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Abstract: The analysis relies on several general principles such as the Variational Principle and the broader sense of Bohr's 

Correspondence Principle. These principles together with other elements of theoretical physics provide a set of restrictions by 

which every quantum theory must abide. The paper proves that the Higgs boson theory contains many contradictions that 

undermine its physical validity. It is also explained why the 125 GeV particle H
0
 which was recently found at CERN cannot be a 

Higgs boson. 
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1. Introduction 

The existence of a Higgs boson has been suggested quite a 

long time ago [1,2]. This particle is now a part of the Standard 

Model (SM). Besides an electrically neutral Higgs boson 

(denoted H0), the possibility of the existence of charged Higgs 

bosons (denoted H±) and of doubly charged Higgs bosons 

(denoted H±±) is also mentioned in the literature [3]. The 

main objective of this work is to use well established 

principles of physics and examine the structure of the Higgs 

boson theory. The analysis relies on special relativity, 

Maxwellian electrodynamics and on fundamental elements of 

quantum field theory (QFT). The work uses the principal 

element of theoretical physics, which states that a physical 

theory must have an error free mathematical structure. It is 

shown below that far-reaching consequences are derived from 

this principle. 

This work uses standard notation and the metric is diag 

(1,-1,-1,-1). Units where ħ = c = 1 are used. 

The analysis applies several specific criteria which are 

explained in the second section. Additional requirements that 

any quantum theory must satisfy are derived in the third 

section. Many failures of the Higgs boson theory are described 

in the fourth section. The fifth section shows further 

contradictions of a charged Higgs boson. The last section 

contains concluding remarks. 

2. Fundamental Principles 

Evidently, the demand that a physical theory must be 

error-free provides a constraint that every acceptable physical 

theory must satisfy. Alternatively, a theory that fails to do that 

can be rejected without any further examination of its details. 

Physics is a mature science and some of its elements have 

acquired an indisputable status. Here the validity of Special 

relativity and of Maxwellian electrodynamics is used as 

cornerstones of the analysis and an inconsistency of a given 

theory with an element of either of them justifies the rejection 

of the examined theory. 

The form of the electromagnetic interaction is obtained 

from the following covariant substitution (see p. 84 of [4] and 

pp. 47-49 of [5]) 

pµ → pµ ‒ eAµ.              (1) 

This form of the electromagnetic interaction is used herein 

as a requirement that any theory of an electrically charged 

particle must satisfy. 

Another element which is used here is the broader sense of 

Bohr's correspondence principle, as stated by the present 

version of Wikipedia: "The term is also used more generally, 

to represent the idea that a new theory should reproduce the 

results of older well-established theories (which become 

limiting cases) in those domains where the old theories work." 

The relationships between relativistic mechanics and 

Newtonian mechanics and between quantum mechanics and 

classical physics are convincing examples of the Bohr's 

correspondence principle. A clear discussion of this subject 

can be found on pp. 1-6 of Rohrlich's book [6]. The special 

cases of the correspondence between quantum mechanics and 

QFT and of the relation between quantum theories and 
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classical physics are used below. 

The de Broglie relationship between the energy-momentum 

of a massive particle and its wave attributes state that 

E = ħω                      (2) 

(see pp. 48-49 of [7]). This is another fundamental principle 

which is used below. 

Other criteria which have been published few years ago [8] 

are not so well known. Therefore, for the clarity of the analysis 

they are described briefly herein. 

Consider a two slit interference pattern of a massive 

quantum particle. A point where the interference is totally 

destructive is explained by a phase difference of π. The phase 

is an argument of an analytic function exp(iφ) which can be 

expanded in an infinite power series. Therefore, the phase 

must be a dimensionless Lorentz scalar. This goal can be 

achieved if the phase is the action 

� = � ℒ��, �,�	
� �                (3) 

and the Lagrangian density ℒ��, �,�	  is a Lorentz scalar 

whose dimension is [L
‒4

]. As a matter of fact, the application 

of a Lagrangian density as a cornerstone of a quantum theory 

is widely used in the literature (see [9,10] as well as many 

other textbooks). The action is a quantity used in an 

application of the variational principle. Therefore, the 

equation of motion of the quantum particle is the 

Euler-Lagrange equation of the Lagrangian density ℒ 

�
���

�ℒ
� ��

���
− �ℒ

�� = 0               (4) 

The field function of a quantum particle and its derivatives 

are used as factors in appropriate terms of the Lagrangian 

density ℒ��, �,�	 . Therefore, the dimension [L
‒4

] of the 

Lagrangian density means that the field function acquires 

dimension. 

Another issue is the mathematical form of the field function 

� (x
µ
), which depends on a single set of four space-time 

coordinates x
µ
. It means that the QFT field function describes 

an elementary pointlike particle. Indeed, a description of a 

particle that has a structure must define the location of its 

center and the specific distribution of the particle around its 

center. Evidently, for the second task the field function must 

depend on other parameters. For example, the π
+
 particle has a 

charge radius of about 0.67 fm [3]. And indeed, the π
 +

 

comprises a �
�  quark-antiquark pair. Hence, its state is 

described by two independent parameters (x
µ
, x

ν
 ), where each 

of which is related to one member of this pair. Analogous 

conclusions hold for the π
0
. Therefore, pions are not Yukawa 

particles because the Yukawa function ϕ(x
µ
) depends on a 

single set of four space-time coordinates x
µ
 (see p.213 of [11]). 

The discussion presented in the rest of this work illustrates 

the powerful meaning of the principles and the criteria 

described above. Their role in an evaluation of the 

acceptability of a given theory is analogous to that of 

conservation laws. For example, if a given theory predicts a 

process whose final result is inconsistent with energy 

conservation then it is rejected right away. 

3. Specific Requirements 

One can use the principles and the criteria described in the 

second section and obtain additional requirements that must 

be satisfied by any given physical theory of a quantum 

particle. 

� In classical physics energy is a well defined quantity. 

Hence, the broader sense of Bohr's correspondence 

principle means that quantum mechanics and QFT must 

have a self-consistent expression for energy. The energy 

operator is called Hamiltonian. The following well 

known process illustrates the importance of this issue 

[12]. Let us examine an inelastic scattering event. The 

chronological order of this process is as follows: 

a. First, two particles move in external electromagnetic 

fields. Relativistic classical mechanics and classical 

electrodynamics describe the motion. 

b. The two particles are very close to each other. 

Relativistic Quantum Mechanics (RQM) describes the 

process. 

c. The two particles collide and interact. New particles are 

created. QFT describes the process. 

d. Particle creation ends but they are still very close to one 

another. RQM describes the state. 

e. Finally, the outgoing particles depart. Relativistic 

classical mechanics and classical electrodynamics 

describe the motion. 

The energy conservation law tells that the energy of the 

outgoing particles equals the energy of the incoming particles. 

This effect plays a fundamental role in the analysis of collision 

data. Hence, RQM and QFT must have a self-consistent 

expression for energy in order to transfer this information 

from the incoming particles to the outgoing particles. 

The Hamiltonian is the energy operator. Therefore, it is a 

0-component of a 4-vector. 

Density is also a 0-component of a 4-vector (see p. 75 of 

[12]). Hence, the Hamiltonian density is a 00-component of a 

second rank tensor. The 00-component of this tensor is 

obtained from the Lagrangian density ℒ by means of the well 

known Legendre transformation (see pp. 5-16 of [4]) 

� = ∑ �� �
�ℒ

��� �
−� ℒ              (5) 

where the index i runs on all functions. 

� The de Broglie relationship means that � �/ " = #�. 

On the other hand the Hamiltonian is the energy operator. 

Hence, one obtains the fundamental equation of quantum 

mechanics 

� ��
�$ = %�                  (6) 

On the other hand the analysis relies on the variational 

principle and the Euler-Lagrange equation (4) of the specific 

Lagrangian density is another equation of motion of the 

system. Thus, one obtains the following requirement: The 

Euler-Lagrange equation of the particle's Lagrangian density 

must agree with the fundamental quantum mechanical 

equation (6). 



20 Eliyahu Comay. Inherent Contradictions in Higgs Boson Theory  

 

It can be concluded that each subject discussed in the 

second and in the third sections yields a theoretical constraint 

that every acceptable quantum theory must satisfy. These 

constraints are applied below. 

4. Theoretical Physics vs. the Higgs Boson 

The discussion relies on the structure of the Lagrangian 

density of the Higgs boson. This Lagrangian density can be 

written in the following compact form (see p. 715 of [10]) 

ℒ&'(() = *,�
+ *,,-�, + /0*+* + 12        (7) 

where ϕ is a scalar function of the Higgs boson, m denotes the 

Higgs mass and OT denotes other terms whose specific form is 

not discussed herein. (The sign of the mass term of (7) is 

irrelevant to the discussion.) The first term of (7) is the highest 

power of the derivatives of ϕ and OT consists of terms that 

contain a lower power of the derivatives. 

1. As found above, the dimension of the Lagrangian 

density is [L
‒4

]. Therefore, the first term of (7) proves 

that the dimension of the Higgs function ϕ is [L
‒1

]. The 

density of a Schrödinger particle is written in terms of 

the wave function 

3 = 4�50.                   (8) 

It is well known that the Schrödinger density (8) satisfies 

the continuity equation (see p. 54 of [7]). Hence the dimension 

of the Schrödinger function is [L
‒3/2

]. The different dimension 

of the Higgs and the Schrödinger functions means that the 

Higgs theory has no non-relativistic limit. For this reason it is 

inconsistent with the broader sense of the Bohr's 

correspondence principle which is mentioned in the second 

section. 

2. The Higgs function ϕ is a scalar function whose 

dimension is [L
‒1

]. Hence, the product ϕ
†
ϕ is a scalar 

whose dimension is [L
‒2

]. On the other hand, density is a 

0-component of a 4-vector whose dimension is [L
‒3

] (see 

p. 75 of [5]). Hence, the product ϕ
†
ϕ does not represent 

the density of the Higgs boson. This result is related to 

the previous contradiction. For having an expression for 

density one may examine a combination of time 

derivatives of factors of the product ϕ
†
ϕ. However, in 

this case the following contradictions arise. The 

construction of the Hilbert space requires a well defined 

expression for density. In the Heisenberg picture the 

wave functions are time-independent (see pp. 7-8, 11-12, 

130 of [4]). It means that in the Heisenberg picture a 

time-derivative of the Higgs function vanishes 

identically and the Hilbert space and its associated Fock 

space cannot be constructed. Therefore, the operators of 

the Higgs field, which operate on the Fock space become 

meaningless. By the same token, solutions of the 

Schrödinger equation can be used for constructing a 

Hilbert space of the Heisenberg time-independent wave 

functions. This is another inconsistency of the Higgs 

theory with the Bohr's correspondence principle. 

3. Let us examine the Euler-Lagrange equation of the 

Higgs boson. Applying (4) to the Higgs Lagrangian 

density (7), one finds the following equation for ϕ 

□*‒ /0* + 12 = 0.          (9) 

Here the d'Alembertian operator is 

□ =  0/ "0 − ∆. 

It means that the Euler-Lagrange equation of the Higgs 

boson is a second order differential equation with respect to 

the time variable. On the other hand, the fundamental equation 

of quantum mechanics (6) is a first order differential equation 

with respect to the time variable. Hence, these equations are 

not identical (see p. 35 of [13]) and the requirement obtained 

near the end of section 3 is violated. 

4. Let us have a look at the Higgs Hamiltonian density. 

Applying (5) to (7), one obtains 

ℋ&'(() = *� +*� + <∇*+> ∙ ∇* − /0*+* + 12      (10) 

As shown above, each term of the Higgs density must have 

just one factor of the form *� + or *� . Therefore, the first term 

of (10) proves that the Higgs Hamiltonian must depend on a 

time-derivative of the Higgs function ϕ. This is yet another 

inconsistency of the Higgs theory with the broader sense of the 

Bohr's correspondence principle, because the Schrödinger 

Hamiltonian is independent of time derivatives of the wave 

function. 

5. The Lagrangian density of a given field can be used for 

constructing the energy-momentum tensor. Here one 

obtains (see p. 83 of [5]) 

2�, = ∑ -�@A,@
<B> �ℒ

�C,D
<B>B − -�,ℒ             (11) 

where A<B>  denotes the ith independent coordinate. 

Substituting the Higgs Lagrangian density (7) into (11), one 

finds that the Higgs energy-momentum tensor has a term 

/0*+*. It means that the Higgs energy-momentum tensor 

depends quadratically on its mass m. On the other hand the 

classical energy-momentum tensor depends linearly on the 

mass (see p. 92 of [5]). Here one sees yet another contradiction 

of the Higgs theory with the broader sense of the Bohr's 

correspondence principle. Indeed, the energy-momentum 

tensor is used in Einstein's equations of general relativity. It 

means that the Higgs mass is an inherently different kind of 

mass whose physical properties are inconsistent with those of 

ordinary mass. 

6. The Higgs Lagrangian density (7) has the term 

*,�
+ *,,-�, which is also found in the Klein-Gordon (KG) 

Lagrangian density (see [4], p. 26). The KG density is 

derived from this quantity (see p. 193 of [14]) 

3EF = G�*� +* − *+*� 	,             (12) 

where a denotes a constant factor. This expression is 

antisymmetric with respect to *+, ϕ. On the other hand, the 

KG Hamiltonian density has the term *� +*�  which is 
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symmetric in *+, ϕ (see p. 192 of [14]). Hence, density cannot 

be extracted from the KG Hamiltonian density. It means that 

the KG equation has no explicit differential form for its 

Hamiltonian [8]. 

The same result is obtained for the Higgs boson because its 

Lagrangian density (7) has the same term *,�
+ *,,-�, . By 

contrast, the Schroedinger equation has an explicit differential 

operator for its Hamiltonian. This is yet another inconsistency 

of the Higgs theory with the broader sense of the Bohr's 

correspondence principle. 

5. Problems with the Charged Higgs 

Boson 

The existence of charged and of doubly charged Higgs 

bosons is considered in the literature [3]. Evidently, all 

contradictions of the neutral Higgs boson which are discussed 

in the previous section also hold for a charged Higgs boson. 

The following lines prove that new problems arise for a 

charged Higgs boson. 

The second item of the previous section explains why the 

Higgs density must contain a derivative of its function ϕ. Since 

density is a 0-component of a 4-vector, one finds that also the 

Higgs 4-current must depend on a derivative. An application 

of (1) means that the Higgs density depends on the 

electromagnetic 4-potential Aµ . 

An examination of the full Lagrangian density clarifies the 

problem. This quantity consists of three parts: the matter 

Lagrangian density, the electromagnetic fields' part and the 

interaction term (see p. 75 of [5]). Therefore, the results must 

abide by the laws of Maxwellian electrodynamics. The 

interaction term of Maxwellian fields with charged matter 

takes the form 

ℒ'H$ = −I�J�               (13) 

where I� is the 4-current of the charged matter. It means that 

the electromagnetic interaction of a charged Higgs boson has a 

term which is quadratic in Aµ 

ℒKL = M<*+, *>N0J�J�              (14) 

where M<*+, *>  is a function of the Higgs fields. The 

following lines explain why the quite unusual interaction term 

(14) is physically unacceptable. 

� The interaction strength of the unusual term of (14) is 

proportional to the square of the electric charge e
2
 

whereas the interaction strength of Maxwellian fields 

with an electrically charged matter is proportional to the 

electric charge e. 

� The unusual term of (14) depends quadratically on the 

4-potentials Aµ whereas Maxwellian interaction depends 

linearly on the 4-potentials. 

It is well known that the inhomogeneous pair of Maxwell 

equations is obtained from a variation of the electromagnetic 

fields and their 4-potentials. Here the charged matter is 

assumed to be given (see pp. 78-80 of [5]). The calculation 

assumes that the interaction term of the Lagrangian density is 

linear in the 4-potentials Aµ and it is also proportional to the 

electric charge e. Hence, the electrically charged Higgs boson 

is inconsistent with Maxwellian electrodynamics. It can be 

concluded that a comparison with the neutral Higgs boson 

shows that an electrically charged Higgs boson also suffers 

from some specific contradictions that stem from the 

indisputable laws of Maxwellian electrodynamics. 

6. Concluding Remarks 

Sections 2 and 3 of this work show how general physical 

principles provide a list of powerful constraints that facilitate 

the examination of the acceptability of quantum theories. This 

approach is applied to the Higgs Lagrangian density and 

shows that many contradictions arise. For this reason, the 

experimentally detected 125 GeV H
0
 particle cannot be a 

Higgs boson, simply because a particle cannot be explained by 

a theory that is full of contradictions. It is interesting to note 

that as of January 2015 the Particle Data Group, which is the 

authorized organization for the determination of the existence 

of particles and of their properties, still has certain 

reservations about the identification of the H
0
 particle as a 

Higgs boson [3]. Many other sceptical opinions on this 

identification of the H
0
 particle can be found on the web. 

The Higgs boson equation (9) is an example of a second 

order quantum theory. As a matter of fact, apart from the sign 

of the mass term and the existence of lower order terms, the 

highest order term of its time-derivatives is a part of this 

expression O �P

�$P − ∆Q * . It follows that the Higgs equation 

belongs to the KG family. It is interesting to note Dirac's 

lifelong objection to these equations. He said on this issue: "I 

found this development quite unacceptable. It meant departing 

from the fundamental ideas of the non-relativistic quantum 

mechanics, ideas which demanded a wave equation linear in 

 / ". It meant abandoning the whole beautiful mathematical 

scheme for the sake of introducing certain physical ideas" (see 

pp. 3-4 of [15]). The present work provides further arguments 

that support Dirac's opinion. 

Mathematics and physics go hand in hand for several 

centuries. The profound role of mathematics in the structure of 

physical theories is agreed by all physicists [16] (and by all 

engineers who use it for designing magnificent devices). The 

quite large numbers of contradictions of the Higgs boson 

theory which are described in this work make a basis for the 

expectation that this theory will be abandoned. 
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