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Abstract: An equation that describes the wave propagation in the disturbed medium was deduced from the Lighthill’s 

equation. The so-called perturbation-cumulative approximation was suggested to solve this equation and the period-doubling 

bifurcation solutions were given. The results obtained in this paper helps to provide insights to the mechanism of the 

turbulence formation. 
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1. Introduction 

Many numerical and experimental works (for example, 

Ref. [1] and Refs. [2, 3]) demonstrated that as the control 

parameters increase the system can route to chaos through 

period-doubling bifurcations. In history, the period-doubling 

vibrations or the period-doubling bifurcations in different 

practical situations were observed by many physicists one 

after another, for example, as described in ref. [4], “when a 

vessel containing liquid is made to vibrate vertically, a 

pattern of standing waves is often observed at the free 

surface. These waves were first studied experimentally by 

Faraday, who noticed that the frequency of the liquid 

vibrations was only half that of the vessel.” A thorough 

theoretical research to this problem was given by the authors 

of Ref. [4]. Moreover, the motions of an inverted pendulum 

or a swing played by children are well known examples of 

the period-doubling vibrations. Regarding these motions, 

many theoretical explanations can be found in references (for 

example, Ref. [5] and the papers cited by it to introduce the 

analytical solution of inverted pendulum). 

About thirty years ago, the authors of the Refs. [6, 7] 

observed the first subharmonic wave in a disturbed water. Up 

to date, however, there is no publication that provides any 

interpretation to the phenomenon. In order to investigate this 

problem, the author started from the Lighthill’s equation, and 

an equation to describe the wave propagation in the disturbed 

medium was deduced and the so-called perturbation-

cumulative approximation was suggested to solve this 

equation, from which the period-doubling bifurcation 

solutions were obtained. The results obtained by this paper 

would help us to research the mechanism of the turbulence 

formation. 

2. Theory 

For an ideal fluid and neglecting the non-linearity due to 

the medium, Lighthill stress tensor can be written as [8] 

ij i jT v vρ=                 (1) 

which satisfies Lighthill equation 

22
2

2 2 2
0 0

1 1 ij

i j

T

x xC t C

ρ ρ
∂∂ − ∇ =

∂ ∂∂
                (2) 

where ρ  denotes the density of the medium and iv  is the ith 

velocity component of the fluid particles. For one 

dimensional motion 

2
11T vρ=  

There is a sound wave propagating in the medium at rest, 

in which velocity component of the fluid particles can 

denoted by 

0 cos 2( )v v τ σ= − , ,  =t kxτ ω σ=  

where ω  and k are the frequency and acoustic wave-number, 
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respectively. If the fluid medium is disturbed at a velocity 

0V , then the velocity component of the fluid particles can be 

denoted 

0 0 cos 2( )v V v τ σ= + −  

and the corresponding Lighthill stress tensor can be denoted 

by (1)
11T , which can denote  

(1) 2 2 2
0 0 0 0 011

1 1
2 cos 2( ) cos 4( )

2 2
T V v V v vρ τ σ τ σ = + + − + − 

 
    (3) 

Substituting (3) into Lighthill wave equation (2) yields 

2 2 2

1 2 32 2 2
     ( , ) ( , ) ( , )g g g

ρ ρ ρ ρε σ τ σ τ σ τ ρ
στ σ σ

 ∂ ∂ ∂ ∂ − = + − ∂∂ ∂ ∂  
   (4) 

where 

Mmε =                                       (5) 
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( , ) 8 cos 2( ) cos 4( )
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M

m
g

M

σ τ τ σ τ σ

σ τ τ σ τ σ

σ τ τ σ τ σ


= + + − + − 


= − + − 

 = − + −  

  

 (6) 

and M, m are the Mach numbers corresponding to the 

velocity of the flow 0V  and the amplitude of the sound wave 

0v . For the subsonic flow, they are less than 1. Mm  is a 

small quantity and the equation (4) can be solved by the 

perturbation approximation. Let the solution be [9] 

1 1

1

( )(0) (1) 2 (2) ...... m m

m

ρ ρ ερ ε ρ ε ρ= + + + =∑         (7) 

Substituting (7) into (4) and equating coefficients of like 

powers of ε  to zero give  

( ) ( )0 02 2
0

2 2
 :       0

ρ ρε
τ σ

∂ ∂− =
∂ ∂

                               (8) 
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1
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(0)
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 :        ( , )
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∂
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                 (9) 
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Obviously, the solutions for equation (8) can be [9]  

0(0)

0

cos ( )

sin ( ),        1, 2,3,...

A l

B l l

τ σ
ρ

τ σ
−

=  − =
            (11) 

of which the solutions are either of the period-doubling 

waves or periodic waves, according as l  is odd or even. 

At first, taking the cosine term when 1l =  as the zeroth 

order solution in equation (11) and substituting it into (9) 

yield 

( ) ( )1 12 2
(1) (1) (1)

51 32 2
cos( ) cos3( ) cos5( )

ρ ρ τ σ τ σ τ σ
τ σ

∂ ∂− = − − − − − −
∂ ∂

A A A                                      (12) 

where 

2
(1) (1) (1)2 2 2

0 0 051 3

1 1
,  ,  

2 4 4

m
A M Mm A A Mm m A A m Aε ε ε

   = + + = + =       
                                    (13) 

From the equation (12) it can be seen that the inhomogeneous terms in its right hand correspond to the secular terms, which 

make the problem to be solved more difficult. In order to find the period solutions in time domain, the cumulative solutions in 

spatial domain will be sought instead of eliminating the secular terms [10], which can be (cf. Appendix 1) 

( ) ( ) ( ) ( )
2 (1)

(1) 2 1

0

, cos 2 1 ( ) 2 2 1 sin 2 1 ( )
4

n

n

A
n n nρ τ σ τ σ σ τ σ+

=

 = + − − + + − ∑                                  (14) 

where the cumulative term is proportional to σ . Substituting equation (14) into (10) yields 
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( ) ( ) 4 42 22 2
(2) (2)
2 1 2 12 2

0 0

    cos(2 1)( ) sin(2 1)( )n n

n n

A n B n
ρ ρ τ σ σ τ σ
τ σ + +

= =

∂ ∂− = + − + + −
∂ ∂ ∑ ∑                               (15) 

where 

(2) (1) (1) (1)2 2 2 2 2
51 1 3

1 1 11 13 19
3 5

4 2 9 36 100
A M m Mm A Mm m A m Aε

      = + − + − +     
      

 

(2) (1) (1) (1)2 2 2 2 2
51 1 3

1 1 1 1 1

2 2 3 4 20
B M m Mm A Mm m A m Aε

      = + − + − +     
      

 

(2) (1) (1) (1)2 2 2 2
53 1 3

3 7 1 17

4 4 2 25
A Mm m A A M m MmAε     = − + + +    
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(2) (1) (1) (1)2 2 2 2
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2 4 3 2
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(2) (1) (1) (1) (1) (1)2 2 2
7 5 7 53 3

7 5 13 49 1 1
,  

4 36 25 2 12 5
A m A MmA B m A MmAε    = + = +   

   
 

(2) (1) (2) (1)2 2 2
5 59 9

99 81
= ,   

400 40
A m A B m Aε =                                                                 (16) 

Thus, the cumulative solution is 

( )( )
( )( )

(2) (2)2 2
4 2 1 2 1

(2)

3 2(2) (2)
0 2 1 2 1

2 2 1 2(2 1) 1 cos(2 1)( )
1

( , )
8(2 1) 2(2 1) 4 2 1 sin(2 1)( )

n n

n n n

n A n B n

n n B n A n

σ σ τ
ρ σ τ

σ σ τ

+ +

= + +

  + + + − + − +  = −  
+  + + − + + −

 

∑                 (17) 

where the cumulative solution (2) ( , )ρ σ τ  contains a 

quadratic term of σ . Of course, the solutions referring to the 

situations such as 1l >  and 1 2m >  as well as taking the sine 

term in equation (11) as the zeroth order solution etc. can be 

calculated similarly except that the amount of mathematical 

calculation will be too much. 

Substituting equations (11), (14) and (17) into (7), we can 

get the perturbation-cumulative solutions up to an accuracy 

of the second order approximation, where the terms 

cos(2 1)( )n τ σ+ −  and sin(2 1)( )n τ σ+ −  are included. 

Obviously, when 0n = , we can get the first subharmonic 

waves. 

3. Discussion 

In solving the problem of the elliptical drum, Mathieu [9] 

obtained a differential equation to describe the vibration of a 

membrane, of which the solutions so-called the Mathieu’s 

functions were given by the singular perturbation method, 

where the terms of period-doubling vibrations and the 

harmonic vibrations of them were included. In this paper, 

however, we obtained the equation (4), which describes the 

propagation of the waves in the flowing media. In order to 

solve the equation, the cumulative solutions in the 

perturbation approximation were obtained, where the first 

subharmonics and the harmonic waves of them were 

included. 

In order to observe the first subharmonic wave, the 

experiments [6, 7] were carried out in a tank, into which a 

sound wave at frequency 1.948 MHz was transmitted. Only a 

sound wave with the same frequency was received when the 

water in the tank was static (cf. figure 1). On the other hand, 

if the medium was disturbed by a stick or a stirrer [6, 7], an 

appreciable first subharmonic (0.974MHz) was observed 

(figure 2). 

From the equations (11), (14) and (17), the first 
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subharmonic wave and its odd order harmonics i.e. the 

period-doubling bifurcation solutions are obtained. As was 

mentioned in the beginning of this paper, the authors of Ref. 

[1] as well as Ref. [3] demonstrated that as the control 

parameter (s) increase, the system can route to chaos through 

period-doubling bifurcations. Furthermore, an experimental 

investigation in acoustic area was carried out by the authors 

of Ref. [2], where the acoustic cavitation noise in the water 

was measured and “a subharmonic route to chaos including 

period-doubling bifurcations up to f/8 has been observed in 

experiments on acoustical turbulence.” However, it is worth 

noting that in this experiment only one parameter (acoustic 

pressure or acoustic Mach number m) can be controlled. 

However, in this paper there are two parameters M (flow 

Mach number) and m (acoustic Mach number), which can 

control the route of the system to chaos. Thus, it is 

reasonable to expect that the results obtained by this paper 

would help people to insight the mechanism of the turbulence 

formation. 

 

Fundamental frequency 

Figure 1. The signals in static medium. 

 

First subharmonic waves 

Figure 2. The signals in disturbed medium. 

4. Conclusions 

Based on the Lighthill’s equation, a new equation to 

describe the wave propagation in the disturbed medium was 

deduced and the so-called perturbation-cumulative 

approximation was suggested to solve this equation, from 

which the period-doubling bifurcation solutions (including 

the first subharmonic as observed in Refs. [6, 7]) were 

obtained. The results would help people to gain insights to 

the mechanism of the turbulence formation. 
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Appendix 

Cumulative solutions 

From (12) and (15) the equations interested in us are as 

following 

( ) ( )
(1) ( )

(1)2 2

2 2 (1)
(1) ( )

1
. .

cos ( ), , 2
,

1sin ( ) . .
2

in
n

n

inn
n

A e c c
A n

B n B e c c
i

τ σ

τ σ

τ σρ τ σ ρ τ σ
τ σ τ σ

− −

− −

 − +  − −∂ ∂   − = =  
∂ ∂ − −   +

  

 

If the solutions are periodic in time domain, that is  

( ) ( ) ( ), ine τ σρ τ σ ρ σ − −=  

then one has 

( ) ( )
(1)

2
2

2
(1)

1
. .

2

1
. .

2

in
n

in
n

A e c c
d

n

B e c c
i

σ

σ

ρ σ
ρ σ

σ

 ++ = 
∂ − +



 

Thus, the equation to be solved is 

2
2

2
[ ] ( ) ( ) ind

n f e
d

σρ σ σ
σ

+ =                         (18) 

where A is a constant. Obviously, this equation has 

cumulative solutions, which can be solved by Lagrange 

parameter variation method [10]. Let 

1 2( ) ( ) ( )in inD e D eσ σρ σ σ σ −= +                     (19) 

Substituting (19) into (18) and assuming 

1 2( ) ( )
0

in indD dD
e e

d d

σ σσ σ
σ σ

−+ =                 (20) 

yield 

1 2( ) ( ) 1
( )

in in indD dD
e e f e

d d in

σ σ σσ σ σ
σ σ

−− =    (21) 

From (20) and (21) 

1

1
( ) ( )

2
D f d

in
σ σ σ= ∫                         (22) 

and 
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2
2

1
( ) ( )

2

inD f e d
in

σσ σ σ= − ∫                 (23) 

Thus, the cumulative solution can be denoted by 

21 1
( ) ( ) ( )

2 2

in in ine f d e f e d
in in

σ σ σρ σ σ σ σ σ−= −∫ ∫   (24) 
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