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Abstract: In preceding works, one of us (R. M. Santilli) has shown that, according to quantum chemistry, identical electrons 

cannot create the strong bond occurring in molecular structures due to their strongly repulsive Coulomb interaction; has 

constructed hadronic chemistry as a non-unitary covering of quantum chemistry solely valid at mutual distances of 10
-13

cm; has 

introduced contact non-Hamiltonian interactions in the deep penetration of the wavepackets of valence electrons that overcomes 

said Coulomb repulsion, resulting in a strongly attractive bond of valence electron pairs in singlet called ’isoelectronium’ and 

shown that the new valence bond allows an exact and time invariant representation of the binding energy of the hydrogen and 

water molecules. By using these advances and our inference that (from the fact that an atomic lone pair of electrons form a 

coordinate covalent bond identified by G. N. Lewis) the lone pairs of electrons are indeed isoelectronium, in this paper we 

present, apparently for the first time, a new structure model of the Helium atom under the name of Iso-Helium, in which the two 

electrons of a given orbital are strongly coupled into the isoelectronium that provided a quantitative description of Pauli 

exclusion principle. In particular, as a result of the strongly bound state of Santilli isoelectronium, the iso-Helium reduces to be a 

two-body system, thus admitting exact analytic solution. The presented analytic solution is applicable to all Helium-like systems. 

Using it we have calculated effective charge on the nuclei of Helium-like systems that are in excellent agreement with the 

literature values. 
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1. Introduction 

In quantum mechanics, the Helium atom (a two electron 

system) is cited as a first case wherein no analytic solution of 

the Schrödinger equation is possible. Therefore, in conventional 

quantum mechanics one has to go for approximate methods, 

such as perturbation and variation methods [1-4]. Indeed, each 

one of these two methods is a cumbersome mathematical 

technique obviously yielding merely approximate results. On 

the other hand, the solution of Schrödinger equation of 

Hydrogenic systems yields the concept of orbitals whose 

energy depends on the principal quantum number. As a result 

the energy gap between 1s and 2s  orbitals is obtained as 

being quite large. Hence, as we go from a hydrogen atom to a 

Helium atom the second electron either should go to the 1s  or 

to the 2s  orbital. If it goes to the 1s  orbital, then very strong 

electrostatic repulsion would make it an unstable atom. 

Whereas, if the second electron goes to the 2s  orbital, then 

most probably they would remain spin unpaired (Ortho-helium). 

In the latter event again it would be a chemically very reactive 

atom being a diradical. Even if we assume that the second 

electron of 2s  orbital remains paired with 1s electron 

(Para-helium) still they being separated electrons would be 

vulnerable to chemical reactivity besides this state has been 

experimentally found as a higher excited state than the triplet 

first excited state. However, Helium is a noble atomic gas 

having practically no chemical reactivity. Hence, on both the 

counts of energetics and chemical reactivity there is only one 

choice that is of housing both the electrons in the 1s  orbital. In 

quantum mechanics, this state is prescribed as allowed by the 

Pauli exclusion principle requiring the two electrons in the 1s  

orbital to be coupled in the singlet state (that is with spins 

antiparallel). But how this spin paring imparts Helium atom the 

inertness towards chemical reactivity has not been so far 

addressed to. Unless the two electrons in the same orbital 

present themselves as one entity, say as a quasi-particle, they are 

no different than when they occupy two different orbitals with 
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opposite spins as far as chemical reactivity is concerned. 

However, the quantum mechanics remains silent on how two 

electrons of a given orbital remain stable in spite of very strong 

electrostatic repulsion between them. In fact, two electrons at a 

mutual distance of 62 pm will experience a repulsive force of 

about 60 nN
1
. 

Another fact that we need to consider is the case of lone 

pairs of electrons in the valence shell of the central atom of 

molecules. For example, in the case of NH3 molecule there we 

have one lone pair of electrons on N atom. The electrons 

constituting the pair have never been observed to form two 

separate covalent bonds with other atoms. On the contrary the 

said lone pair forms another type of covalent bond named by 

G. N. Lewis as the directed or coordinate covalent bond 

(1913-1919). This led him to classify acids and bases as Lewis 

acids and Lewis bases [5]. The Lewis bases are the donor of a 

pair of electrons. Some of the examples of Lewis acids are BF3, 

AlCl3
 
, SO3, etc. and those of Lewis bases are NH3, HO − , etc. 

In inorganic chemistry the Lewis bases are also termed as 

ligands that form complexes with transition metal ions, which 

are known as coordination compounds. 

From the above mentioned facts we assert that the 

coordinate covalent bond formation can take place only if the 

lone pair of electrons exist as a quasiparticle. Otherwise there 

should have been at least a few examples of formation of two 

separate covalent bonds from a lone pair of electrons. This 

then implies that every spin paired electrons in a given atomic 

orbital must be existing as a quasiparticle. 

We recall that the strong electrostatic repulsion between 

two electrons in an orbital was, for the first time, pointed out 

by Santilli (see monograph [6-9] and original papers quoted 

therein) in connection with his poineering research on 

chemical bonding of hydrogen and water molecules. In 

essence, Santilli showed that, according to quantum chemistry, 

two identical electrons in the singlet coupling cannot create a 

valence bond because of the above indicated, very strong, 

repulsive Coulomb force. Therefore, Santilli constructed an 

invariant non-unitary covering of quantum chemistry under 

the name of hadronic chemistry and showed that such a 

covering theory does indeed permit the achievement for the 

first time of an attractive force between valence electron pairs 

in singlet coupling at mutual distances of the order of 1310− cm. 

Santilli then proved that such an attractive force does indeed 

permit an essentially exact representation of the binding 

energies of the Hydrogen and water molecules. The central 

mechanism is provided by the first consistent representation of 

the contact, non-linear, non-local and non-potential 

interactions caused by the deep overlapping of the wave 

packets of the identical valence electrons which are outside 

the representational capabilities of quantum chemistry. The 

evident non-Hamiltonian character of the new interaction then 

mandates a non-unitary covering of quantum chemistry. When 

the said non-Hamiltonian interaction is treated with the 

suitable covering of the mathematics underlying quantum 

                                                             
1
 The distance of 62 pm is the diameter of 1s orbital of Helium atom and if the 

two electrons are assumed to remain farthest away of each other then roughly they 

would be mutually 62 pm away (c.f. Tables 8 – 10 and also Appendix A). 

chemistry, known as isomathematics, the deep mutual 

overlapping of the wave packets of the valence electrons in 

singlet coupling creates a force representable with the Hulthén 

potential which in the model adopted by Santilli is so strongly 

attractive to “absorb" the repulsive Coulomb potential, 

resulting in the first known attractive force between identical 

valence electron in singlet coupling2, resulting in a new state 

nowadays known as Santilli Isoelectronium (IE). Santilli also 

indicated that, electrons are predicted to experience a 

“mutation" of their conventional characteristics when they are 

the constituents of the isoelectronium that he named 

isoelectrons technically due to the fact that they are no longer 

characterized by the Poincaré symmetry but by its non-unitary 

covering known as the Poincaré-Santilli isosymmetry. It 

should be stressed to avoid misinterpretations that hadronic 

chemistry solely applies at mutual distances of 1310− cm called 

the “hadronic horizon" and less; it recovers uniquely and 

identically quantum chemistry for all its molecular studies for 

distances larger than 1310−  cm; and the basic axioms of 

hadronic chemistry are exactly those of quantum chemistry, 

solely subjected to a broader representation permitted by the 

novel isomathematics (see Ref. [6, 7] for details). 

As stated above to achieve the chemical inertness it is not 

sufficient that two electrons be housed in the same atomic 

orbital with opposite spin but also they should exist as a one 

entity. This strongly points out that each pair of two electrons 

with opposite spin housed in an orbital necessarily exist as a 

single entity, which in all probability is none else but the 

isoelectronium proposed by Santilli in describing the covalent 

bonds of water and hydrogen molecules [10, 11]. For example, 

in the case of ammonia molecule there we have one lone pair 

of electrons in the valence shell of nitrogen which is 

chemically inert in the sense of conventional covalent bonding 

because it must be an isoelectronium (IE). 

Hence, with the coining of the concept of isoelectronium by 

Santilli as described above we hereby assert that all spin 

paired electrons of atomic orbitals are individually 

isoelectronium (IE). 

Thus our task is to incorporate the concept of IE in Helium 

and Helium-like systems. To avoid any ambiguity to persist, 

we have taken this opportunity to first take a stock of the 

interactions that are supposed to operate in these systems. We 

recall Santilli’s proposal and assertions that at atomic scales an 

IE may be treated as a quasi-particle hence Helium-like 

systems turns out as a two body problem namely the nucleus 

consisting of neutrons and protons as a point mass and the IE 

an another point mass. Both the nucleus and IE individually 

are of hadronic dimensions. On the lines of the conventional 

quantum mechanical approach we would be tempted to 

identify only two interactions, namely: 

1) the electrostatic attraction between the IE, the proposed 

quasi-particle, and the nuclear protons and; 

2) the electrostatic repulsion between the two isoelectrons 

of the IE. 

But on little deeper pondering over the physical state of the 

                                                             
2
 It should be recalled that according to Santilli’s model the triplet coupling of two 

electrons of a given orbital creates strongly repulsive hadronic forces. 
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system one easily realizes that because the size of an IE is of 

the order of 1 fm or even less there should exist an equally 

important and strong magnetostatic attraction between the two 

electrons of IE (so far in none of the atomic systems this 

interaction has been separately dealt with in determining the 

total potential energy of the system. Most probably because it is 

expected that the two electrons of a given orbital would try to lie 

as far distance apart as possible to minimize electrostatic 

repulsion but then at such separation distances the 

magnetostatic interaction would be insignificantly small to 

reckon with (c.f. Appendix A)). This interaction originates 

because each spinning electron acts as a tiny magnet (refer also 

to Appendix A). In addition to this we also realize that the 

formation of an IE is through a deep overlap of the wave 

packets of two electrons which, indeed, is a new phenomena. 

Because of it a new type of interaction comes into play and 

would obviously contribute in determining the total potential 

energy of the system. This latter contribution we have 

quantified using Hulthén potential through the tools of hadronic 

mechanics and it turns out as a repulsive hadronic contribution 

(c.f. Section 5). On the face of it, this appears to be in 

contradiction to the demonstration of Santilli that the 

corresponding hadronic force is attractive in nature. However, it 

gets reconciled on realizing that, in fact, Santilli is not treating 

the above stated magnetostatic interaction separately hence his 

hadronic contribution is bound to be attractive in nature
3
. 

Thus in this paper, we apply the above advances to Helium 

and Helium-like systems apparently for the first time. As a 

result of the above considerations the IE can be considered in 

first approximation to be a single stable quasi-particle with 

spin 0 , charge 2e , rest energy of the order of 1MeV, and an 

essentially null magnetic moment. Therefore, the structure 

model of the Helium and Helium-like systems, here proposed 

under the name of iso-Helium-like systems, has been earlier 

treated in all quantum chemistry texts with the sole exception 

of the short range interactions of the electron pair, which in 

this presentation has been treated for the first time by 

recognizing the short range very strong magnetostatic 

interaction and the covering known as hadronic chemistry to 

deal with the new hadronic force. 

The advantages of this conception of the iso-Helium atom 

and hence iso-Helium-like systems are the following: 

1) The hadronic model of the iso-Helium-like systems 

permits one of the few quantitative representations of Pauli 

exclusion principle because for the triplet coupling of two 

identical electrons in the same orbital there would be a strong 

repulsive magnetostatic interaction that would not allow IE 

formation hence no hadronic chemistry is warranted, thus only 

possibility that is left is the strong attraction due to the singlet 

coupling of two electrons in an orbital in excellent agreement 

with Pauli’s exclusion principle. 

2) To the best of our knowledge, the proposed model 

permits a quantitative representation of the lack of chemical 

                                                             
3
 In the case of 0π  meson formation from an electron and a positron obviously 

the magnetostatic interaction would be strongly repulsive and it gets countered by 

the electrostatic attraction and new hadronic attraction originating from deep 

overlap of wave packets of these two particles. 

reactivity of Helium evidently because either the unpaired 

electrons or the paired but un-united electrons are not 

statistically available for conventional chemical reactions. 

3) The proposed model permits, apparently for the first time, 

the reduction of the Helium atom and Helium-like systems to a 

two-body system, with ensuing analytic solutions. It should be, 

however, recalled that the IE is permanently stable only in first 

approximation in view of Heisenberg’s uncertainty principle 

and other factors [6]. 

A brief description of isomathematics and hadronic 

mechanics we have given in our preceding paper on nuclear 

spins [12] and for the sake of brevity we are not repeating that 

subject matter herein. For details of hadronic chemistry the 

reader is advised to refer to the excellent reviews by Santilli [6] 

and Tangde [7-9]. 

In Section 2 we provide a brief description of the concept of 

IE. In Section 3 we have presented the conventional quantum 

mechanical model of Helium and the Helium-like system, in 

Section 4 we have reformulated the Helium and Helium-like 

system by incorporating Santilli’s IE and studied the 

corresponding implications both within and outside the 

hadronic horizon. In Sections 5 and 6 we have quantified the 

isopotential originating from the deep mutual overlap of the 

wave packets of the two isoelectrons of IE. Since we are 

treating IE as a quasi-particle which implies that it contributes 

either the null potential energy or a constant and presumably 

very small value of it to the net potential energy of the system4. 

It, therefore, legitimizes the assumption that the isopotential 

nullifies the algebraic sum of electrostatic and magnetostatic 

potentials of the two isoelectrons of the IE or results into a 

very small but constant value of it. As a result of it there 

ensues the quantum mechanical analytic solution of 

Helium-like systems. The details of this latter part has been 

described in Section 6. The wave functions so generated 

consists of radial and angular parts and consequently provide 

three quantum numbers namely principal, azimuthal and 

magnetic ones. The expression of energy so obtained is 

dependent on the principal quantum number, in exactly the 

same way as in the case of Hydrogenic system. The 

expressions so obtained are the same as those we obtain in the 

case of Hydrogenic system except that, instead of the reduced 

mass of the electron, there we have the reduced mass of the IE 

and instead of the nuclear charge, Z , there we have the 

effective nuclear charge, *Z . 

The results of our studies are tested with the estimation of 

the effective nuclear charge for the iso-Helium-like systems 

by using corresponding experimental values for ionization 

energies, which are presented in Section 6.1. Our calculations 

match exceedingly well with the effective nuclear charges 

obtainable from the Slater rule [13] and the more recent ones 

provided by Clementi et al using SCF theory [14-17]. 

However, our estimated values of effective nuclear charge are 

a shade superior over the above two earlier methods. Section 

                                                             
4
 Recall that in hydrogenic atoms the potential energy of nucleons to its net 

potential energy is assumed to contribute either null or a constant value not 

dependent on the distance between nucleus and extra-nuclear electron. Still it 

produces excellently well all the frequencies of emission spectra of such atoms. 
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6.2 presents our calculations of most probable radius of 

Helium-like systems that has been compared with the radius 

of hydrogenic systems. In the final Section 7 we have placed 

our concluding remarks. 

This paper also includes three Appendices. In Appendix A 

we present the comparative calculations of electrostatic and 

magnetostatic potentials with varying distance between the 

two electrons. In Appendix B we illustrate the notion of the 

“trigger" needed to bring the two electrons inside the hadronic 

horizon and in Appendix C we present the energy of simple 

harmonic motion of the IE within the hadronic horizon. 

2. The Concept of Isoelectronium 

The Pauli exclusion principle states that no two electrons in 

an atom can have all the four quantum numbers identically 

same [1-4]. It, therefore, means that in an orbital two electrons 

can be housed only if their spin quantum numbers are different. 

However, the spin quantum number can only have two values 

+1/2 and -1/2, that we conventionally represent as up and 

down arrows because basically it is a vectorial quantity 

originating from the spinning of electrons (the charge particle), 

hence the dictate of the Pauli principle is that the two electrons 

of a given orbital are spin paired. Since the spinning electron 

generates a magnetic field perpendicular to the plane of the 

spin the net spin magnetic moment of two electrons remains 

zero in an orbital. The spins of the electrons, the 

corresponding spin quantum number values ( = 1 / 2sm  and 

1 / 2− ), their magnetic moment vectors and their pairing with 

opposite spins are shown in Figure 1. 

 

Figure 1. Schematic representation of the spins of two electrons, 

correspondingly generated magnetic fields and magnetic moment vectors and 

the spin pairing. The values of the spin quantum number, sm  are also shown.  

Thus the net magnetic moment equals to zero is evident 

from Figure 1. 

Recall that, the strong hold of spin pairing is meticulously 

maintained in all quantum mechanical descriptions wherever 

two spinning fundamental particles are described in quantum 

mechanics but the physics of concomitantly implied strong 

interaction between the two particles is not at all attended in 

any quantum mechanical description. From Figure 1 it is 

evident that when two electrons are spin paired there 

originates strong magnetostatic attraction and simultaneously 

due to their identical charges they must experience very strong 

electrostatic repulsion. Now for the time being if it is considered 

that the electrostatic repulsion nullifies the magnetostatic 

attraction when two electrons are housed in an orbital then it is 

easy to realize that the nullification of the said attractive and 

repulsive potentials would take place at a particular distance 

between two electrons, hence the assumption of their free 

movement about the nucleus within the extranuclear space 

cannot be guaranteed. Though, on an average for a collection of 

atoms the net magnetic moment would be zero. In Appendix A 

we have presented our calculations of the potential energies of 

electrostatic repulsion and magnetostatic attraction to illustrate 

their relative magnitudes. 

Of course, on the one hand one would be tempted to assert 

that to minimize the electrostatic repulsion between the two 

electrons of 1s orbital they need to be farthest apart from each 

other, which according to the average diameter of 1s orbital of 

a Helium atom (that is 62pm) should be 62pm away. In this 

case to maintain the spin pairing of two electrons situated such 

a long distance apart would be extremely difficult (How can 

the Spin entanglement be considered at such a very short 

distances between the two spin paired electrons is debatable 

because there also exist very strong electrostatic and 

magnetostatic interactions.). On the other hand, in Appendix 

A we have seen that the null potential energy position (without 

involving Hulthén potential) is at = 0.2731nullr pm = 273.1 

fm (which, indeed, is a very small a distance compared to the 

average diameter, 62pm, of 1s orbital of He atom). This would 

imply that in all doubly filled orbitals the two electrons remain 

situated at identically the same distance away from each other 

to fulfill the Pauli principle, which indeed is a too demanding 

a requirement as well as is a non-realistic one. Moreover, by 

considering the rest mass of an electron is entirely 

electromagnetic in origin J. J. Thomson in 1881 had calculated 

the radius of electron equal to 2.82
1310−× cm = 2.82fm, which 

is termed as the classical radius of an electron [18]. Thus we 

see that the wave packets of two spin paired electrons would 

not even touch each other but should be about 265 fm apart to 

have null potential energy. Therefore, as stated above to 

maintain spin pairing at such a distance apart for two electrons 

is too stringent a requirement to be followed in reality. 

From the above discussion it is clear that the Pauli principle 

cannot hold if the two electrons of the same atomic orbital are 

allowed to remain a distance away. Precisely for this reason 

Santilli proposed that the two electrons come so much close to 

one another that their wave packets overlap, that is, the centers 

of two electrons achieve a distance of about 1 fm or less (1fm 

is less than half of the predicted radius (2.82fm) of the electron 

by Thomson). Of course, this assertion of Santilli is in 

connection with two spin paired electrons of the covalent 

bonds of hydrogen and water molecules
5
. Then he succeeded 

                                                             
5
 At a first glance one may have apprehension about the physical reality of the 

overlap of the wave packets of two electrons because of their identical charge that 

should cause strong repulsion. Hence, the concept of a trigger has been coined by 

Santilli (c.f. Appendix B). This proposed mutual overlap of wave packets of 

electrons can be compared with the quantum mechanics given concept of overlap 

of electronic atomic orbitals that forms a chemical bond. If one considers the 

electrostatic repulsion between any two electrons then the said overlap cannot be a 
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in unearthing a new kind of interaction that comes into play, 

which is of non-potential, non-local and non-Hamiltonian type 

originating from the physical contact between the two 

electrons by way of deep overlap of their wave packets. We 

recall that the small volume of the wave packets of electrons 

behave as a hyper-dense medium as asserted by Santilli. 

This proposed mutual penetration of the wave packets of 

electrons has been termed as the mutation of electrons. Thus 

the union of mutated electrons, as stated above, has been given 

the name of IE and the two electrons are now termed as 

isoelectrons. The prefix iso- originates because the physics of 

this union can only be described by using Santilli 

isomathematics [19, 20]. Indeed, the IE formation has already 

been demonstrated by Santilli in molecular bonding of 

hydrogen and water molecules [6, 10, 11] and in Cooper pair 

[21, 22]. The schematic representation of coupling that forms 

IE is given in Figure 2. 

 

Figure 2. The schematic representation of isoelectronium by way of deep 

overlap of wave packets of two electrons at a distance of 1 fm or less. 

An experimental evidence asserted by Santilli in support of 

the formation of IE is that in the Helium atom the two 

electrons are bounded most of the time, to such an extent that 

they are emitted in such a bonded form during 

photo-disintegrations, and in other events [6]. 

For detailed discussion on the concept of formation of IE 

the reader is directed to read the original sources namely [6, 10, 

11]. However, in brief we state that the IE formation provides, 

for the first time, a quantitative theory of Pauli principle. Due 

to the deep mutual overlap of wave packets of two electrons of 

an IE an entirely new type of interaction comes into play that 

Santilli identified as being of non-Hamiltonian, non-local and 

non-potential character. To quantify it he has formulated 

hadronic mechanics by using his isomathematics. 

Consequently, its quantitative expression is obtained as 

Hulthén type potential, which at short distances behaves as 

                                                                                                        

reality. However, in chemical bonding this apprehension is set aside on the grounds 

that the electrostatic attraction exerted by two nuclei on the two electrons forces the 

two electronic orbitals to overlap. In Santilli’s language one can now say that it is 

the required trigger for forming a chemical bond. Moreover, as we have described 

in Appendix A when two electrons come close within hadronic volume then very 

strong magnrtostatic force of attraction starts exerting making the said overlap a 

reality. At the same time now a new hadronic effect comes into play that works to 

maintain balance between the attractive and repulsive forces within an IE. Another 

implication of IE when incorporated in the description of chemical bonding would 

be that the conventional overlap of the orbitals gets described as IE formation by 

the two valence electrons of the two atoms forming chemical bond. This subject 

matter we will discuss separately. 

constant/r, that is as Coulomb type. 

This is the conceptual basis of the Pauli principle applied to 

the two spin paired electrons in a molecular orbital. 

Accordingly, Santilli and co-workers have described the 

hadronic mechanics (a quantitative description) of 0π  meson, 

the IE of Cooper pairs and the covalent bonds of hydrogen and 

water molecules. 

Now in this paper we are presenting our investigations using 

an approximation of IE formation (of the two spin paired 

electrons) in atomic systems of Helium and Helium-like atoms 

(see for example [23] and the original references cited therein). 

3. Helium and Helium-Like Systems 

According to Quantum Chemistry 

A Helium atom consists of two extranuclear electrons and, 

two protons and 2 neutrons in its nucleus as depicted in Figure 

3 without neutrons as they are of no relevance in the present 

discussion. 

 

Figure 3. Schematic representation of Helium like atoms (Ions). 

Therefore, there we have the following three potential 

energy terms, namely:  

2 2 2

1 2 12

, ,
Ze Ze e

r r r
− − +             (1) 

where as depicted in Figure 3 
1
r  and 

2
r  are the distances of the 

electron 1 and the electron 2 from the nucleus and 
12
r  is the 

distance between two electrons. Thus in eq.(1) the first two terms 

are the attractive potentials and the third one is the repulsive one. 

Also as the distances 
1
r , 

2
r  and 

12
r  are of comparable 

magnitude thereby all the terms of eq.(1) are also of comparable 

magnitude. Notice that it is indeed a three body problem. 

4. IE in Helium and Helium-Like Systems 

According to Hadronic Chemistry 

Recall that, according to Santilli, an IE is formed when two 

electrons in singlet spin coupling occupy the same molecular 

orbital. The same proposal we now adopt also in the case of 

two spin paired electrons of an atomic orbital. 

Recall also that the IE, by definition, is formed by the deep 

mutual overlap of the wave packets of two electrons. In singlet 

coupling (only), this wave overlap produces a new 
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contribution of non-potential, non-local and non-Hamiltonian 

type to the net potential energy of the system. 

 

Figure 4. A schematic representation of two body model of Helium atom 

( )= 2Z
 
with isoelectronium. 

When we treat two spin paired electrons in an atomic orbital 

as a tiny quasi-particle its implication is that for all practical 

considerations we have ��� 	⋘ 		 ��	and		�� . In the 

conventional quantum mechanical approach the potential 

energy terms of this system would get represented as,  

22 2

3

12 12

2
= eZe e

V
r r r

µ
− + −                  (2) 

where we have used 
1 2

(= )r r r≡  which is the distance 

between the IE and the nucleus and 
12
r is the internal distance 

of IE and by definition is many fold smaller compared to r . 

The last term on the right hand side of eq.(2) originates from 

the magnetostatic interaction that start significantly exerting at 

short distances between the two spin paired electrons of the IE 

because they behave as two tiny magnets (due to their 

spinning) obviously placed at a short distance apart
6
 and the 

magnitude of the corresponding interaction steeply increases 

as the distance between the two electrons decreases towards 

hadronic dimension (c.f. Appendix A). 

In this way, we have approximated the three body model of 

the Helium into a two body model that we call IsoHelium. 

This gets pictorially represented as shown in Figure 4. Thus 

we see that, because of ��� 	⋘ 		� the second and third terms 

on the right hand side of eq.(2) completely over power the first 

electrostatic term due to attraction between the IE and the 

protons of the nucleus and the net effect turns out as a strong 

attraction. Even though there emerges a strong magnetostatic 

attractive potential on bringing two electrons within the 

hadronic distances the story of interaction still remains 

incomplete. This is so because the new phenomena of the deep 

mutual overlap of the wave packets of two electrons, bound to 

bring in the corresponding entirely new source of potential 

                                                             
6
 This magnetostatic potential has not been incorporated in any of the earlier 

quantum mechanical descriptions. Perhaps because its magnitude remains 

insignificantly small compared to the electrostatic repulsion between two free 

electrons of an orbital as the average distance between them is expected to be of the 

order of atomic dimension (c.f. Table 11 of Appendix A). Whereas in Santilli’s 

model of a molecular orbital housing an IE it seems that by default this 

magnetostatic interaction gets covered within the hadronic Hulthén potential that 

he calculated hence it is no wonder that the result is an attractive hadronic potential. 

that in essence implies having the non-potential, non-local 

and non-Hamiltonian character, that imparts the status of a 

quasi-particle to so situated spin paired two electrons, which 

Santilli christened as an IE. However, as asserted by Santilli 

the state of deep mutual overlap of wave packets of two 

electrons implies their mutation that in his words is the 

realization of iso-electrons characterized by the 

Lorentz-Santilli isosymmetry [24, 25]. 

In order to quantify the said new potential originating 

within an IE we recall that the situation in Helium and 

Helium-like atomic systems is some what like an IE of 

hydrogen and water molecules described earlier by Santilli. In 

the present case the electrostatic attraction between the 

nucleus and IE serves as the required trigger [6, 10, 11] that 

forces two orbital electrons to form an IE (c.f. Appendix B). 

In this model of iso-Helium atom and iso-Helium-like 

systems we have the following situation. The electrostatic and 

magnetostatic interactions between the two isoelectrons of IE 

still remain governed by the corresponding conventional laws. 

Whereas the attraction between the nucleus and the IE, and the 

kinetic energy of IE relative to the stationary nucleus involve 

distances many fold higher than 1 fm. Hence, the latter two 

aspects are needed to be treated by quantum mechanics and 

related conventional mathematics. That is they get adequately 

described by the conventional quantum mechanical tools. 

However, we have to quantify the new interaction originating 

from the deep overlap of the wave packets of two electrons of 

IE by the methods of hadronic mechanics. Thus we have a 

mixed situation of requiring to handle both the hadronic and 

the conventional interactions and two distances of 

non-comparable magnitudes. We recall that the case of 0π  

meson is different in which we remain entirely well within the 

hadronic horizon because it has been postulated by Santilli as 

the hadronic union of isoelectron and isopositron [26]. 

However, as IE behaves as a quasiparticle all the 

interactions between two electrons of it should produce either 

a null potential or a very small value of it not dependent on the 

distance between nucleus and extra-nuclear IE (c.f. Section 5). 

Accordingly, for the time being if we assume that the 

attractive, repulsive and hadronic potential energies within IE 

exactly get nullified, then for the system under consideration 

there are two inputs to the Hamiltonian, H , namely:  

1. the kinetic energy, T , of IE relative to the nucleus,  

2

=
2 IE

p
T

µ
                 (3) 

where p  is the momentum of the IE and its reduced mass, 

IE
µ , reads as, 

= IE nucleus

IE

IE nucleus

m M

m M
µ ×

+
              (4) 

where 
IE

m  is the rest mass of IE and 
nucleus

M  is the rest mass 

of the nucleus.  

2. the potential energy, 
i

V , is determined by the attraction 

between the effective nuclear charge and an electron of the 
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IE
7
,  

2*

=i

Z e
V

r
−             (5) 

where *Z  is the effective nuclear charge experienced by the IE. 

It should be noted that, according to the model under 

consideration, the IE is seen from the nucleus of nuclear 

charge, *Z , as one single entity with effective charge e  and 

is treated quantum mechanically. Hadronic chemistry solely 

holds for the structure of the IE that necessitates the use of 

isomathematics. The rudiments of it we have described in the 

following Section 5. 

5. The Isopotential in the 

Semi-IsoHelium-Like Systems 

In order to understand the quantitative treatment of the 

strong hadronic contact force between two electrons in singlet 

coupling at very small mutual distances, it is essential to recall 

that such a force simply cannot be formulated via quantum 

mechanics and its known mathematical structure, e.g., via the 

conventional Hilbert space. This is due to the fact that the 

latter formulations can only represent interactions derivable 

from a potential, while contact interactions have no potential 

by their very conception. Consequently, the sole 

mathematically and physically consistent representation of an 

isolated IE is that via isomathematics with particular reference 

to the use of the Schrödinger-Santilli isoequation on an 

iso-Hilbert space over Santilli isocomplex isonumbers (see for 

example [6] and references cited therein). Therefore, we have 

the following three contributions in iso-Hilbert space, namely:  

1. The non-linear, non-local, non-potential and 

non-Hamiltonian contribution due primarily to the deep 

mutual overlap of wave packets of two electrons we 

represent as,  

g
 = 	 g
��̂���		                  (6) 

2. The repulsive electrostatic interactions between the 

identical charge of two isoelectrons;  

( )2̂

12
ˆ ˆ ˆ ˆˆ ˆ=
electrostatic e e

V V e r+ × ÷           (7) 

where ˆ ˆ=e e eV V I×  and 

3. The attractive magnetostatic potential due to the two 

identical tiny isomagnetes in singlet coupling, namely:  

( )ˆ ˆ2 3

12
ˆ ˆ ˆ ˆˆ ˆ=
magnetostatic

V V rµ µ µ− × ÷            (8) 

where ˆ ˆ=V V Iµ µ µ×  and µ̂  is the iso-magnetic moment of 

                                                             
7
 Though we are considering the attractive electrostatic interaction between the 

nuclear charge and the two electrons of an IE but the use of the effective nuclear 

charge, *Z , in eq.(5) implies that one of the electrons of the IE joins into the act of 

shielding of nuclear charge hence the factor 2 in the numerator of this equation is 

not appearing. 

the isoelectron and µ  is the conventional magnetic moment 

of an electron. 

Recall that isoquantities are equal to the quantum quantities 

multiplied by the isounits Î , ˆ
eI , Îµ , etc., all isoproducts ×̂ , 

ˆ
e

× , ˆ µ× , etc. are given by T̂× × , ˆ
eT× × , T̂µ× × , etc., where 

×  is the conventional associative product, and the same holds 

for the isofractisons [19, 20]. 

Notice that the above three interactions are taking place 

within the hadronic space of an IE, which we are treating as a 

quasi-particle. However, this quasi-particle when treated as a 

part of a heliumic system it is justified to treat it as a point 

mass because the distance between the nucleus and the IE is 

many fold larger than the size of an IE (c.f. �	 ⋙	���). As 

stated above to the first approximation the interactions within 

a quasi-particle by its definition would not contribute to the 

potential energy of the heliumic system (even if it is a non-null 

contribution the net contribution would be a very small 

constant in the sense not dependent on r , the distance 

between nucleus and IE. Hence, our main result would not get 

altered in any way). Therefore, we are led to assume, 

g
��̂��� = 	��� 	×�� ��̂�� ÷� �̂���� � − ��� 	×�� ��̂�� ÷� �̂���	  (9) 

However, it is profitable to use the projected version of 

eq.(9) on the conventional Hilbert space (the space to which 

the Helium-like system belongs). The said projections of each 

term of eq.(9) are
8
:  

g
��̂��� 		→ 		g���� × ��� 

( )
2

ˆ ˆ2 3

12 3

12

ˆ ˆ ˆˆ ˆ eV r
r

µ µ
µµ× ÷ →  

( )
2

2̂

12

12

ˆ ˆ ˆˆ ˆ
e e

e
V e r

r
× ÷ →  

Therefore, the projected version on the conventional Hilbert 

space of eq.(9) reads as,  

g���� × ��  � = g !��	�����" = ℎ ×	��	����� = 	 �$%
&'%( −	 �%

&'%		 (10) 

Notice that we have used 12 12
ˆˆ = 'r r I×  and then absorbed 

the 
12
r  dependence of g entirely in the isotopic element by 

defining new isotopic element, �� , equal to ��� × ��   that 

allowed us to adopt,  

g���� × ��  � = g !�������" = ℎ ×	�������		     (11) 

where g���� × ��  � is the projected function on the Hilbert 

                                                             

8
 We have chosen isotopic elements, ��� and ��� such that when ˆ

eV  and V̂µ  are 

projected on the conventional Hilbert space the result is unity i.e. �� × �
� =
	�� × �
� = 	1 . This choice of mathematical handling of electrostatic and 

magnetostatic interactions between the two electrons of an IE implicitly assigns the 

entire quantification of hadronic effects to the term g
��̂��� or equivalently 

to	g���� × ���.  
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space of g
��̂���. Thus h is obtained as independent of 
12
r . In 

this way we need to quantify two quantities ��  and h  each 

positive definite. 

Although the approximation of eq.(9) or that of eq.(10) 

seems to be purely ad hoc but its physical reality appears to be 

as described below. Let us consider the case of a diatomic 

molecule as an analogy. The separated atoms have three 

translational degrees of freedom individually. On forming the 

union, similar to a diatomic molecule, IE possesses only three 

translational degrees of freedom. Hence the remaining three 

translational degrees of freedom generate new degrees of 

freedom. They are two rotational and one vibrational 

(symmetric). The physical existence of both the new types of 

degrees of freedom in a molecule have been experimentally 

and unequivocally proved by IR, UV and microwave 

spectroscopies. On the same lines the separated electrons in an 

orbital will have in all six translational degrees of freedom 

corresponding to their motion within an orbital. However, on 

forming IE there still remains three translational degrees of 

freedom for its motion within the volume of an orbital. Hence 

the remaining three translational degrees of freedom get 

transformed to one vibrational and two rotational degrees of 

freedom of the IE. The reason of vibration of an IE can be 

traced out from the fact that at very short distances of hadronic 

scales the magnetostatic attraction between two isoelectrons 

over powers the electrostatic repulsion between them (c.f. 

Appendix A). In this way ultimately a dielectron would be 

formed by way of the complete superposition of the wave 

packets of the two electrons. But so far there is no 

experimental evidence of such a species. The physical 

non-realization of such a species lead us to conjecture and 

believe that there originates a new form of interaction coming 

into play due to the deep overlap of the wave packets of two 

isoelectrons of an IE. That starts countering the very strong 

magnetostatic interaction at such small distances i.e. 1 fm and 

less. That on the lines of Santilli we have quantified via the 

Hulthén potential. Because of this mutual countering of 

attractive and repulsive interactions within an IE it maintains 

the vibrational mode. Similarly, each IE will have two 

rotational modes. But we must realize that all the degrees of 

freedom of IE would be constrained by the very strong 

electrostatic attraction between the nuclear charge and IE. 

Perhaps still it would be permissible to use the tools of 

hadronic mechanics for describing vibrational motion of an IE 

on the lines of the quantum mechanics of the vibrational 

motion of a diatomic molecule and that we have described in 

Appendix C. On the other hand, the rotational motion of IE 

takes place in the conventional Hilbert space, that is within the 

entire volume of an orbital. Hence, this motion needs to be 

computed using quantum mechanical tools on the similar lines 

of rotational motion of a diatomic molecule. The striking 

difference would be the drastic reduction of moment of inertia 

in going from a molecule to an IE. This aspect we have not 

investigated yet. However, it is clear that an IE in a 

Helium-like systems possesses (and for that matter all spin 

paired electrons of atomic and molecular orbitals) vibrational, 

rotational and translational energies
9
. 

In view of the above approximations the net potential 

energy of the system is solely determined by,  

2*

=
Z e

V
r

−                (12) 

originating from electrostatic attraction between the nuclear 

charge and one of the electrons of the IE in extra-nuclear 

region. Of course, under the condition of eq.(10) we need to 

evaluate ������� and also assign a suitable expression to h . 

Since, the IE formation is assumed as triggered by the 

electrostatic attraction between nuclear charge and the two 

electrons (c.f. Appendix B) hence to the first approximation 

we adopt the following expression,  

2*

=
Z e

h
r

               (13) 

Of course, h  has been assumed as dependent on r  and 

the latter is independent of 12r , hence the expression on the 

right hand side of eq.(13) serves as practically of constant 

magnitude within the hadronic volume. 

The isounit '̂I  and its corresponding isotopic element are 

computed on the similar lines as it has been done in the case of 

an IE of hydrogen and water molecules [6, 10], that is,  

*+ =	�,×- -�⁄ 	≈ 1 + 	1 ×	--� 	 , 1 = 	34��↓6 ����� ×
4��↑6 �����	8����	           (14) 

that gives, 

��  ≈ 1	 − 1 ×	--� 		              (15) 

where 4 is the conventional wave function of an electron,	4� i

s the iso-wave function of an isoelectron, the subscripts 1 an

d 2 refer to the two isoelectrons of IE and their spin paired s

tate has been shown by up and down arrows in the subscript.

 Moreover, the wave functions 4, 4�, 4��↓6  and4��↑ are the fun

ctions of ���. That is the computation of isounit and the isoto

pic element is being carried out within the hadronic volume. 

Therefore, from the preceding equations, we have, 

*+ ≫ 1,				��  	≪ 1, lim&'%		≫'>?		*+ 	= 		*		    (16) 

As the explicit form of ψ  is of Coulomb type, it behaves as,  

4����� 		≈ 		1 × �@�A×&'%�	         (17) 

where N  is approximately constant at distances termed as 

the coherence length, 
c

r , of the of IE (= 1 / b ), while ψ̂  

behaves like, 

4������ 	≈ B × !�@	�C�D×E'%�	
&'% "		       (18) 

                                                             
9
 Among them the translational energy appears to overwhelmingly dominate that 

gets quantified and is contained in the electronic energy of the Helium-like system 

given by eq.(24). 
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where M  is also approximately constant within the same 

range of applicability [6]. 

Therefore, the isotopic element ��  of eq.(15) on using 

eqs.(17) and (18) gets expressed as, 

��  = 1 −	,%
F × ��� × �C�D×E'%�

�@	�C�D×E'%� = 1 −	��� × �G ×
�C�D×E'%�

�@	�C�D×E'%� = 	1 −	��� × �HIJKLéN > 0				     (19) 

where we have the constant 2

0 = /V N M  and the Hulthén 

potential is given by, 

�HIJKLéN =		�G × �C�D×E'%�
�@	�C�D×E'%�		         (20) 

Yet another expression of �QRSTℎéU under the condition of 

eq.(11) in combination with eqs.(10) and (19) is obtained that 

reads as,  

�HIJKLéN =	V &
!&'%W "( 	× �

X∗ +	 �
&'%W

	Z −	 �$%
X∗�% × V &

!&'%W "[Z	  (21) 

where †

12r  in eq.(21) is that value of 
12
r  at which the net null 

potential is achieved. 

Notice that r  represents the most probable distance of IE 

from the nucleus. Obviously it would be different for different 

orbitals. That is the fixing of r  implies considering IE in a 

given orbital. Thus we learn from eq.(21) that the magnitude 

of Hulthén potential varies from orbital to orbital and thereby 

the hadronic and conventional interactions between the two 

isoelectrons of IE also change from orbital to orbital implying 

that 
12
r

 
also remains deferent for deferent orbitals. 

6. Solution of Schrödinger Equation for 

the Two Body Approximation of 

Helium-Like Systems 

Under the above two body model approximation in which 

we have adopted the nullification of attractive and repulsive 

potentials of two isoelectrons of an IE by the new isopotential, 

the Schrödinger equation reads as, 

2*1
| = |

2
IE

Z e
p p E

r
ψ ψ

µ
 

× − × 〉 × 〉 
 

      (22) 

It is to be noted that as we are working within the 

conventional Euclidean space there is no need to use iso-wave 

function. The use of isotopy is required only for the 

quantification of the isopotential between the spin-paired 

isoelectrons in an orbital. Moreover, in eq.(22) there we have 

kinetic energy of IE with respect to nucleus hence there 

appears reduced mass of the IE. 

Now eq.(22) gets further transformed to,  

* 2
2

2

2
| | = 0IE Z e

E
r

µψ ψ
 

∇ 〉 + + × 〉 
 ℏ

   (23) 

Notice that eq.(23) resembles the Schrödinger equation for 

a hydrogenic atom. 

Therefore, we can directly use the standard solutions 

already available in literature for hydrogen atom or for a single 

electron systems [27, 28], of course, with appropriate changes. 

Thus the energy E  is given by,  

2 * 2 4

2 2

2 ( )
= ( = 1, 2, 3, )IE

Z e
E n

n h

π µ
− ⋅⋅ ⋅⋅⋅    (24) 

where n  is the radial or principal quantum number that can only 

have integer values. Notice that the energy given by eq.(24) is for 

the double occupancy of an orbital because in its numerator we 

have reduced mass of IE (c.f. eq.(4)) which is composed of two 

isoelectrons. Similarly, the total wave function gets determined 

by three quantum numbers n , l  and 
l

m , the conventional 

principal, azimuthal and magnetic quantum numbers respectively. 

As usual the solution of eq.(23) gives,  

= 1, 2, 3,n ⋅ ⋅⋅ ⋅ ⋅ ⋅               (25) 

= 0,1, 2, 3, , ( 1)l n⋅ ⋅ ⋅ ⋅⋅ −              (26) 

= , 1, 2, ,1, 0, 1, , ( 1),
l

m l l l l l− − ⋅⋅⋅ ⋅⋅ − ⋅⋅ ⋅⋅ ⋅ ⋅ − − −    (27) 

We are tabulating some of the normalized spin paired 

doubly occupied wave functions in Tables 1 – 4 each one of 

them are obtained for the spin paired occupancy by two 

electrons. 

Table 1. Normalized spin paired doubly occupied wave functions of Helium 

atom/Helium-like systems, 
nlm

l
ψ with 

2

0 2 2
=

2 IE

h
a

eπ µ
, the conventional 

Bohr radius, where IEµ  is the reduced mass of the isoelectronium and is 

related as = 2IE eµ µ×  for K  shell. 

Normalized spin paired doubly occupied wave functions 

K Shell: n = 1 

= 0, = 0ll m  

3/2
* *

100 1

0 0

1 2 2
= or 1 = exps

Z Z r
s

a a
ψ ψ

π
   

−      
   

 

Table 2. Normalized spin paired doubly occupied wave functions of 

Helium atom/Helium-like systems, 
nlm

l
ψ

 
with 

2

0 2 2
=

2 IE

h
a

eπ µ
, the 

conventional Bohr radius, where IEµ  is the reduced mass of the 

isoelectronium and is related as = 2IE eµ µ×  for L  shell. 

Normalized spin paired doubly occupied wave functions 

L Shell: n = 2 

= 0, = 0ll m  

3/2
* * *

200 2

0 0 0

1 2 2
= or 2 = 2 exp

4 2
s

Z Z r Z r
s

a a a
ψ ψ

π
     

⋅ − −          
     

 

=1, = 0ll m  

5/2
* *

210 2

0 0

1 2
= or 2 = exp

4 2
p z

z

Z Z r
p z

a a
ψ ψ

π
   

⋅ ⋅ −      
   

 

=1, =1ll m  
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Normalized spin paired doubly occupied wave functions 
5/2

* *

211 2

0 0

1 2
= or 2 = exp

4 2
p x

x

Z Z r
p x

a a
ψ ψ

π
   

⋅ ⋅ −      
   

 

=1, = 1ll m −  

5/2
* *

21( 1) 2

0 0

1 2
= or 2 = exp

4 2
p y

y

Z Z r
p y

a a
ψ ψ

π−

   
⋅ ⋅ −      

   
 

Table 3. Normalized spin paired doubly occupied wave functions of Helium 

atom/Helium-like systems, 
nlm

l
ψ  with 

2

0 2 2
=

2 IE

h
a

eπ µ
, the conventional 

Bohr radius, where 
IE

µ  is the reduced mass of the isoelectronium and is 

related as = 2
IE e

µ µ×  for M  shell with = 0 and 1l . 

Normalized spin paired doubly occupied wave functions 

M Shell: n=3 

= 0, = 0
l

l m  

3/2
* * 2 2 * *

300 3 2

0 0 0 0

1 2 ( ) 2
= or 3 = 8 36 27 exp

381 3
s

Z Z r Z r Z r
s

a a a a
ψ ψ

π
     

− + −          
     

 

=1, = 0
l

l m  

5/2
* * *

310 3

0 0 0

2 2 2 2
= or 3 = 6 exp

381
p z

z

Z Z r Z r
p z

a a a
ψ ψ

π
     

⋅ ⋅ − −          
     

 

=1, =1
l

l m  

5/2
* * *

311 3

0 0 0

2 2 2 2
= or 3 = 6 exp

381
p x

x

Z Z r Z r
p x

a a a
ψ ψ

π
     

⋅ ⋅ − −          
     

 

=1, = 1
l

l m −  

5/2
* * *

31( 1) 3

0 0 0

2 2 2 2
= or 3 = 6 exp

381
p y

y

Z Z r Z r
p y

a a a
ψ ψ

π−

     
⋅ ⋅ − −          

     
 

Table 4. Normalized spin paired doubly occupied wave functions of Helium 

atom/Helium-like systems, 
nlm

l
ψ

 
with 

2

0 2 2
=

2 IE

h
a

eπ µ
, the conventional 

Bohr radius, where IE
µ  is the reduced mass of the isoelectronium and is 

related as = 2
IE e

µ µ×  for M  shell with = 2l . 

Normalized spin paired doubly occupied wave functions 

M Shell: n=3 

= 2, = 0
l

l m  

( )
7/2

* *
2 2

2
2320 3

0 0

1 2 2
= or 3 = 3 exp

381 6
zdz

Z Z r
d z r

a a
ψ ψ

π
   

− −      
   

 

= 2, = 1
l

l m  

7/2
* *

321 3

0 0

2 2 2
= or 3 = exp

381
xzdxz

Z Z r
d xz

a a
ψ ψ

π
   

⋅ ⋅ −      
   

 

= 2, = 1
l

l m −  

7/2
* *

321 3

0 0

2 2 2
= or 3 = exp

381
yzd yz

Z Z r
d yz

a a
ψ ψ

π
   

⋅ ⋅ −      
   

 

= 2, = 2
l

l m −  

7/2
* *

32( 2) 3

0 0

2 2 2
= or 3 = exp

381
xydxy

Z Z r
d xy

a a
ψ ψ

π−

   
⋅ ⋅ −      

   
 

= 2, = 2
l

l m  

Normalized spin paired doubly occupied wave functions 
7/2

* *
2 2

2 22 2322 3

0 0

1 2 2
= or 3 = ( ) exp

381 2
x ydx y

Z Z r
d x y

a a
ψ ψ

π−−

   
⋅ − ⋅ −      

   
 

Moreover, the shapes and orientations of these doubly 

occupied orbitals remains identically same as that is given by 

quantum mechanics for hydrogen-like systems (c.f. Figure 5). 

The only difference that results is the significant contraction of 

the orbitals in going from hydrogenic to heliumic systems (c.f. 

Tables 8 – 10 of Subsection 6.2.).  

 

Figure 5. Various orbital shapes of hydrogenic systems. 

The inspection of the expressions of wave functions given 

in Tables 1 – 4 establish that on occupation by spin paired two 

electrons none of the hydrogen like atomic orbitals change 

their shapes and spatial orientations. Only the size gets 

reduced appropriately. Hence, the change of terminology of 

orbitals in going from single electron orbitals to two spin 

paired electrons orbitals is not warranted. This is what is also 

reflected in Tables 1 – 4. 

As the wave functions listed in Tables 1 – 4 are the double 

occupancy wave functions hence in going from 1s  to any 

higher energy orbital represents the corresponding excited 

state. Thus the electronic configurations 
22s , 22 xp , 22 yp , 

22 zp , 
23s , 23 xp , 23 yp , 23 zp , etc. are the various excited 

states. The term symbols for each of them is 1

0S . Notice that 

these excited states would be formed by simultaneous 

excitation of two spin paired electrons to a single higher 

energy orbital retaining spin pairing. But electronic transitions 

are governed by Franck-Condon prnciple [27] hence as such, 

such excitations would be a rare phenomena thus they would 

be extremely unstable even if they are formed in traces. 

However, the utility of these Helium-like orbitals is in the 

building up of electronic configuration of successive elements 

of the periodic table according to the Aufbau principle, Pauli 

principle and Hunds rule (see for example the reference [27]). 

The energy of an orbital is determined primarily by the 

principal quantum number, n , therefore, the energy sequence 

in increasing order of doubly occupied orbitals, from eq.(24), 

gets established as,  

2 2 2
1 < 2 = 2 = 2 = 2 < 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 < 4

x y z x y z xy yz zx
z x y

s s p p p s p p p d d d d d s
−

⋅ ⋅ ⋅ ⋅ ⋅                  (28) 
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which is identically same as that of Hydrogen-like systems. 

 

Figure 6. Energy of Hydrogen-like atomic orbitals with increasing atomic number, Z , which is identical for Helium-like atomic orbitals. 

However, the helium-like wave functions given in Tables 1 

– 4 are similar to the hydrogen-like wave functions and hence 

in the former the penetration of 2s , 2p , 3s , 3p , 3d , etc. 

towards the nucleus would be similar to that we have in the 

latter case (for the said penetration see for example [27]). 

Hence, on the same lines the degeneracy of orbitals in the 

given shell K , L , M , etc. gets split and the above sequence 

of energy broadly transforms to, 

2 2 2
1 < 2 < 2 = 2 = 2 < 3 < 3 = 3 = 3 < 3 = 3 = 3 = 3 = 3 < 4

x y z x y z xy yz xz x y z
s s p p p s p p p d d d d d s

−
⋅⋅ ⋅ ⋅ ⋅           (29) 

Again this sequence is identically same which we have for 

hydrogen-like orbitals. More rigourously we will have the 

same energy sequence with increasing atomic number for 

Helium-like orbitals as that we have for Hydrogen-like 

orbitals depicted in Figure 6. 

6.1. Effective Nuclear Charge of Helium Atom and 

Helium-Like Systems for 1s Occupancy 

From eq.(4) in view of BNI\J�I] 	≫	^_`  we practically 

have = 2
IE IE e

m mµ ≡ . Hence, eq.(24) effectively reads as,  

2 4

* 2

2 2

2
= 2( ) ( = 1, 2, 3, )em e

E Z n
n h

π
− × ⋅⋅ ⋅ ⋅⋅      (30) 

Therefore, for = 1n  eq.(27) would read as, 

2 4

* 2

1 (1 ) (1 ) 2

2
= 2( ) where = e

s H s H s

m e
E E Z E

h

π
× −   (31) 

which on rearrangement gives an expression of effective 

nuclear charge, namely: 

* 1

(1 )

=
2

s

H s

E
Z

E
                  (32) 

In terms of experimental inonization energies eq.(32) then 

reads as,  

* 1

(1 )

=
2

n n

H s

I I
Z

I

+ +
×

              (33) 

where 1nI +  and nI  are the last two ionization energies. 

Therefore, we have substituted experimental values of the 

relevant ionization energies [29] in eq.(33) that produced 

corresponding values of effective nuclear charges which we 

have tabulated in Tables 5 – 7 along with the values that is 

given by Slater rule [13] and those computed by Clementi et al 

[14-17] for direct comparison. 
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Table 5. Effective Nuclear Charge ( *Z ) of Helium and Helium-like Systems 

for 1s Spin-paired Electrons from H to Ne. 

Element/ *Z  
*Z  

*Z  

Ion Equation (33) Slater Rule §  Clementi et al ‡  

H
−

 0.686 0.7 Not available 

He 1.704 1.7 1.6875 

Li
+

 2.698 2.7 2.691 

Be
2+

 3.696 3.7 3.685 

B
3+

 4.695 4.7 4.680 

C
4+

 5.69 5.7 5.673 

N
5+

 6.695 6.7 6.665 

O
6+

 7.695 7.7 7.658 

F
7 +

 8.696 8.7 8.650 

Ne
8+

 9.698 9.7 9.642 

§
[13], ‡ [17] 

Table 6. Effective Nuclear Charge ( *Z ) of Helium and Helium-like Systems 

for 1s  Spin-paired Electrons from Na to Ca. 

Element/ *Z  
*Z  

*Z  

Ion Equation (33) Slater Rule §  Clementi et al ‡  

Na 9+  10.699 10.7 10.626 

Mg 10+  11.702 11.7 11.609 

Al 11+  12.704 12.7 12.591 

Si 12+  13.708 13.7 13.575 

P 13+  14.711 14.7 14.558 

S 14+  15.716 15.7 15.541 

Cl 15+  16.721 16.7 16.524 

Ar 16+  17.727 17.7 17.508 

K 17+  18.733 18.7 18.490 

Ca 18+  19.740 19.7 19.473 

§
[13], ‡ [17] 

Table 7. Effective Nuclear Charge ( *Z ) of Helium and Helium-like Systems 

for 1s  Spin-paired Electrons from Sc to Cu. 

Element/ *Z  
*Z  

*Z  

Ion Equation (33) Slater Rule
§
 Clementi et al

‡
 

Sc 19+  20.748 20.7 20.457 

Ti 20+  21.756 21.7 21.441 

V 21+  22.766 22.7 22.426 

Cr 22+  23.776 23.7 23.414 

Mn 23+  24.788 24.7 24.396 

Fe 24+  25.800 25.7 25.381 

Co 25+  26.814 26.7 26.367 

Ni 26+  27.828 27.7 27.353 

Cu 27+  28.844 28.7 28.339 

§ [13], ‡ [17] 

The data in Tables 5, 6 and 7 clearly demonstrates that the 

effective nuclear charge for two isoelectrons as IE in 1s  

orbital in each case using eq.(33) excellently matches with that 

obtained using Slater rule and it nicely correlates with that of 

Clementi et al. Hence, it serves to demonstrate the credibility 

of our ad hoc assumptions that imparts a physical reality to our 

structured model of Helium atom and Helium-like systems. If 

one carefully compares the values of *Z  given in the second 

column with those listed in the fourth column of Tables 5, 6 

and 7 it would be noticed that the values of the second column 

are higher than those of fourth column and the difference 

between them increases as atomic number increases. To 

understand this trend we need to first realize that the Clementi 

et al values are obtained using SCF theory of quantum 

mechanics and in doing so a union of two electrons is not 

involved. Indeed, for a many body system one does not have 

analytic solution of Schrödinger equation and hence the SCF 

theory has been developed that involves the iteration 

technique and hence it is an approximate method. Still one can 

understand the said increasing difference between *Z  values. 

The separated two spin paired electrons of a given orbital 

would produce little higher shielding than the two spin paired 

electrons in the form of an IE. Therefore, as atomic number 

increases the the two electrons of 1s orbital become more 

tightly bound to nucleus and as a result their average distance 

from the nucleus continuously decreases (c.f. Tables 8 – 10 of 

Subsection 6.2). Therefore, it is easy to realize that if we 

assume the two spin paired electrons as unbound they would 

be more effective in shielding compared to the spin paired IE. 

6.2. The Most Probable Radius of Helium Atom and 

Helium-Like Systems 

The most probable radius, *r , of 1s orbital of Helium atom 

and that of Helium-like systems is given by,  

0*
*

( ) =
2

a
r

Z
↑↓                 (34) 

We have used the standard value of Bohr radius 
0

= 52.9a  

pm and the *Z  values calculated by eq.(33) using 

experimental ionization energies and tabulated in Tables 8 – 

10. For the sake of comparison we have also tabulated the 

average radius *

0( ) = /r a Z↑  computed for the 

Hydrogen-like systems and tabulated in Tables 8 – 10. 

Table 8. Most probable radius of Helium atom and Helium-like Systems and 

that of Hydrogenic Systems from H to Ne. 

Element/ *( )↑↓r /pm Element/ § *( )↑r /pm 

Ion Equation (34) Ion  

H −  77.11 H 52.9 

He 31.04 He +  26.45 

Li +  19.71 Li 2+  17.63 

Be 2+  14.31 Be 3+  13.225 

B 3+  11.27 B 4+  10.58 

C 4+  9.30 C 5+  8.817 

N 5+  7.90 N 6+  7.557 

O 6+  6.87 O 7+  6.613 

F 7+  6.08 F 8+  5.878 

Ne
8+

 5.45 Ne 9+  5.29 

§
[27] 

Table 9. Most probable radius of Helium atom and Helium-like Systems and 

that of Hydrogenic Systems from Na to Ca. 

Element/ *( )↑↓r /pm Element/ §
*( )↑r /pm 

Ion Equation (34) Ion  

Na 9+  4.94 Na 10+  4.809 

Mg 10+  4.52 Mg 11+  4.408 

Al 11+  4.16 Al 12+  4.069 

Si 12+  3.86 Si 13+  3.779 
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Element/ *( )↑↓r /pm Element/ §
*( )↑r /pm 

P 13+  3.60 P 14+  3.527 

S 14+  3.37 S 15+  3.306 

Cl 15+  3.16 Cl 16+  3.112 

Ar 16+  2.98 Ar 17+  2.939 

K 17+  2.82 K 18+  2.784 

Ca 18+  2.68 Ca 19+  2.645 

§
[27] 

Table 10. Most probable radius of Helium atom and Helium-like Systems and 

that of Hydrogenic Systems from Sc to Cu. 

Element/ *( )↑↓r /pm Element/ § *( )↑r /pm 

Ion Equation (34) Ion  

Sc 19+  2.55 Sc 20+  2.519 

Ti 20+  2.43 Ti 21+  2.405 

V 21+  2.32 V 22+  2.30 

Cr 22+  2.23 Cr 23+  2.204 

Mn 23+  2.13 Mn 24+  2.116 

Fe 24+  2.05 Fe 25+  2.035 

Co 25+  1.97 Co 26+  1.959 

Ni 26+  1.90 Ni 27+  1.889 

Cu 27+  1.83 Cu 28+  1.824 

§
[27] 

If no screening effect operates then * ( )r ↑  should be equal 

to *2 ( )r ↑↓× . But from Tables 8 – 10 we see that it is not so. 

Actually we find that in all cases * *2 ( ) > ( )r r↑↓ ↑× , that is the 

shrinking of the electron charge is less than if no shielding 

effect operated. However, as atomic number increases 
*2 ( )r ↑↓×  tends to approach * ( )r ↑ . 

It seems that our method of calculation of effective nuclear 

charge, that is experienced by two 1s  electrons, via eq.(33) is 

superior over that of Clementi et al because the former method 

is based on the experimental ionization energies. 

Yet another outcome of this presentation is that when we 

start filling atomic orbitals in accordance with the Aufbau 

principle we first place one electron in a hydrogen-like orbital 

and then when we fill the second electron guided by the Pauli 

principle it becomes a Helium-like orbital. Thus for example, 

in the case of Na the electronic configuration is 
2 2 6 11 2 2 3s s p s , in that 

13s  is the Hydrogen-like wave 

function and all the lower energy ones are the Helium-like 

wave functions. That is, in 2 2 2 2 21 2 2 2 2x y zs s p p p  there we have 

the occupancy by an IE in each orbital. 

6.3. Lower Excited States of Helium Atom 

We recall that energy of the three lower electronic states of 

He atom follows the following order, namely: 

2 1 1 1 3 1 1 11 ( )( S) < 1 ( )2 ( )( S) < 1 ( )2 ( )( S)s s s s s↑↓ ↑ ↑ ↑ ↓  

1 1 3 1 1 1< 1 ( )2 ( )( P) < 1 ( )2 ( )( P) <s p s p↑ ↑ ↑ ↓ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅        (35) 

We notice that the triplate state 2 31 ( )( S)s ↑↑  is not amongst 

the lower excited states. This is so because in this case there 

would be very strong magnetostatic repulsion. Hence both the 

electrostatic and magnetostatic strong repulsions would not 

allow electrons to come close to form a union i.e. an IE. On the 

contrary the repulsive potential energy would be very high if 

two electrons are forced to occupy the small volume of the 1s  

orbital with parallel spins. However, from the next higher 

energy states the 
3
S state is of lower energy than the 1S  state. 

To explain it we need to realize that in these two states the two 

electrons are in two different spherically symmetric 

hydrogenic orbitals hence no IE formation could take place. 

Therefore, no hadronic mechanics based explanation can be 

applied. Thus the conventional quantum mechanical 

explanation remains in order. 

7. Concluding Remarks 

This paper we dedicate to the memory of G. N. Lewis who 

coined the term coordinate covalent bond, which is formed by 

the donation of a lone pair of electrons to an accepter 

molecule (1923) that led us to conclude that all spin paired 

electrons of atomic orbitals are isoelectronium. 

In this paper first we have discussed in Section 1 the 

chemical reactivity and chemical bonding, particularly the 

coordinate covalent bond (G. N. Lewis), bases that strongly 

indicate that all spin paired electrons in each atomic orbital, 

indeed, exist as a quasistatic particle formed by the union of 

two electrons, which was named earlier by Santilli as 

isoelectronium. 

As a result of this from hadronic physics and chemistry 

point of view the iso-Helium atom and iso-Helium-like 

systems constitute a problem in which we have to deal with 

two different levels of lengths and corresponding interactions. 

The IE formation is a phenomena occurring within the 

hadronic volume and because of it, not only there occurs 

electrostatic interaction between two electrons but also a very 

strong magnetostatic interaction comes into play between 

them. However, at the same time a new phenomena comes 

into play because of deep overlap of wave packets of two 

electrons that obviously produces correspondingly additional 

interaction, which has been demonstrated by Santilli as getting 

quantified by Hulthén potential. Whereas the kinetic energy of 

IE and its electrostatic interaction with the nucleus both 

involve the distances of atomic dimensions. 

The crucial assumption permitted by the quasi-particle 

status imparted to an IE is that — on formation of an IE the 

electrostatic, the magnetostatic and Hulthén potential between 

the two isoelectrons of an IE produce an algebraic sum equal 

to zero or very small but of a constant magnitude potential. In 

view of it we have termed our model as an approximation. 

However, in this way the problem simplifies to a great extent 

that it resembles hydrogenic systems with a difference that 

instead of a single electron now we have an IE. That is, now 

we can use quantum mechanical tools to solve the 

corresponding Schrödinger equation. Thus it becomes a very 

simple system in which we need not to mathematically tackle 

various potentials between the two isoelectrons in solving 

Schrödinger equation. Of course, we have derived an 

expression of Hulthén potential under the condition of the said 

nullification of potentials of two isoelectrons (c.f. eq.(21)). 
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Indeed, under this assumption any variation in 
12
r  would be 

insignificant compared to the magnitude of r  that amounts to 

treating IE as a rigid union. However, it is unlikely that they 

would form a rigid union. That is, an IE must be an oscillating 

union about 0

12r , the distance at which the said complete 

nullification of potentials takes place. This oscillatory motion 

we need to quantify using Schrödinger-Santilli isoequation. 

This we have described in Appendix C. We also see that 

according to eq.(21) 0

12r  will not be of same magnitude in 

different Helium-like orbitals. 

Under this simplification the corresponding derived 

expression of energy of the atomic quantum states offered us 

to calculate the effective nuclear charge that is experienced by 

two electrons of 1s  orbital of various Helium-like systems. 

Amazingly, our values match exceedingly well with earlier 

estimates based on SCF theory and Slater rule. Also we have 

calculated the most probable radius of 1s  orbital of various 

Helium-like systems that as expected are smaller than those 

for Hydrogenic 1s  orbitals and compares well with the radius 

of the latter in the sense that as atomic number increases the 

1s  orbital continuously shrinks with increasing nuclear 

charge. 

The credibility of the approximations used in the two body 

model approximation of heliumic systems presented herein 

gets demonstrated by the calculated values of the effective 

nuclear charge using the input of the experimental ionization 

energies into eq.(33) — because the so calculated values are 

fantastically realistic. We have also explained the physical 

origin of the said assumption of null potential contribution to 

the total potential energy of the system. 

With the demonstration herein of the credibility of 

Helium-like systems treated using IE and adopting 

corresponding implied approximations it is worth to extend 

the same approximation to describe  

1. atomic structure of all elements of periodic table by 

considering every spin paired extranuclear electrons as 

an IE. 

2. chemical bonding starting with hydrogen molecule, the 

simplest molecule housing an IE. 

Finally a word on the difference between the Hadronic 

potentials of this paper and that appearing in Santilli’s earlier 

works. In Santilli’s works the hadronic potential is obtained as 

strongly attractive whereas that of the present paper it is 

strongly repulsive. As stated in the main text of this paper this 

seemingly opposite nature of the Hadronic potential gets 

easily reconciled. In the present model we have treated 

magnetostatic (strongly attractive) and hadronic (strongly 

repulsive) interactions between two isoelectrons of an IE 

separately. Whereas the mathematical model of Santilli’s 

earlier works seemingly treats both the interactions as a single 

hadronic type. Therefore, it is no wonder that the hadronic 

potential of Santilli’s earlier works is obtained as strongly 

attractive one. 
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Appendix 

A. Potential Energy of Two Electrons at a Distance Apart 

1. The potential energy of repulsion, 
eU − , of two electrons 

at a distance r  apart is given by,  

2

0

=
4

e

e
U

rπε
−

             (A.1) 

where e  is the charge on an electron and 
0

ε  is vacuum 

permittivity. The standard values of the involed constants are: 

10 1 2 1 19

04 = 1.112650 10 J .C .m , = 1.602192 10 Ceπ ε − − − −× − ×
 

On substitution of the numerical value of 
15= 10r m−

 and 

using above values we obtain, 

( )
( )( )

2 38 2

10 1 2 1 15

13

1.602192 10 C
=

1.112650 10 J .C .m 10 m

= 2.307122 10 J = 1.44MeV

eU

−
−

− − − −

−

×

×

×

   (A.2) 

2. The magnetostatic potential energy of a bar magnet of 

magnetic moment µ  in the magnetic field intensity of B  is 

given by [30],  

=U µ− ⋅B                (A.3) 

Hence, as above we consider that one electron is situated at 

a distance r  in the magnetic field of the other spinning 

electron. Hence eq.(A.3) in this case reads as, 

= ( )e e eU r µ+ − ⋅B               (A.4) 

However, B  in terms of magnetic moment is given by, 

0

3
( ) =

2
r

r

µ µ
π

−B                (A.5) 

where 7 2 2 1

0 = 4 10 J.C .s .mµ π − − −×  is the vacuum 

permeability. 

Recall that in an isoelectronium two spinning electrons 

have opposite spins, hence their magnetic moments are 

directed opposite to each other. Therefore, ( )
e

rB  of eq.(A.4) 

is given by,  

( )0

3
( ) =

2

e

e
r

r

µ µ
π
−

−B             (A.6) 
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However, it can be easily shown that 

24 1 2| | = = 9.274078 10 C.s .m ,e Bµ µ − −×
 

where 
B

µ  is the Bohr magneton. 

Hence, the potential energy of the magnetostatic attraction 

of two spin paired electrons on using eq.(A.4) gets expressed 

as,  

2 0

3
=

2
e BU

r

µµ
π

+ − ×               (A.7) 

which get computed for =1r fm as, 

( ) ( )
( )

( )

2 48 2 2 4 7 2 2 1

3
15 3

2 10 8

9.274078 10 C .s .m 4 10 J.C .s .m
=

2 10 m

= 2 9.274078 10 J = 1.7201705 10 J = 107364.6MeV

eU
π

π

− − − − −

+

−

− −

 × ×
 −

− × × − × −

                  (A.8) 

3. Thus from eqs.(A.2) and (A.8) we see that a�
b
	≫ 	a�

@. 

4. Which gets quantitatively supported by, 

4
| / | = 7.5487226 10e eU U

+ − ×          (A.9) 

5. Whereas at = 1pmr  we have 

17= 1.7201705 10 J = 107.37eVeU + −− × −  and 

16= 2.307122 10 J = 1440eVeU − −× . Thus the repulsive 

potential becomes much higher than the attractive one. It may 

then perhaps be treated as highly loose or unstable union. 

6. At = 10nmr  we have 
29 10= 1.7201705 10 J = 1.074 10 eVeU + − −− × − ×  and 

20= 2.307122 10 J = 0.144eVeU − −× . That is the magnetostatic 

attraction becomes negligible compared to electrostatic 

repulsion. 

7. In above calculations the null potential energy is obtained 

at, 

2

2 26 20 0

2

2
= = 7.4559 10 m

= 0.273055pm

Br
e

r

µ µ ε −× × ×
×

⇒
 (A.10) 

and the attractive and repulsive potential energies have the 

magnitude of 
168.4493 10−× J = 5.2736 keV. 

We present above results of calculations in Table 11. 

Table 11. Electrostatic and magnetostatic potential energies of two electrons 

with varying distance of separation between them. 

S. No. r /m 

−
eU  

Repulsive 

(Electrostatic) 

+
eU  

Attractive 

(Magnetostatic) 

1. 1510−  1.44 MeV - 51.074 10× MeV 

2. 132.73055 10−×  5.2736 keV - 5.2736 keV 

3. 1210−  1.44 keV 21.0736 10− × eV 

4. 810−  0.144 eV - 101.9736 10−× eV 

B. The Notion of Trigger That Assist IE Formation 

Let us briefly describe the concept of trigger that assist IE 

formation as elucidated by Santilli himself elsewhere [6].  

1. A notion for the very existence of the IE is that of a 

trigger, namely, external (conventional) interactions, 

 

Figure 7. A schematic unit of of the hadronic horizon, namely, of the sphere of 

radius 1 fm (= 10 13− cm) outside which the quantum chemistry is assumed to 

be exactly valid, and inside which nonlinear, nonlocal and nonpotential 

effects are no longer negligible, thus requiring the use of hadronic chemistry 

for their numerical and invarient treatment. 

which causes the identical electrons to move the one towards 

the other and penetrate into the hadronic horizon (Figure 7) 

against their repulsive Coulombic interactions.  

 

Figure 8. A schematic view of the trigger, namely, the external means suitable 

to force the electrons with the same charge to penetrate the hadronic barrier 

(c.f. Figure 7), in which the attractive hadronic forces overcome the repulsive 

Coulombic barrier. 

Once inside the above mentioned horizon, the attractive 

magnetostatic force overcomes the repulsive Coulombic 

interaction, and at the same time a new interaction comes into 

play which is of hadronic origin due to the mutual overlap of 

wave packets of electrons, resulting in a bound state. The 

notion of the said trigger has been schematic represented in 

Figure 8. 

2. In the case of the hadronic model of 
0π  meson as a 

bound state of an electron and a positron at short distances, 

there is no need for an external trigger because the constituents 

naturally attract each other [26]. On the contrary, the existence 

of the Cooper pair does indeed require a trigger, which Santilli 
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and Animalu identified as being provided by the Cuprate ions 

[21, 22]. For the case of isolated hydrogen molecule the 

trigger has been identified in the two H-nuclei, which do 

attract the electrons [6,10] because the attraction of the 

electrons by the two nuclei is sufficient to cause the overlaping 

of the two wave packets of electrons.  

C. IE as a Simple Harmonic Oscillator Within Hadronic 

Volume 

As described in the main text and the Appendices A and B 

of the present paper the union of two electrons as IE is based 

on attractive and repulsive forces it cannot be a rigid union but 

would be an oscillating pair. Definitely the oscillatory motion 

of an IE takes place well within the hadronic volume. 

Therefore, an isolated harmonic oscillating IE about 0

12r̂ , to 

the first approximation, will have the iso-potential energy 

12
ˆ ˆ( )V r  given by, 

0 ? 0

12 12 12 12 12

^
1 1 ˆˆ ˆ ˆˆ ˆ ˆ( ) = ( ) = ( )
2 2

V r U k r r U k r r
 − × − × − × × − 
 

 (C.1) 

Therefore, the corresponding Schrödinger-Santilli 

isoequation applicable within the hadronic volume reads as, 

2̂
0

12 12

^
ˆ 1 ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) | = |

ˆ 2ˆ ˆ2
IE IE IE

p
I k r r Eψ ψ

µ

 
  × − × × − × 〉 × 〉  ×   
 

 (C.2) 

where µ̂  is the reduced iso-mass of the IE, k̂  is the 

iso-force constant of the vibration and rest of the terms have 

their usual meanings. The solution of eq.(C.2) gives the 

following expression of the vibrational energy, namely: 

( )^
ˆ

^ ˆ ˆ ˆˆ ˆ ˆ= 1/ 2 with = 0, 1, 2,
v

E vν ν
 
 + × ⋅⋅⋅ ⋅ ⋅
 
 

  (C.3) 

and the isonormalized isowave-function reads as, 

( )
^1/2

^ ˆˆ 1/ 2 2

ˆ ˆ
ˆ ˆ ˆ ˆ ˆˆ ^ˆ ˆ ˆ ˆ ˆˆ ˆ( ) = 2 ! ( ) exp 2v

v v
v Hψ ξ π ξ ξ

−
 × × × − ÷ 
 

  (C.4) 

where ( )^1/2 0

12 12
ˆ ˆ ˆ ˆ ˆ= r rξ β × −  is the displacement variable in 

iso-Hilbert space, β̂  is an isotopically lifted constant 

2
= em k

h

πβ , 
e

m  is the mass of an electron and ˆ
ˆ

v
H  is 

the iso-Hermite polynomial. 

Now eq.(C.3) further simplifies to, 

ˆ

1
ˆ= =

2
vv

E E v ν + 
 

           (C.5) 

where v̂  is the vibrational iso-quantum number. Notice that 

v̂  is the isotopically lifted conventional vibrational quantum 

number v , which can have only the integer values and ν̂  is 

the fundamental iso-vibrational frequency within the hadronic 

space of IE. 

Thus we see that an IE will have a zero point energy equal to 

ˆ(1/ 2)ν . Also if required we can add anharmonicity terms in 

eq.(C.5) as we do in the case of molecular vibrations. Indeed, the 

vibrational energy of IE would be relatively very small compared 

to its orbital energy hence the orbital energy given by eq.(30) to 

the first approximation measures the energy of an IE in a given 

orbital. To ascertain this conjecture we need to design an 

appropriate experiment to see if there exists a vibrational fine 

structure in electronic spectra of say Helium atom in 

singlet-singlet transition. The similar fine structure in ground 

singlet-first excited triplet state is also expected but less 

prominently because in such excitation IE breaks down. 

The same would be true for the rotational fine structure of 

IE. More so, the rotations and vibration of IEs would be 

constrained by the strong electrostatic attraction between the 

nuclear charge and IE. This aspect needs further investigation. 

As stated in the main text the IE in a heliumic system is not 

an isolated species but is imbedded in the electrostatic field of 

nuclear protons hence the simple harmonic oscillation 

approximation within the hadronic volume needs to be 

modified accordingly. For the same reason the rigid rotor 

treatment for the heliumic IE needs to take account of this fact. 

However, so far we have not attended to it. 
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