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Abstract: Recently the spectacular result was derived quantum mechanically that the total angular momentum of photons in 

light beams with finite lateral extensions can have half-integer quantum numbers. In a circularly polarized Gauss light beam it is 

half of the spin angular momentum which it would have in a respective infinitely extended wave. In another paper it was shown 

by a classical calculation that the magnetic moment induced by such a beam in a metal is a factor of two smaller than the one 

induced by a respective infinitely extended wave. Since the system's angular momentum is proportional to its magnetic moment 

it could be assumed that the classical result for the magnetic moment reflects the transfer of the total angular momenta of the 

beam photons to the metal. Here we show that there is no hint that this is indeed the case. 
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1. Introduction 

The angular momentum of photons is heavily discussed in 

many fields of optics. Starting point thereby often is [1] that 

Maxwell's equations are invariant under rotations around any 

direction. This yields the conserved quantity Li + Si, where Li 

and Si are the i-components of the orbital and the spin 

angular momentum, and where the i-axis is parallel to the 

respective axis of rotation. This quantity is usually conceived 

as the total angular momentum of photons. The quantum 

numbers for this total angular momentum are integers. K. E. 

Ballantine et al. [2] considered the realistic situation in which 

there is a beam of light with finite lateral extension. Then the 

system is no longer invariant against rotations around any 

direction, in the therein mentioned special case of a paraxial 

beam the reduced symmetry is given by the rotations around 

the axis of the beam which we denote as z-axis. In such a 

paraxial beam both spin and orbital angular momentum are 

valid and independent, which can even be proven for more 

general cases [3]. Therefore one can discuss a general linear 

combination 

J�γ,z=L�z+γS�z,                    (1) 

where L� and S�  are the operators of the orbital and spin 

angular momentum, respectively. The operator J�γ,z generates 

an observable. If the electric field E of the beam is an 

eigenfunction, �L�z+γS�z�E=j
γ
E  the observable can be 

considered having the meaning of a total angular momentum. 

In [2] it has been shown that γ and j
γ
 are either both 

integers or half-integers. The first type includes the usual 

angular momentum operator L�z+S�z, with eigenvalues which 

are integer quantum numbers. The second type, typified by 

�L�z+ 1 2⁄ S�z�, corresponds to half-integer quantum numbers. 

The electric fields of circularly polarized Gauss-Laguerre 

beams [4] are eigenfunctions of �L�z+γS�z�, and their photons 

have total angular momenta with half-integer quantum 

numbers [2]. For a circularly polarized Gauss beam (which is 

non-helical) the photons have a zero orbital angular 

momentum and a spin angular momentum Sz which is the 

spin angular momentum sz  which they would have in a 

respective infinitely extended wave, i.e., Sz=sz. As shown in 

Ref. [2] the total angular momentum of photons in a 
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circularly polarized Gauss beam is 1 2⁄ sz In Ref. [2] the 

half-integer quantization of the total angular momentum of 

beam photons was demonstrated by noise measurements. The 

findings of Ref. [2] were already used in later papers, for 

instance on the generation of half-integer orbital angular 

momentum beams [5] or on fundamentals and applications of 

conical refraction [6]. 

In Ref. [7] it was shown by a classical treatment of the 

inverse Faraday effect (using Newton's equation of motion 

for the movement of electrons in a classical electric field 

described by Maxwell's equations) that the magnetic moment 

M induced in a metal by a circularly polarized Gauss beam is 

a factor of two smaller than the one, Mg, induced by an 

infinitely extended circularly polarized wave. The reduction 

is caused by a drift current occurring as a result of the finite 

lateral extension of the Gauss beam, which contributes by 

Md=
-Mg

2
 to the total magnetic moment M=Md+Mg=

Mg

2
. The 

effect of an electromagnetic wave on matter reflects the 

properties of the wave in detail, being more or less a 

‘fingerprint’ of the wave. The system's angular momentum is 

proportional to its magnetic moment, and the above 

discussed reduction of the magnetic moment reflects a 

reduction of the system's angular momentum by a factor of 

two. The angular momentum of the system is physically 

generated by a transfer of angular momentum from the beam 

to the metal. Therefore it could be assumed that the reduction 

of the system's angular momentum by a factor of two is 

related to the half-integer quantum number of the total 

angular momentum of the photons of the beam. We now 

show that there is no hint that this is actually the case. This is 

very important for the community working on the total 

angular momentum of light beams and of their photons, and 

for the community working on the inverse Faraday effect and 

on all-optical switching of the magnetization of a material 

[8]. 

2. Orbital and Spin Angular Momentum 

of a Gauss Beam 

2.1. Calculation for Classical Fields 

The central idea is that in the classical treatment of Ref. [7] 

the Gauss beam is not described by a quantum 

electrodynamics in which the electromagnetic field is built by 

photons, but it is described by a classical electric field E	(r,	t). 
Therefore the electrons of the metal do not 'know' the 

half-quantization of the photons of the beam, but they 'see' a 

classical Gauss beam. Therefore we now calculate the spin 

and orbital angular momentum of this classical field. The 

angular momentum of an electromagnetic field is [9]. 

J=ϵ0 	 d
3
r	r×
E×B�              (2) 

This may be subdivided in a spin angular momentum S and 

an orbital momentum L, J=L+S. We now calculate S and L for 

a classical circularly polarized Gauss beam. Afterward we 

consider the total angular momentum of photons in such a 

beam and explain it in a simple view based on the ‘trajectories’ 

of the photons. We consider the electric field E of a circularly 

polarized Gauss beam with width w and angular frequency �. 

E = ��
����� �⁄ ��� exp�−r�/w�!exp�−iωt! %

1±i0 ),   (3) 

where (+) and (-) stand for left and right circular polarization. 

This ansatz is normalized in the sense that the integral over the 

whole space of E†E yields E0
2. In Ref. [7] an ansatz without 

the prefactor +�2π. �⁄ �w./01 �⁄  is used. We take the 

normalized form, since we wanted to compare our results with 

those obtained for an infinitely extended circularly polarized 

wave 

E = ��√3 exp�−iωt! %
1±i0 ),           (4) 

which is also normalized in the above sense. Of course the 

basic result of [7], M=
Mg

2
, obtained for the non-normalized 

ansatz, also holds when using the normalized ansatz. For the 

classical spin angular momentum [10], 

S=
ϵ0

2iω
	 d

3
rE†×E               (5)	

we get both for the Gauss beam, Sz,. and for the infinitely 

extended wave, sz, S=(0,	0,	Sz) with 

Sz=±ϵ0E0
2/ω.                  (6)	

The same result, Sz=sz, was also found for the photons in 

the Gauss beam. For the orbital angular momentum [10] 

L=
ϵ0

2iω
∑ 	 d

3
rEi

*
r×∇�Eii=x,y,z            (7)	
we get for the infinitely extended wave and for the Gauss 

beam the result L=0. Remember that the orbital angular 

momentum of photons in the Gauss beam is also zero, and it 

is of course also zero for an infinitely extended wave. 

Altogether this means that the orbital angular momentum of 

the classical circularly polarized Gauss beam is zero, as the 

corresponding quantity of the photons in that beam, and that 

the spin angular momentum Sz of the beam is equal to the 

spin angular momentum sz of the infinitely extended wave. 

However, the total angular momentum of the photons in the 

beam is Sz 2⁄ . Therefore there is no hint that the result 

M=
Mg

2
, of the classical calculation can be related to the 

transfer of the total angular momentum of the photons in the 

beam. The question therefore arises whether the calculation of 

the magnetic moment induced by the Gauss beam should be 

done quantum mechanically instead classically. However, the 

length- and energy-scales occurring in that problem are within 

the validity regime of the classical theories (Newton's 

mechanics and Maxwell's theory), and therefore a quantum 

mechanical treatment (which would be extremely complicated) 

is not necessary. There is no doubt that the results of [7] are 

correct. All this demonstrates that the factors 
1
� appearing in 

the theories of Ref. [2] and Ref. [7] do not have the same 

physical basis. 
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2.2. Comments on the Orbital Angular Momentum of 

Photons 

In a Gauss beam the z-component Lz of the orbital angular 

momentum is a conserved quantity. We now want to explain 

the result of Ref. [2] that the orbital angular momentum Lz of 

photons in the non-helical Gauss beam is zero. We explain it 

from a simple viewpoint which is based on the notion of 

'trajectories' of the photons. In principle, the photon state is 

described by a wavefunction so that one cannot associate a 

well-defined position to a photon. However, we can construct 

a wavepacket by a superposition of waves with different 

wavevectors, and this wavepacket can be made well localized 

in space. The lateral extension of a helical beam is much larger 

than the wavelength of the light, and therefore problems 

arising from the position-momentum uncertainty are not 

important, and the concept of a photon trajectory seems to be 

not too bad. For a particle with a trajectory, i.e., for which we 

can simultaneously define a position r and a linear momentum 

p, the orbital angular momentum is L=r×p. The trajectories of 

the photons in a Gauss beam are parallel to the beam axis, i.e., 

p=
0,	0,	p�. This leads directly to lz=0. To consider the photon 

trajectory in a helical beam we note that the trajectory may be 

conceived as the saddle-point solution of a path-integral 

representation of the wavemechanics, and this is given by the 

Eikonal equation [11]. This equation says that the photons 

choose the path between two points in space for which they 

have the shortest running time. In a homogeneous medium this 

is always the straight path (principle of Fermat) [12]. For a 

helical beam we do not have homogeneity. So the 'shortest' 

path is not a straight line. When we consider the 'shortest' path 

as the trajectory of the photon, then the orbital angular 

momentum lz  of the photon is ℏm, where m describes the 

phase winding of the helical wavefront according to the 

complex exponential exp
iθm� , i.e., we now have a 

non-vanishing orbital angular momentum of the photon, in 

contrast to the zero orbital angular momentum of the photon in 

a non-helical beam. 

3. Conclusion 

A recent quantum mechanical calculation [2] has given the 

spectacular result that the total angular momentum of photons 

in circularly polarized light beams can have half-integer 

quantum numbers. Another recent classical treatment [7] has 

given an also spectacular result, namely that the magnetic 

moment induced by such a beam in a metal is a factor of two 

smaller than the one induced by a respective infinitely 

extended wave. We demonstrated in the present paper that the 

two results, which seem to have the same underlying physics, 

have nothing to do with each other in reality. The result of the 

quantum mechanical treatment that the photons in a 

non-helical Gauss beam have zero orbital angular momentum 

whereas they have a non-zero orbital angular momentum in a 

helical light beam could be explained from a simple viewpoint 

based on the notion of photon trajectories. Thereby the 

meaning of a photon trajectory in a light beam with a width 

which is much larger than the wavelength of the light is 

discussed.  
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