >"?"� + >D?D� + >E?E� + >F?F� + �� 	(G = 1,2, … ,31�                         (3) 

Among it, <�  represents the efficiency value of the i-th 

province; ?"� , the economic development status; ?D� , the 

scientific research input; ?E�, the academic structure; ?F�, the 

government influence; �� , the random interference term 

obeying the normal distribution. 

Using the software, stata14.0, to fit the data, we can obtain 

the Tobit model of the influencing factors of meteorological 

S&T innovation efficiency in 31 provinces and cities. Results 

are shown in Table 2. 

 

Table 2. Tobit Regression Results of the Influencing Factors of Meteorological 

S&T Innovation Efficiency in Various Regions. 

Variable Coefficient Standard Error P Value 

>	 0.6168*** 0.0757 0.000 

>" 0.6748 0.5572 0.226 

>D 0.0671** 0.0294 0.022 

>E 0.9418*** 0.3274 0.004 

>F -0.0857 0.1684 0.611 

Note: *** indicates the significance level at 1%; ** indicates the significance 

level at 5%; * indicates the significance level at 10%. 
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Although the Tobit model can’t directly explain the 

influence between the dependent variable and the independent 

variable as the ordinary least square method does, the sign of 

the estimated coefficient is consistent with the partial effect 

[8]. Therefore, it can be seen from the above results that within 

the scope of studied sample, the regional meteorological S&T 

innovation efficiency has a significant positive correlation 

with the scientific research input and academic structure of 

each region, while there’s no linear relationship between the 

economic development status and the government influence 

and the meteorological S&T innovation. Specially, the impact 

of scientific research input on the innovation efficiency of 

meteorological S&T in various regions is significantly 

positive, that is, the greater the investment in scientific 

research, the higher the efficiency. What’s more, the influence 

of academic structure on the innovation efficiency of 

meteorological S&T in each region is significantly positive, 

that is, the more highly educated talents, the higher the 

efficiency. As the basis of human resource investment in 

scientific and technological innovation, highly educated 

talents exert a significant effect on the development of 

meteorological S&T innovation efficiency.  

5. Conclusions and Expectations 

In this paper, the DEA-Tobit two-step method is used to 

study the innovation efficiency of meteorological S&T and its 

influencing factors in 31 provinces and cities from 2014 to 

2017. The following preliminary results can be obtained from 

the DEA model: expect for the slight decline in 2015, Beijing 

had been at the forefront in terms of innovation efficiency of 

meteorological S&T in 2014-2017, followed by Tianjin, while 

Inner Mongolia, Anhui, Hunan, Chongqing, Yunnan, Tibet, 

Shaanxi, Gansu, Qinghai and Xinjiang were all non-EDA 

effective units during these years. In recent years, under 

certain conditions, these non-DEA effective units increase 

more investment than that of other provinces and cities, which 

results in the relatively low efficiency. 

Meanwhile, based on the average decomposition of the 

static efficiency of meteorological S&T innovation, the 

authors of this paper find that Jilin, Heilongjiang, Hainan and 

Ningxia have low scale efficiencies, and Inner Mongolia, 

Anhui, Hunan, Guangxi, Sichuan, Shaanxi, Gansu and 

Xinjiang have low pure technical efficiencies. Pure technical 

inefficiency remains a major problem faced by most provinces 

and cities, especially those provinces and cities with lower 

pure technical efficiency and scale efficiency, such as 

Shandong, Henan, Chongqing, Yunnan, Tibet and Qinghai. 

However, generally speaking, most provinces and cities are 

with better scale efficiency, including Beijing, Tianjin, Hebei, 

Shanxi, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, 

Jiangxi, Hubei, Guangdong, Guizhou, Inner Mongolia, Anhui, 

Henan, Guangxi, Sichuan, Shaanxi, Gansu and Xinjiang. 

Further analysis of the factors affecting the innovation 

efficiency of meteorological S&T shows that the main 

influencing factors are scientific research investment and 

academic structure. These two factors are in significantly 

positive correlations. The investment in scientific research in 

this paper is expressed by the growth rate of the funds in each 

region. And the academic structure is represented by the 

proportion of masters and above in the employment team. 

Eventually, it shows that the more funds are invested in 

various regions and the more highly educated talents are 

involved, the higher is the innovation efficiency of 

meteorological S&T. Which is also consistent with our 

perception. However, it is worth mentioning that within the 

research scope of this paper, there is no significant 

relationship between the innovation efficiency of 

meteorological S&T in various regions and the economic 

development and the government influence. The economic 

development is expressed by the GDP growth rate of each 

region, and the government influence is shown by the growth 

rate of S&T funds issued by the local governments. 

Theoretically, the more a region’s economy is developed, the 

greater attention the government will attach to the 

meteorological S&T innovation. And eventually, the higher is 

the innovation efficiency of meteorological, which is not 

consistent with the conclusions drawn in this paper. But it 

must be noted that the Tobit model used in this paper only 

reflects the linear correlation between innovation efficiency of 

meteorological S&T and the influencing factors considered, 

and other non-linear correlations will not be further discussed 

in this paper. 

Some corresponding suggestions can be made according to 

the above conclusions. For non-DEA effective units, such as 

Inner Mongolia, Anhui, Hunan, Chongqing, Yunnan, Tibet, 

Shaanxi, Gansu, Qinghai and Xinjiang, they should increase 

their investment in scientific research, introduce highly 

educated talents, guarantee the maximum output with 

minimum input, draw close to the production frontier, and 

strive to be an effective unit of DEA. Then for regions with 

low efficiency of pure technology, including Inner Mongolia, 

Anhui, Hunan, Guangxi, Sichuan, Shaanxi, Gansu and 

Xinjiang, it is necessary to take full advantage of resources 

and endeavor to achieve maximum output with certain input. 

In addition, for areas with lower scale efficiency, like Jilin, 

Heilongjiang, Hainan and Ningxia, they should re-consider 

and re-confirm their investment scale, as the previous large 

scale of investment brought them rather lower output. 

Innovation efficiency is the basic indicator for building 

innovative countries and regions. And innovation in all walks 

of life plays a significant role in promoting regional 

development in the new era. Though meteorological S&T 

innovation is a rather new field, this paper comes to some 

meaningful conclusions via empirical analysis. However, it is 

also noted that there are still various problems to be further 

concerned and studied in the meteorological field. 
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