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Abstract: Initially, the Green’s functions method was used to solve the problem of the sound scattering on ideal scatterers with 

mixed boundary conditions. It was later applied to the sound diffraction studies on ideal and elastic bodies of the non-analytical 

form. 
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1. Introduction 

The review set out in detail the use of Green’s functions 

method for diffraction problems on simple bodies (sphere, 

spheroid) with mixed boundary conditions. Analitical 

solutions are complemented by results of calculations of the 

scattered sound field similar bodies in zones of the Fresnel and 

Fraunhofer. In the future the method of Green’s functions has 

been extended to ideal and elastic scatterers of the 

non-analytical form. 

2. The Sound Scattering of Bodies of the 

Simple Form (Sphere, Spheroid) with 

Mixed Boundary Conditions 

Ideal scatterers, that have on different parts of the surface 

are not the same boundary con-ditions (Dirichlet or Neumann), 

referred to bodies with mixed boundary conditions. Sound 

diff-raction problems on such scatterers are solved one two 

methods. The first proposed A. Sommerfeld [1], called the 

variational method (or the method of least squares) [1 – 3]. 

The second met- hod - the method of Green’s functions [4 – 7], 

is based on the use of the corresponding Green’s function with 

mixed boundary conditionsfor the each part of the surface of 

the scatterer. Lets look at an use and characteristics of both 

methods at an example of a sphere of a radius R with mixed 

boundary conditions (one half of a sphere is ideal soft, an 

other is ideal hard), that is on the area surface ( )1 0 90= ÷ �S θ  

is perfomed the Dirichlet condition and in the area 

( )2 90 180= ÷ �S θ  - the Neumann condition (Figure 1). In 

accordance with given boundary conditions by using a 

varia-tional method is made a functional NG  of the form [1]: 

1 2

2
2

2 .
∂Φ ∂Φ

= Φ + Φ + +
∂ ∂∫ ∫

N i s

i s

S S

G k dS dS
n n

        (1) 

where k – the wave number of the incident plane wave. 

 

Figure 1. The sphere with mixed boundary conditions. 

In general, (
0 0= ≠ �θ α  or 

0 180= ≠ �θ α ) the problem is 

three-dimensional and potentials of incident ( Φ
i

) and 

scattered ( Φ
s

) waves are found in the form of double instead 

of ordinary series: 
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In expanded form a functional NG  is [4, 5]: 
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Where a feature over unknown coefficients means a sign of 

a complex conjugation. 

The minimization condition of a functional NG  ensures best 

execution of boundary con-ditions on a surface of a scatterer: 

0.∂ ∂ =N i

iG A                            (5) 

The substituting (4) in (5), obtain equations for a 

determining of unknown coeffici-ents 
v

q
A : 

1 1

0 0 0 0

,
= = = =

= −∑∑ ∑∑
N M N M

v vv vv

q qq nq

v q n q

A C d  

where M – the integer index, whose value depends on the size 

of the wave kR; 
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On the other hand, in accordance Green’s functions method 

[6] a potential of a scattered wave Φs by a sphere with mixed 

boundary conditions represented by a one-term the in-tegral 

Huygens as a sum: 
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where P – the observation point with spherical coordinates r, θ, 
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φ; Q – the surface point with angular coordinates ,′′ ′′φ θ  and 

a radial coordinate ′ =r R ; G1 – the Green’s functionvanishes 

on the surface of a scatterer аnd G2 – the Green’s function 

having a zero derivative along the normal to this surface [8, 9]: 
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The formula (6) for a potential ( ); ;Φ s r θ φ  of a scattered 

wave, is approximate as a formula (4) of a variational method. 

But there are special cases in which a Green’s functions 

method gives accurate results. We will consider these special 

cases on the example of the homoge-neous (soft) sphere, 

visualizing her broken into two halves by a plane XOZ (Figure 

1). The wave vector k
�

of the incident plane wave put in a 

plane XOZ ( �900 =θ ) and put it in a same the observation 

point P (on a contour of a border of hemispheres S1 and S2). 

We will find ( )PsΦ  in this point, using on a left hemisphere 

S1 the Green’s function G1 and on a right hemisphere S2 - the 

Green’s function G2. 

For a homogeneous soft sphere a formula (6) converted to a 

form: 
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Using ( )Φ s Q  and G1, G2 from (7) and (8), we find that a 

potential of a scattered wave on a surface of a sphere in a point 

of a contour of a border of two hemispheres is equal: 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 ,Φ = − Φ − Φ = −Φs i i iP P P P  

That is a boundary condition is fulfilled and a solution is 

accurate. 

If still a sphere θ0 and θ = 90
о
, a sphere consists of soft and 

hard hemispheres (Figure 1), the, contribution of the ideal soft 

hemisphere in a potential Φs in the point of a contour of a 

border is equal ( ) 2Φ i P , but the contribution of the ideal 

hard hemisphere ∂Φ ∂
s

r  in on a contour of a border is equal 

( )( )1

12− ∂Φ ∂P r . The potential Φs in the plane XOZ will be 

equal to half a sum of potentials generated by soft and hard 

spheres in a same plane. 

Arbitrary orientation of a wave vector 
�

k  of the incident 

wave with respect to an our sphere with mixed boundary 

conditions a potential of a scattered wave ( ); ;Φ s r θ φ  will by 

equal approximate by substituting (2) in (7) and (8) in (6) [7]: 
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            (10) 

where 
1

≠n n , 
1

−n n - odd. 
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Figure 2. The distribution of the module of the potential of the scattered wave 

on the surface of the sphere with mixed boundary conditions^ 1 – the 

variational method; 2 – the met-hod of Green’s functions. 

In contrast to a variational method in a method of Green’s 

functions does not need to look for unknown coefficients of 

expansions and a computation of a potential Φs is a very 

simple problem, since all quantities in (10) are known. On 

fiure. 2 shows distributions of Φs  on a surface of a sphere 

(half-soft S1, half-hard S2) by kR = 5 and α = 90
о
. The ideal 

soft half of a sphere corresponds change of an angle θ ina 

range of 0 to 90°. The single value of a potential of a mo-dule 

shown dash-dotted arc, it complies with a strict 

implementation of a boundary condition on a surface of a 

sphere satisfied approximately although a difference is small 

between methods themselves. 

Figures 3 and 4 show amplitude angle characteristics of a 

soft (figure 3, a curve 1) and hard (fiure. 4, a curve 3) 

spheroids and the angle characteristic of a spheroid with 

mixed boundary conditions (Figures 3 and 4, a curve 2). 

 

Figure 3. Angular characteristics. 

 

Figure 4. Angular characteristics. 

If, for example, to introduce a prolate spheroid consisting of 

two identical halves, con-tacting in a plane 0 90= ⇔ = �η θ
and in a same plane (

0 0=η ) to place a source, a total potential 

Φs of a scattered field for a observation point, of which is in a 

same plane 0=η . Will be determined to expressions (11) 

( 0=φ ) and (12) ( =φ π ) 
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( ) ( )
( ) ( )
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Figure 5. Relative backscattering cross sections of oblate spheroids by 

irradiating them along the axis of the rotation. 

On Figure 5 given values 
0σ  of oblate spheroids (

0ξ = 
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0,1005) they are irradiated along an axis of a rotation Z 

(
0 0= �θ ). A curve 4 relates to a hard half spheroid, a half 

soft,a curve 2 – to an ideal soft spheroid, a curve 1 – to an ideal 

hard spheroid, a curve 3 – to a spheroid, which, 1/3 a surface 

corresponds to a Neumann condition and 2/3 – a Dirichlet 

condition/ 

Figure 6 shows of a module of the angular characteristic 

( )sψ η  of the oblate spheroid with a radial coordinate 0ξ = 

0,1005 half-hard, half-soft (a curve 1), which falls a wave 

along the axis Z (
0 00 1,0= ⇔ =�θ η ) by С=10; here given 

modules ( )sψ η  for soft (a curve 2) and hard (a curve 3) 

spheroids. A comparison of three curves chows that the 

amplitude of a pressure in a reflected back wave for a 

combined body by approximately one order smaller than for 

homogeneous ideal spheroids. 

 

Figure 6. Modules angular scattering characteristics combined and 

homogeneous oblate spheroids. 

 

Figure 7. The non-analytical smooth scatterer in the form of the cylinder with 

the semi-spheres. 

3. The Method of Green’s Functions for 

Ideal Scatterers of Non–analytical 

Forms 

We consider non-analytical body, the surface of which does 

not apply to coordinate symones with divided variables in the 

scalar Helmholtz equation. We examine this non-analytical 

scatterer in the form of a finite circular cylinder bounded on 

the sides of the hemispheres (figure 7). 

Sound pressure, scattered by this body, can be found one of 

the numerical methods for the solution of diffraction problems 

[6, 7, 10 – 20]. The method of Green’s f functions [6, 7], based 

on the use of mathematical formulation of the principle of 

Helmholtz-Huygens (Kirchhoff integral), one of the most 

convenient methods. The algorithm of calculation requires 

knowledge of the amplitude-phase distribution of the sound 

pressure and the normal component of oscillatory velocity on 

some closed surface integration of S, that includes the lateral 

surface of the cylinder S2 and the surface of hemispheres S1 

and S3 (Figure 7). 

( )1
( ) [ ( ) ( , ) ( , )]

4

∂∂= −
∂ ∂∫ S

S S
S

p Q
p P p Q G P Q G P Q dS

n nπ
, (13) 

where ps (P) - the sound pressure scattered by the body, P -the 

point of observation, which has a spherical coordinates:  

; Q - the point of the surface S; ps(Q) - the sound pressure in 

the point Q; G(P,Q) - Green's function of the free space, 

satisfying the inhomogeneous Helmholtz equation. 

In the (13) Green's function is selected as a potential point 

source: 

,            (14) 

where k =  – the wave number,  - the length of a 

sound wave in the liquid environment, R - the distance 

between the points P and Q. 

Using relative arbitrariness of the choice of Green's 

function, you can get the Kirchhoff formula options, 

consisting of a single member: 

(1)1
( ) ( ) ( , )

4

∂=
∂∫S S

S
p P p Q G P Q dS

nπ
            (15) 

(2)( )1
( ) ( , )

4

∂
= −

∂∫ S

S
S

p Q
p P G P Q dS

nπ
                  (16) 

By using formulas (15), (16) is considerably simplified 

computational procedure: you want to define only one of the 

parameters (ps(Q) or dps(Q)/dn) on the surface S. However, in 

this case, the match of the surface S with a coordinate the 

surface one of coordinate systems in which it is possible 

separation of variables is necessary. Thus, application of 

Green's functions for analytical surfaces (infinite cylinder and 

sphere) faces of these surfaces, interconnected is the main 

feature of this method. 
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The possibility of such a method and test calculations of the 

scattered field were considered in [21, 22]. For example, an 

experiment at the decision of a test problem [21] for the 

calculation of the far field of a point source (group of point 

sources) directly and through (24), (25) has shown that in the 

considered range of wave sizes of the results obtained by these 

two methods, goodenough coincide. When solving the problem 

of diffraction to determine the values of ps (Q) and dps(Q)/dn on 

the surface S you can use the following expression: 

1) for the homogeneous Dirichlet conditions (ideally soft 

body), the scattered pressure on the surface S has the 

form: 

,                 (17) 

2) for the homogeneous Neumann conditions (ideally rigid 

body): 

( ) ( )
,

∂ ∂
=

∂ ∂
i sp Q p Q

n n
                       (18)  

where p, (Q) - the sound pressure of the incident wave in point 

Q. When determining the values pt (Q) you can use the 

expression for the scalar potential of the plane monochromatic 

wave single amplitude of the incident on the body from a 

source located at infinity. 

This potential for a perfectly reflective sphere is natural 

functions in solving the Helmholtz equation in a spherical 

coordinate system has the following form [12]: 
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the expression (19) is simplified when considering the 

axis-symmetric problem (dependence on the coordinate  

0

( , ) (2 1) (cos ) ( ),
∞

−

=

= +∑ m

i m n

m

p r i n P j krθ θ            (20) 

for scatterer in the form of a perfectly reflecting cylinder 

scalar potential incident plane harmonic waves unit amplitude 

of the wave vector, , aimed at the angle to the z axis of 

the cylinder, folding natural functions solutions to the 

Helmholtz equation in a circular cylindrical coordinate 

system: 

(1) 0 0

0 0 (1)
0 0 0
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Ω
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                               (21) 

in the case of the plane problem of the wave vector к 

perpendicular to the z axis of the cylinder and expression (30) 

is simplified [12]: 

(1) 0 0
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0 0 0

( sin )
( , ) ( 1) ( ) cos ,
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∞

=

Ω
= − −

Ω∑ m m
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4. Results of Numerical Experiments 

For calculation of integral (15) and (16) on the surface S the 

quadrature formulas is used. A step of integration over the 

surface S in the axial and circumferential directions 

 in the system of nodal points must not 

exceed 0,5  (Figures 8, 9). 

 

Figure 8. The coordinate system, connected with cylinder. 

Using the method of Green's functions were calculated the 

equivalent radius of the ideal non-analytical body for 

several values of wave size ka (where a is the radius of 

cylinder and hemispheres of the non-analytical scatterer) and 

different angles of irradiation (figures 10 – 12) 

 

Figure 9. The coordinate system, connected with hemispheres. 
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Figure 10. Angular diagrams .eqR for the angle of the incident 
0

0 90 .=θ  

 

Figure 11. Angular diagrams  for the angle of the incident 
0

0 60 .=θ
 

 

Figure 12. Angular diagrams  for the angle of the incident 
0

0 30 .=θ
 

The analysis of equivalent radiuses  presented on these 

pictures, permit to make the following conclusions: 

1) the angular position of reflecting and diffraction lobes 

totally correspond to the physical representations; 

2) the angular characteristics  of submarine 

non-analytical object are rather similar to the angular 

diagrams of spheroid bodies [4, 10]. 

At all figures clearly observed diffraction (shadow) petal, 

and it grows and shrinks with increasing frequency. On figures 

10 – 12 the mirror petal is shows, which is similar to the 

shadow petal with increasing frequency, but in contrast, 

limited asymptotically. You may notice that the angular 

diagrams of the non - analytical scatterer are very similar to 

the angular characteristics of the scattering elongated 

spheroids (ideal and elastic) with the ratio of the semi-axes 

1:10 [10, 17, 23, 24]. In contrast to work [10], which used a 

method of integral equations and were calculated for non - 

analytical body with short cylindrical insert, in this study 

cylindrical insert was much longer. Values equivalent radius at 

other angles of inciden-ce are given in works [25, 26]. 
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5. The Green’s Functions Method for 

Elastic Scatterers of Non–analytical 

Forms 

The solution of the problem of the sound scattering by an 

elastic shell of the non-analytical form is based an article [27]. 

The Green’s functions method is approximate because it does 

not take account the interaction between individual elements 

forming a compound body of non-analytical form. The 

interaction between scatterers shaped as spheroids and elliptic 

cylinders in [10] and this interaction was negligibly small. In 

addition, the sound scattering characteristics calculated for 

bodies with mixed boundary conditions by the Green’s 

function method namely the Sommerfeld method (the method 

of un-determined coefficients [10, 23]), and the agreement 

between the results was fairly good. 

As non-analytical bodies considered two structures: 

1) a finite-length circular cylindrical elastic shell limited an 

the ends by the two halves of a prolate spheroidal shell 

(Figure 13); 

2) the same end cylindrical shell bounded an the ends by the 

two halves of a spherical shell (Figure 14). 

 

Figure 13. The cylindrical shell with the semi-spheroidal shells. 

 

Figure 14. The elastic shell in the form of the terminal cylinder with the 

semi-spheres. 

In article [27] given a decision acoustic scattering problems 

to the constituent parts of noana-lytical bodies.For cylindrical 

and spheroidal shells are used Debye and Debye-type 

potentials. In [27] the angular scattering characteristics of 

such com-pound bodies with different wave sizes are 

calculated. 

We consider a compound elastic shell forme by a finite 

cylindrical shell whose ends are closed by two hemi spherical 

shells of the same diameter (figure 14). To apply the Green’s 

function method, it is necessary to take the solution to the 

axi-symmetric problem of plane wave diffraction by an elastic 

spherical shell in terms of dynamic elasticity theory [28] and 

transform this solution to the three-dimensional version. The 

resulting solution little differs from that obtained above for the 

three-dimensional problem of diffraction by a spheroidal 

elastic shell [10, 23, 24, 29]. 

Figures 15 and 16 show the absolute values of the angular 

characteristics  (in the XOY plane, =90
0
) for 

non-analytical elastic scatterer in the form of a cylindrical 

shell connected with to spherical shells (figure 10) the 

following parameters: ka=0,523 (Figure 15) and ka=0,941 

(Figure 16). 

 

Figure 15. The modulus of an angular characteristic. 

 

Figure 16. The modulus of an angular characteristic. 

The method of Green’s functions in combination with 

analytical methods can be used for the solution of tasks of 

diffraction of plane sound wave on elastic isotropic scatter of 

non-analytical form, that consists of circular cylindrical shell 

of terminated length L and radius r0, bounded at the butts by 

the halves of elongated spheroidal shell [26],(Figure. 13). 

The internal surface of the spheroidal shell is given by 

coordinate  (with the proportion of the axes of the 

inner spheroid 10:1 and inter-focal distance 2  and external 
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– by coordinate . 

The shell material is isotropic, with the density  and 

coefficients of Lame , module of Jung E, inside is 

the gas with density  and coefficient of volumetric 

compression  and sound rate . 

The scatterer is placed in ideal compressed liquid with 

density  and coefficient of volumetric compression  

The potential of sound wave is submitted to scalar equation of 

Helmholtz. 

The amplitude-phase distribution of the sound pressure and 

of normal component of vibrating velocity in the points of this 

non-analytical surface is found from the strict solution of 

tridimensional boundary tasks of dynamic theory of elasticity 

on the endless elastic cylindrical surface and elastic 

spheroidal surfaces, respectively. 

The schemes of solution of axially symmetric tasks of 

diffraction on elastic cylinder and spheroid are rather similar: 

in both cases the vector potential  has the single nonzero 

component . The unknown coefficients of potentials’ 

expansion of falling and dispersed waves, of scalar potential 

of the surface, of potentials of Debye U and V, as well as of 

potential of gas, filling the surface, are found from the 

physical boundary conditions on the external and internal 

surfaces of the shell [30]. 

Although on the spheroid these coefficients are found not in 

the enclosed form, but using the method of truncation from the 

infinite system of equations. 

What is more, while finding the solution of tridimensional 

task of diffraction on elastic speroidal scatterer the vector 

potential  is presented by the potential of Debye U and V 

[10, 19, 30]: 

2( ) ( ),Ψ = +
��� �� ��

rotrot RU ik rotRV            (23) 

where  – is the radius-vector of the view point of,  – is 

the wave number of transverse wave in the material of the 

shell. 

The sound pressure in the far-field can be found by one of 

the numerical methods, among those is the comfortable 

method based on the usage of mathematical formula of 

Helmholtz –Huygens ’ Principle (integral of Kirchhoff) [23]: 

1 1 1

exp( )
( ; ; ) (1/ 4 ) {[ ( ) / ]

exp( )
( )( )[ ]}

= ∂ ∂

∂−
∂

∫∫s s

S

s

ikr
p r p Q n

r

ikr
p Q ds

r r

θ ϕ π
    (24) 

where r – is the distance between the point Q on the surface of 

the shell and the point P with coordinates r1, θ1, φ1 in the 

far-field. 

The Green’s functions in (14) is taken in the form of 

potential of the point-source. The quadrature formulas are 

used for finding of this integral, and here the integration step 

(sampling) of the surface of the scatterer should not exceed 

0,5 λ0, where λ0 – is the length of the plane monochromatic 

wave, falling from the liquid onto the surface of the scatterer. 

6. Conclusions 

The author of a Green’s functions method [6] analyzes him 

in this review on an example of sound diffraction problems on 

bodies with mixed boundary conditions and non-analytical 

forms. Initially. The Green’s function method was proposed 

for sound scattering problems on analytical bodies (sphere, 

spheroid) with mixed boundary conditions and it was shown 

in what cases this approximate method turns out to be accurate. 

Then this method was extended to solving problems of 

diffraction of sound on elastic bodies of non-analytical 

forms.This analysis is supplemented with calculations of 

characteristics of the sound scattering by ideal and elastic 

scatterers. 
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