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Abstract: We present an efficient method for calculation of the impurity binding energy in a quantum dot with parabolic 

confinement in the presence of the electric field. The unknown wave function is expanded into a basis of one-dimensional 

harmonic oscillator states describing the electron's movement perpendicular to the plane of quantum well. Green's function 

technique used to calculate the coefficients of the expansion. Binding energy of impurity states is defined as poles of the wave 

function. Developed method applied to calculation of impurity binding energy for different position of impurity and the 

intensity of electric field. 
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1. Introduction 

Quantum dots are artificial structures in which the motion 

of the charge carriers is limited in three dimensions. The type 

of confinement potential used determines their possible 

states, such as the band structure and the basic physical 

properties of quantum dots (QD). Two important factors are 

the impurity states (IS) and the external field, without which 

it would be difficult to practically implement QDs in 

electronics and they can affect the band structure. Since 

Bastard calculated [1] for the very first time the impurity 

binding energy in QW many works on this subject have been 

published. Over the last three decades, new calculation 

methods have been developed to determine the binding 

energy of IS in QWs and QDs, by assuming the form of 

confinement potential [2-5] and the features of the band 

structure [5-9]. The form of the confinement potential is a 

significant characteristic. In particularly, (as mentioned in ref. 

[10]) advantages of devices based on QDs (compared with 

QWs) has become possible because of the synthesis of QDs 

that satisfy the rigid requirements of size, shape, uniformity, 

and density which ultimately affect the choice of the potential 

used to confine the charge carriers in QDs. Although the 

most widely used model for QDs has a spherical symmetry 

potential, allowing for simple and convenient (for the 

following analysis) solutions, it only provides a qualitative 

pictures, because there are many factors that reduce the 

symmetry, making the problem very complicated. In this 

sense, a model with a parabolic confinement and a low 

symmetry is more adequate. The practicality of this model 

has been demonstrated in many studies (see [5] and the 

references therein). A study of the effect of an external field 

on the energy spectrum of low dimensional structures also 

led to the work performed by Bastard [11], where the 

electron eigenstates in a QW under an electric field were 

calculated. 

Electric field is additional tool which can affect the band 

structure of low dimensional sample. Recently effects of an 

electric field on the binding energy of impurity states in QD's 

have been reported in [12-17].  

In the present study the problem of the impurity binding in 

QDs with parabolic confinement, under an electric field is 

considered and solved. The approach did not use any 

additional (non physical) parameters, allowing for the control 

of the accuracy of the results obtained. 

2. Theoretical Background 

Within the framework of effective-mass approximation, 

the Hamiltonian of an electron bound to donor impurity in a 

spherical QD with parabolic confinement in the presence of 

electric field along the z-axis is given as 
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where cylindrical coordinates (ρ, θ) are the distance and 

angle describing the position of an electron in the plane 

perpendicular to the electric field; F is external electric field 

applied in the z-direction; m* is the effective mass of the 

electron, V(ρ,z)=1/2m*ω2
(ρ2

+z
2
), ω - angular frequency of 

the parabolic confinement potential, 

2

0

2

2 2

4 )z(z+Rπκκ

e
=z)U(R,

0 −
−  - Coulomb interaction 

between an electron and the impurity ion, e – unit charge, κ - 

permittivity, κ0 - dielectric constant, z0 – impurity position. 

Because of the axial symmetry of the system, angular 

momentum projection onto the z axis is conserved Lz=ℏ m 

(m=0, 1, 2, …- magnetic quantum number), and their 

eigenfunctions exp(imz) determine the dependence of the 

unknown electron wave function versus an angle: 

z)R,(imθz)θ,ψ(R, ()exp ψ≡ . By solving the one-dimensional 

Schrödinger equation 
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we get the basis for an expansion of the WF: 
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Farther we use the next units for distance (Bohr radius ab), 

energy (Rydberg Ry) and electric field  
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 measure the strength of the 

confinement potential. Also we input here parameter Lc 

corresponding to the dimension of the QD [16]. Solutions of 

equation (2) describe one dimensional harmonic oscillator 

states: 
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where Hn - Hermitepolynom of n-th order.  

Substituting (3) in (1), we obtain a system of differential 

equations.  
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where (z)dzz)(z)U(R,=(R)U nNNn ∫ ϕϕ .  

To construct the solutions of (5) we introduce the Green's 

function GN (ρ,ρ') via the equation 
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The expression for Green's function GN(ρ,ρ'), as well as 

method of solution for equation (6) is given in [17, 18]. The 

solution of the equation (6) allows finding the impurity 

binding energy for various impurity location and values of 

the intensity of electric field.  

3. Results and Discussion 

The results of calculation for impurity binding energyas 

function of electric field are shown on Fig. 1. These results 

are in qualitative and quantitativeagreement with last 

published data [12]. The common feature of the two 

dependencies is the decrease of binding energy due to the 

increase of the electric field. Note that these dependencies are 

for the case when the impurity atom is placed in the center of 

QD. As electric field increase the maximum of the electron 

wave function is shifted from the center to the distance zd 

(see (4)). Thus, the average distance between the electron and 

impurity ion is increased, and the binding energy, 

respectively, decreases. 

We note also that the relative change of the binding energy 

for range of electric field 0-300 kV/cm is decrease as 

confinement potential of QD is increase. It occurs because 

value of zd will be smaller for large values of the potential. 

Accordingly, for confinement potential of strength ℏω=100 

mev the average distance between impurity ion and electron 

will be less than for ℏω=50 mev. Thus, as we can see from 

Fig. 1 relative change of the binding energy is smaller for the 

case of ℏω=100 mev. 

Now we consider Fig. 2. It presents binding energy as a 

function of the impurity location, for values of the electric 

field of 0 and 250 kV/cm and the value of confinement 

potential ℏω=100 meV. The value F=250 kV/cm for electric 

field is chosen so that it corresponds to the case when zd is 

very close to Lc (zd=0.29, Lc=0.34). In the case of the zero 

electric field the movement of the impurity atom from the 

centre to the edge led to the increase of the average distance 

between impurity ion and the electron (maximum of electron 

WF remains in the center). Therefore, the binding energy will 

decrease. In the presence of electric field F=250 kV/cm the 

maximum of WF are at the edge of the QD, and therefore, if 
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z0 = −1 binding energy have maximal value, and decreases 

with the displacement of the impurity atom from one side to 

the other. 

 

Fig. 1. Binding energy as function of the electric field for different strength 

of confinement potential, ℏω (mev): 1 - 50; 2-100. 

 

Fig. 2. Binding energy as function of the impurity position.Electric field 

(kV/cm): 1 - 0; 2- 250. The dashed lines correspond to QD's boundaries. 

4. Conclusion 

In conclusion, we have calculated thebinding energyin QD 

with parabolic confinement in the presence of electric field. 

The electric field shifts the maximum of the electron wave 

function, thereby changing the average distance between the 

electron and impurity ion, and as a consequence, the binding 

energy. It is shown that effect of electric field on the binding 

energy is equivalent to the change of impurity location. This 

result is of practical value, allowing changing the binding 

energy avoiding application of electric fields. 
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