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Abstract: The possibility that quantum mechanics is foundationally the same as classical theories in explaining phenomena 
in space and time is postulated. Such a view is motivated by interpreting the experimental violation of Bell inequalities as 
resulting from questions of geometry and algebraic representation of variables, and thereby the structure of space, rather than 
realism or locality. While time remains Euclidean in the proposed new structure, space is described by Projective geometry. A 
dual geometry facilitates description of a physically real quantum particle trajectory. Implications for the physical basis of 
Bohmian mechanics is briefly examined, and found that the hidden variables pilot-wave model is local. Conceptually, the 
consequence of this proposal is that quantum mechanics has common ground with relativity as ultimately geometrical. This 
permits the derivation of physically meaningful quantum Lorentz transformations. Departure from classical notions of 
measurability is discussed. 
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1. Introduction 

Bell’s theory is considered central to questions on the 
foundations of quantum mechanics [1]. Motivated by the 
EPR paradox, Bell constructed experimentally testable 
inequalities based on two classical assumptions of objective 
reality; usually termed “locality” and “realism”. Violation of 
the inequalities, which has been reported in many 
experiments, calls for a re-consideration of fundamental 
classical notions of reality [2]. 

This conclusion is tampered to some degree by a minority 
view that violation of the inequalities can be explained by 
short comings in experimental design. Contextuality has also 
been identified as an additional, and possibly fatal, 
assumption [3]. Without in any way pre-determining the 
ultimate veracity of these alternative possibilities their merit 
will not be critiqued in this discussion. 

Experimental failure of Bell’s theory will likewise be 
interpreted to require a re-examination of foundational 
concepts [4, 5, 6]. However, in taking this position it is 
recognised, that due to the structure of Bell’s theory – testing 
assumptions by its failure to reproduce experiment – any 
conclusion is provisional on the assumption that no further 
assumptions are present. 

There is wide ranging discussion on the meaning and 

precise definition of “locality” and “realism”, as well as 
questions on which is primal in Bell’s inequalities [5]. While 
opinions differ, the consensus view is that locality is the 
critical inoperative assumption [7, 8, 9]. 

Adherents of orthodox QM take the view that foundational 
discussions are of a philosophical character and technically 
not required. Computationally, the mathematical apparatus of 
QM reproduces all experimental results. This, together with 
the orthodox interpretation, forms a complete and self-
consistent explanation of quantum mechanical phenomena. 
Results of weak measurement experiments, while not 
invaliding orthodoxy, do invite examination. Although there 
is passionate discussion, the original Heisenberg microscope 
formulation of the uncertainty relation has been found to be 
experimentally inadequate. A newer error-disturbance 
relation has been reported [10, 11, 12]. Experimentally, 
“average” (i.e. expectation) trajectories have been observed 
for quantum particle movements through interferometers. 
[14,15]. A theoretical treatment is given by Wiseman [13]. 

Being based on a thought experiment only, imprecision of 
the intuitive Heisenberg relation is not totally unexpected. 
Experimental observation of average trajectories likewise 
does not invalidate the orthodox position. However, these 
findings do re-focus the basic question of how average 
trajectories can have experimental reality while an 
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underlying individual trajectory is without physical meaning. 
Since the individual path is not measured this is indeed a 
non-empirical question. Nevertheless, it is relevant to this 
discussion. While orthodoxy is not invalidated it will be 
argued that other possibilities are open to consideration. 

A recent analysis of the underlying assumptions of Bell’s 
theory takes a different approach [16]. Initially, the focus is 
on examining the mathematical difference between Bell’s 
theory, based on classical assumptions, and quantum 
mechanics. Variables in Bell inequalities are metric-type; 
having a field algebraic structure, necessary to be assigned 
number-values, and also having as a mathematical property 
measurability. Metric variables are the variable-type of 
classical theory, both Newtonian and Relativity. Their 
properties are defined from axioms of the metrical geometry 
which underpin classical theory; and which it is assumed, 
describes the structure of space and time. A logical 
consequence of the violation of Bell inequalities is that QM 
is underpinned by a non-metrical geometry. Obviously, this 
then implies that the structure of space differs from what is 
classically assumed. 

Projective geometry will be used to describe the proposed 
new space structure while time retains its Euclidean character. 
Quantum mechanics is then formulated on a dual geometry. 
This has a direct implication on the pilot-wave model of 
Bohmian mechanics; an examination of which establishes 
that the hidden variables model is local. A further significant 
consequence is that quantum theory has the same common 
ground as relativity; explainable by traditional concepts of 
space, time and geometry. This facilitates the derivation of 
conceptually meaningful “quantum” Lorentz transformations. 
While this suggests a “neo-classical” quantum mechanics 
there is fundamental difference on the concept of 
measurability. 

2. Projective-Euclidean Space and Time 

For the purpose of a more self-contained presentation it is 
valuable to emphasise some relevant aspects on the nature of 
a physical theory, and also, basic properties of geometry. 

Firstly, quantum mechanics is a physical theory as par 
EPR definition; meaning, that it is a mathematical modelling 
of “nature” [16]. An initial requirement of any model is the 
definition of variables involved, and most importantly, their 
variable-type. This “first-step” determines the appropriate 
algebra. Consider for example, the variable-type in digital 
electronics, the “on-off” switch; a nominal variable whose 
rules of combination obey a Boolean algebra. On first 
impression it may seem that this initial step is unnecessary 
for physical theories. This is not the case. 

For classical theories space and time variables are “known” 
to be metric-type, representable by numbers, and so form a 
field. This would seem the “natural order” requiring no 
further justification. However, this is also not the case. 

Classical theories are a description of events in space and 
time. Consequently, their mathematical formulations are 
embedded on a geometry whose axioms (hopefully) describe 

the space and time structure. For classical theories the 
foundation geometry is metrical; Newtonian mechanics is 
founded on Euclidean geometry. All this is well known. A 
point perhaps not sufficiently appreciated, is that variables 
founded on Euclidean geometry can be represented by field 
obeying number-values because of the geometry’s 
fundamental properties. 

Hilbert established that points, the undefined elements of 
Euclidean geometry (whose identification with points in 
physical space is only an assumption), obey field rules of 
combinations [17]. Two fundamental theorems, that of 
Pappus and that of Desargues, are central to Hilbert’s proof. 
This permits the following algebraic reasoning: since both 
are fields, an isomorphism exists between Euclidean 
geometrical points and numbers; since they obey the same 
rules, points can then be represented by numbers. To the 
extent that geometrical points can represent physical points, 
then the latter can likewise be represented by numbers-values. 

This sometimes neglected geometrical-algebraic procedure, 
invites the question whether quantum variables, which form 
a division ring, are not a consequence of a physical space 
whose structure is described by a non-metrical geometry. 
Obviously, this question is the essence of this investigation. 
An appropriate alternative is Projective geometry whose 
axiomatic structure permits the possibility of non-
commutative algebra [18, 19]. 

While a summary of Projective geometry will not be 
presented, it is appropriate to emphasize aspects relevant to 
this discussion. Perhaps the most basic is that Euclidean 
geometry emerges from Projective under special-case 
conditions; clearly, a necessary requirement. There are 
however, fundamental differences. 

Although a generic definition can be constructed as an 
invariant set of relations between points, length as 
understood in Euclidean geometry is not invariant. This has a 
most significant consequence: measurement, in the sense of 
comparison to a standard is not geometrical definable. 
Clearly, this is in direct contrast with Euclidean geometry 
where measurement is a consequence of its axiomatic 
structure [20]. 

An issue, perhaps sometimes not sufficiently appreciated, 
is that while “measurement” is an experimental procedure, in 
a mathematical theory it must be a mathematical property. A 
physical theory is a mathematical construct, divorced from 
the “reality” it attempts to explain, governed solely by its 
self-consistent rules of mathematical logic. A process further 
complicated if the theory is founded on geometry, likewise 
government by its own self-consistent logical rules. 
Measurement as a mathematical property, as with algebraic 
representation of a variable by numbers or any other entity, 
must be consistent with the containing logical structure. 

These complications are overlooked in classical theories, 
not because of their non-existence, but because of the 
properties of Euclidean geometry, which permit the 
definition of measurement geometrically [20]. 

On first appearance it may seem challenging to base an 
empirical physical theory on a geometry whose axiomatic 
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structure cannot define “measurability”. However, 
measurability in quantum mechanics differs from its classical 
counterpart. This departure has invited even radical 
explanations, within this proposal the difference is explained 
by geometry. All measurable quantities of QM, as defined by 
the wave function, are nevertheless reproduced. 

Briefly, Projective geometry is based on axioms of 
incidence together with further axioms of order and 
continuity [18]. As with Euclidean geometry, two 
fundamental theorems, that of Pappus and Desargues, are 
pivotal in constructing rules for combination of points. These 
rules refer to a one-valued operation whereby with every pair 
of points, of defined order in the operation, is associated a 
unique third point. Desargues’ theorem plays a fundamental 
role in obtaining this algebra of points (as the constructions 
are called). The operation is defined as a sum or product, and 
also inverse operations of subtraction and division. Further, 
points can be represented by symbols to allow analytic 
methods for manipulations involving the basic operations. 
While the rules of combination for addition and subtraction 
follow those of ordinary numbers, the multiplication 
operation is non-commutative. However, if Pappus’ theorem 
is introduced as an additional assumption, unlike Euclidean 
geometry it is not provable from incidence axioms, 
multiplication is also commutative. 

Algebraic representation of projective points by 
mathematical entities again follows from the property of 
isomorphism. Where Pappus’ theorem is valid points can be 
represented by ordinary numbers, otherwise their algebraic 
representation would be by mathematical entities which form 
a division ring; specifically, matrices, quaternions, and for 
the purpose of this discussion, Dirac q-numbers. 

Axioms of order and continuity in Projective geometry are 
critical in determining the validity of Pappus’ theorem. Order 
can be defined by either associating with any four points the 
undefined relation of separation, or equivalently, with three 
points the undefined relation of sense. The former will be 
used here [18]. Suppose four points A, B, C, D are in cyclic 
order, then AC is said to separate BD, which is written as 
AC//BD. Further, separation possess a symmetry such that 
AC//BD, CA//BD and BD//AC all describe the same 
invariant relation; while AB/C defines the segment not 
containing C. The axiom of order is defined by the following 
conditions involving any five distinct collinear points (a 
projective line is a closed loop with either clockwise or anti-
clockwise sense) A, B, C, D, X: 

(1) if AB//CD, then AB//DC, 
(2) if AB//CD, then A, C do not separate B, D, 
(3) either AB//CD or AC//BD or AD//BC, 
(4) if AB//CD and AC//BX then AB//DX, 
(5) if AB//CD then A’B’//C’D’ 

where the primed and unprimed points are related by a 
projectivity. 

Using these conditions, together with the symmetry 
property of the separation relation, it can be shown that every 
point on the line AB, excluding A, B, lies in one or other of 
the segments AB/C, AB/D. Hence a “three point” order 

becomes valid for an interval or segment. 
Continuity is established by introducing further axioms 

[18] defining either the convergence of a sequence of points, 
or alternatively, the division of the points of a segment. All 
conditions for both order and continuity are valid for space. 

For points in space and time there is the added 
complication of time dependence. Collinear points can then 
be defined according to: a(A,t1 ), b(B,t3 ), c(C,t2 ), d(D,t4 ), 
x(X,tx ). Time and space are Euclidean and projective 
respectively; this geometrical difference is critical. 

Although at first it may seem otherwise, the five collinear 
points in projective space can be arranged cyclically. This is 
because with Projective geometry ideal points, also referred 
to as “points at infinity” or “directional points”, are retained 
and treated the same as other points. Ordinary and ideal 
points transform into each other, which is not the case with 
Euclidean geometry. Hence a line can be understood as 
extended at both ends to the same ideal point; resulting in 
closed loop. Either a clockwise or anti-clockwise sense is 
then chosen. Condition (1), i.e. if AB//CD then AB//DC, is 
then valid; as is the symmetry property of separation. 

Since the time-line does not contain an ideal point it is not 
a closed loop, time-points cannot be arranged cyclically, and 
further, it is mono-directional. Condition (1) is no longer 
valid: a(A,t1 )b(B,t3 )//c(C,t2 )d(D,t4 ) does not imply 
a(A,t1 )b(B,t3 )//d(D,t4 )c(C,t2 ). Further, symmetry of the 
separation relation is also no longer valid. For space and time 
points an axiom of order consistent in both space and time 
cannot be then defined. Since it is just these points which 
define the particle path, i.e. position as a function of time, the 
axiom of order is then not definable in the path description. 

Continuity of the particle path follows from that of space if 
it is assumed that in moving along a line segment the particle 
passes through every point in the segment. Since the space 
points are continuous the path through them must also be 
continuous. 

A consequence of these seemingly abstract properties is 
that for a set of points in space alone both order and 
continuity are valid, consequently the theorem of Pappus is 
also valid, in which case the algebra of points forms a field. 
For points in space and time, order is not valid, in which case 
the theorem of Pappus is then likewise not valid, and the 
algebra of points forms a division ring. 

Consequently, two position points at different times are 
non-commutative. Assuming the basic definition of velocity 
as the time rate of change of position, it is easily shown that 
position-momentum is likewise non-commutative. This result 
remains valid even for Heisenberg equations of motion 
treatment. 

Although Projective geometry is non-metrical, metric 
quantities are nevertheless definable in generic form. For 
example, distance is introduction from basic generic 
definitions [19]. Concerning two points P and Q, the distance 
between them, denoted as (PQ), is characterized by three 
simple conditions: (PP) =0, for distance between the same 
point, (PQ) = - (QP), reversing the order, and (PQ) + (QR) + 
(RP) = 0 for P, Q, R collinear points. An invariant distance 
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relation fulfilling these basic conditions follows as: 

���� = ����{��, ��})                         (1) 

where k is a scale constant, O and U chosen fixed points and 
{PQ, OU} is the cross ratio. Under appropriate conditions 
Euclidean length can be obtained from relation (1). This 
expression has two interesting aspects. Firstly, since length 
cannot be defined in reference to a standard, introduction of 
its dimensionality can be done by identifying k with a 
universal constant. The Plank length offers as a possibility. 
Embedding the distance expression in a coordinate 
framework enables definition of the fixed points. 
Differentiation w.r.t time gives two rates of change: rate of 
change of expansion, i.e. rate of change of (PQ), and rate of 
change of position. These are the same in Euclidean 
geometry. Rate of change of position will be used as the 
appropriate definition for velocity. Interestingly, rate of 
change of expansion varies with position. 

Classical physical theories have a simple global structure: 
their mathematical formulation is founded on a geometry 
which describes the structure of space and time. The same 
schemata will be maintained but with the geometrical 
alterations being proposed. Connection with the 
mathematical apparatus of quantum mechanics is most 
directly made via Dirac’s q-number formulation. The algebra 
of space and time points form a division ring as does Dirac q-
numbers. Their isomorphism is the critical geometrical-
algebraic connection. The mathematical apparatus of QM can 
then be assumed to be built on the dual geometry being 
proposed in a manner not dissimilar from classical theories 
and their foundational metrical geometries. 

Non-commutative algebra is the “cornerstone” of the 
mathematical apparatus of QM. The physical basis of non-
commutation is found here to be a direct consequence of the 
structure of space and time, and the describing geometry. 

A “neo classical” quantum mechanics implies that it is 
meaningful to associate position directly with a point in 
physical space. A quantum system will then be specified by 
the projective wave function Ψ(q), where the symbol q 
denotes position. Several issues immediately arise. Firstly, 
that of algebraic representation: there is no single 
representation. Appropriate representation needs to be chosen 
in the context of all variables involved and the commutation 
relations between them. According to the first axiom of QM 
the wave function defines all measurable quantities of the 
quantum system. Adhering to this postulate raises the 
question of measurability of the projective wave function. 

For purpose of comparison it is worthwhile recapping 
standard QM: x denotes the eigenvalue of an operator �� 
which represents the position observable in Hilbert space. 
Only after measurement does x denote the physical particle 
position. Algebraic representation of the position operator is 
also chosen in context with other observables. However, for 
q-points commutation relations are a geometrical 
consequence. This difference is of primal importance. 
Mathematically q-points have the same algebraic 
representation as position operators in standard QM, yet 

physically, have the “realism” property of Newtonian 
mechanics; i.e. represent a real point in real physical space. 
Since q will then represent a counterfactual definite quantity 
the “measurement apparatus” construct of orthodox QM is 
unnecessary. Nevertheless, the measurability of q needs 
appropriate geometrical definition. 

Clearly, the wave function in the Schrödinger (and Dirac) 
equation is a function of x (in position representation) in 
Euclidean space. To meet the requirements of the first axiom 
the wave function must be defined in a metrical geometry. So 
the obvious question arises that if space is ultimately 
projective how does it become Euclidean; specifically, how 
does Ψ(q) become Ψ(x)? 

Firstly, it should be clarified that a fundamental aspect of 
the wave function has been implicitly assumed. Namely, the 
wave function has a one-to-one correspondence with an 
“element of reality”; in this case position. Currently, there is 
discussion on the nature of the wave function as either a 
mathematical construct or a representation of “reality” [21, 
22]. Conceptually, in agreement with findings this proposal 
concurs with the latter. 

Concerning the relation between geometries, technically, if 
ideal points are omitted, then Projective geometry reduces as 
special case to Euclidean. However, the Kleinian view of 
geometry is more appropriate in this instance. Accordingly, 
geometry is viewed as a set of points and a group of 
allowable transformations, where properties invariant under 
transformations define the properties of the geometry. The 
most general projective transformation, where only the cross 
ratio is invariant, is given by [19] 

�� =  � ��� ��� ��� ��� ��� ������ ��� ���
�                            (2) 

A set of points subject to such a transformation will be 
non-Euclidean: distance, length, areas are not preserved. An 
important special case is the isometric transformation 

���� =  � ��� ��� ���−���� ���� ���0 0 ���
�                        (3) 

Defining the matrix elements: ���  are real, k2 = 1 and ���� +  ���� =  ����  

This transformation defines translation and rotation. A 
subset of points subject to the isometric transformation will 
possess Euclidean invariant properties; in which sense the 
subspace will be “Euclidean” [19]. 

Isometric symmetries of QM are based on several 
fundamental physical properties. Firstly, homogeneity and 
isotropy are properties of space and time, and hence the 
describing geometry. Both are maintained in Projective 
geometry. Secondly, the transformed wave function must 
represent the same physical state – eigenvalues, expectation 
values and all measured quantities predicted by QM must not 
change. Further, definitions are introduced where S denotes 
the physical system represented by functions and operators. 
The symmetry transformation �: ! ↦ !# acts on points while 
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the corresponding symmetry operator �$  acts on the wave 
function. From these physical principles and definitions the 
mathematical properties of symmetry invariance follow. 

Mathematically, the same results are obtained for Ψ(q) in 
place of the usual Ψ(x). This has a most significant 
consequence. The symmetry isometric transformation acting 
on a quantum system is just the isometric projective 
transformation (3). Hence the describing geometry of the 
quantum system is Euclidean invariant in its properties, in 
which sense it can be characterized as “Euclidean”. The 
wave function, and its associated quantities, is then 
embedded in a “Euclidean” subspace. Measurability of the 
quantum system is hence reproduced. 

Derivation of the isometric symmetry conditions for the 
standard wave function Ψ(x) assumes a pre-measurement 
association (although mathematically unspecified) of x with 
a point in Euclidean space. Without this implicit assumption 
there are added complications for the “measurement 
apparatus” construct of orthodox QM. Not only must the 
“apparatus” actualize the physical position, but also the 
embedding Euclidean space structure. A passive, i.e. 
Newtonian, association with the geometry of space would 
circumvent added complexity. 

These “measurement” complications do not arise with this 
proposal. However, isometric symmetry is influential in 
defining characteristics of the embedding space and its 
describing geometry. This implies an active, i.e. non-
Newtonian, association between symmetry, space structure 
and geometry. Since non-commutation is found to arise from 
the structure of space and time this is not an unexpected 
result. 

No changes are being proposed for the structure of time. 
As a general property, the asymmetry of space and time in 
standard QM - time is not represented by an operator - is now 
explained as arising from a different structure requiring 
different algebraic representation. 

3. Pilot Wave Hidden Variables Model 

Bohmian mechanics is a hidden variables theory first 
introduced by de Broglie based on a pilot-wave model of 
quantum “motion”. Bohm subsequently re-formulated the 
concept [23, 24]. Bell, who had reservations about 
interpretational aspects of QM, especially the measurement 
problem, found the theory interesting. But, it was the 
foundations of the proposed mechanics not its mathematical 
formulations which captured his attention. Firstly, the theory 
should not have existed. Hidden variables were supposed to 
not be possible according to the impossibility proofs on the 
completeness of QM. These were subsequently shown to be 
flawed. Further, the pilot-wave model endowed the quantum 
particle with an inherent deterministic trajectory. This aspect 
resolved the “measurement question” by the “problem” not 
arising. There is nevertheless, departure from classical 
mechanics: the theory is non-local and the variables 
contextual. Non-locality was the feature which most 
intrigued Bell, becoming the motivation for his much 

though-over inequalities. 
The objective of the following simple pilot-wave model is 

also to explore foundational questions rather than theory-
building. 

Mathematically, Bohmian mechanics is defined by two 
evolution equations: the usual Schrödinger equation, together 
with what is termed the guiding equation. The latter 
describes the motion of the generic kth particle in an 
ensemble of N particles. While the proposed geometrical 
alterations do not affect the Schrödinger equation they do 
effect the guiding equation. Since this equation describes the 
time evolution of the particle space position, it is founded on 
a dual geometry. It will be assumed that the motion is 
essentially Newtonian. Accordingly, the particle velocity, 
taking the rate of change of position as definition, is given by 

%& =  '&
'(                                        (4) 

Before proceeding, it is constructive to examine aspects of 
the orthodox interpretation of quantum mechanics which are 
directly pertinent to the physical veracity of the “Newtonian” 
relation just introduced. According to the positivist Bohr-
Heisenberg construct the physical basis of this kinematics is 
contrary to the uncertainty principle, and therefore 
empirically meaningless! 

Irrespective of the issues over weak measurement 
experiments of the intuitive Heisenberg relation, the 
precision uncertainty formulation due to Kennard has been 
experimentally verified [10,11]. As is well known, the 
Kennard relation refers to an ensemble of measurements with 
“uncertainty” being standard deviations from mean values. 
Consequently, this quantum mechanical formulation of the 
uncertainty principle can be interpreted to prohibit an 
individual particle path, as par Bohr-Heisenberg. Or, as with 
Bohm-de Broglie, the same relation can be interpreted to 
refer to statistical ensembles, and make no statement about 
individual paths. The choice becomes a matter of 
philosophical orientation. 

With the Heisenberg relation, referred to as “error-
disturbance” or “measurement-disturbance”, interpretation is 
somewhat more complex. Heisenberg’s celebrated thought 
experiment was motivated to demonstrate that a path 
trajectory is operationally non-measurable, and therefore a 
concept without place in a physical theory. This fundamental 
principle can be invoked with whatever error-disturbance 
relation is experimentally verified. As will be discussed 
however, this principle will not be upheld in this work. 

Non-simultaneous measurability of position and 
momentum is a different question and, within the context of 
this proposal, is explained geometrically. To the extent that 
the classical “state” is characterized by a point in phase space, 
simultaneous measurement of position and momentum is 
possible since both variables are underpinned by a common 
Euclidean space. Correspondingly, the quantum state is 
characterized by the wave function which is a function of 
either position or momentum but not both. As has been 
shown, the wave function in position representation is 
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embedded in a Euclidean subspace, in which case position 
measurability is definable but not simultaneously with 
momentum. While the geometry of the wave function in 
momentum space has not been considered it is expected to 
mirror that of position. Non-simultaneous measurability is 
more directly manifest in the position-momentum 
commutation relation, which prohibits simultaneously 
representing both variables as metric-type. 

Newtonian assumptions will continue to be made in the 
following treatment. For periodic motion of period τ, the 
probability density for position is given by 

��)� = 2/�,%�)��                               (5) 

This refers to a particle with speed v(q), spending a time dt, 
in a small region of space dq, near a point q (a description 
invalid in orthodox QM). For a simple one dimension model 
(may be more general) 

- ./((0 =  -  1/%�)� .)&�(�&�(0� =  -  2� ��)� .)&�(�&�(0�          (6) 

While the probability density function is unknown, by 
definition P(q) gives the probability of the particle being at 
position q. However, this must also be the probability of the 
particle being at point x; as they are the same physical point. 
Hence P(q) must have a direct relation with │Ψ(x)│2 which 
also ensures that the probability in q-space is a real number. 
Accordingly 

��)� = 3�|5���|�� = 3��67������. ) = 8���         (7) 

A further extension is necessary, introducing an entangled 
particle pair, giving, 

��(9 (:�
2 =  - ��), )��.)&�(; �&�(: �                      (8) 

where q2 refers to the position of the entangled other particle. 
Obviously, there is also a mirror relation for the entangled 
partner giving a system of coupled equations. While the 
functional relations of (7) are not known, for the purposes of 
this analysis it suffices that such functions exist. Integrating 
gives, 

��(9 (:�
2 =  <�), )��]&�(:�&�(� >ℎ@A@ <�), )�� =  - ��), )��.)  (9) 

After appropriate substitutions the relation becomes 

<�)�/�, )�� = ��(9 (:�
2 + <�)�/B�, )��                 (10) 

While the mathematical form of this relation is complex, 
and is further complicated by obtaining the inverse function 
of F(q, q2 ), its underlying relational structure is quite simple. 
Namely; 

)�/� = 3��/ − /B�, )�/B�, )��                    (11) 

Assuming the existence of the function ) = 8��� and its 
inverse, it is possible to obtain the complementary expression 
for the particle trajectory in Euclidean space. For projective 
space, particle position at any given time is a function of a 

time interval, initial conditions and the position of the 
entangled other particle. Since the RHS of relation (11) 
involves the position of the entangled partner it may suggest 
that the non-locality feature remains. But this is not the case. 
For this periodic model the feature being expressed is 
synchronicity not non-locality. 

This can be seen by considering the following: suppose the 
idealized situation where at time t1 the particle pair 
instantaneously separate such that entanglement is broken. 
After separation the probability density function becomes a 
product function such that the probability of either particle 
being at any given position is independent of the other. 
Generic functional relations for the time sequence t ≥ t1 > t0 

are given by 

)�/� = 3C�/ − /��, )�/��D 3EA / ≥  /�             (12) 

)�/�� = 8C�/� −  /B�, )�/B�, )�D 3EA /� >  /B          (13) 

During the interacting period the particle is indeed 
dependent of the position of its partner but this is no longer 
the case in the non-interacting period. This implies the 
entanglement of the particles is not holistic but merely 
synchronized. However, since the initial conditions of the 
separated system are the final conditions of the entangled 
particles, the entangled state will still influence the particle 
position after separation. But this is solely an initial-
conditions mechanism not requiring non-local influences. 

Contextual representation of variables remains. This is 
because the algebraic representation of any variable has to 
been chosen in conjunction with all other variables and the 
commutation relations between them. Interestingly, if it can 
be reasoned that time has a non-metric structure then it too 
becomes open to non-metric algebraic representation. A 
possibility is to represent q-points by quaternions. This 
would then define the relation ) = 8��� [34]. However, the 
Edmonds relations apply for position in spacetime; 
corresponding relations will need to be determined for the 
geometry being proposed. Nevertheless, since spin would be 
incorporated with particle position the initial- conditions 
mechanism of relations (12) and (13) would also apply to the 
spin state. 

4. Bell Inequalities 

While there is a depth of analysis for experimental 
configurations where there is violation, cases where Bell 
inequalities are in agreement with QM have received little 
attention. Bell’s last work on inequalities was with free 
particle position-momentum variables, a configuration most 
like the original EPR thought experiment [25]. 

Space and time variables inequalities also exist for 
position-position measurements at different times, and 
position-momentum measurement for particles in a potential; 
violation is found with both configurations. But no violation 
is found for position-momentum inequalities for free 
particles [25, 26, 27, 28]. This pattern of violation can be 
explained by the assumption of metric variable-type: where 
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this assumption is valid, namely free particles, there is no 
violation, where the assumption is not valid, namely bound 
and time different measurements, there is violation. 

Most experimental and theoretical attention is devoted to 
spin states. Proof of the Abner Shimony CHSH-Bell 
inequality will be considered [29]. Conditional probabilities 
are defined as follows: p1 (s│a,b,t) refers to the probability 
that the outcome of the measurement performed on particle 1 
is s, measurements performed on 1 and 2 respectively are a 
and b, with the result of the experiment on 2 is t. For particle 
2 the corresponding probability is then p2 (t│a,b,s), while 
p(s,t│a,b) is the probability that the results of the joint 
measurements a and b are s and t respectively. Two 
independence assumptions are introduced. Parameter 
independence gives p1 (s│a,b,t) = p1 (s│a,t) i.e. outcome for 
1 is independent of b, with a corresponding probability 
relation for particle 2. Outcome independence gives p1 (s│a,t) 
= p1 (s│a) i.e. outcome for 1 is independent of t, with a 
corresponding condition for particle 2. Locality is understood 
as a conjunction of the two independence conditions. 
Combined, these conditions are equivalent to the 
factorization condition p(s,t│a,b) = p1 (s│a,) p2 (t│b). By 
simultaneously assigning number values to all outcomes 
although not actually simultaneously measured, i.e. the 
assumption of metric variable-type, expectation values are 
calculated and the inequality follows. 

Proof of the same inequality is also available which follow 
Bell by introducing a hidden variables parameter; which 
some suggest is superfluous. This parameter, usually denoted 
by λ, is said to represent the “microstates”, or “hidden 
variables” or “additional data set” which completely specifies 
the system. Other terminology is also used, while Bell 
referred to “causes”. Conceptually, the idea has its origins in 
the EPR paradox. 

A most general formulation of this type introduces two 
control parameters, H�, H�, and two real-valued measurement 
outcomes A1, A2 [9]. Control parameters randomly determine 
which of possible measurements are actually performed. A 
general probability distribution �I;,IJ�K�, K��  defines the 
system. Again, a factorization condition is introduced: 

�I;,IJ  �K�, K� L M� =  �I;�K� L M��IJ�K� L M�             (14) 

Two assumptions are identified: parameter independence 
and local causality. Parameter independence assumes that 
settings at one location do not influence settings and 
outcomes at the other locations. Locality causality is 
somewhat more subtle. Firstly, it is said to not imply the 
independence condition: 

�I;,IJ  �K�, K�� =  �I;�K���IJ�K��                  (15) 

Indeed, “it is perfectly natural to expect that previous 
interaction between the systems 1 and 2 could produce 
dependence”. Rather, “locality requires that some data set λ – 
made available to both systems, say, by a common source – 
must fully account for the dependence between A1 and A2 ” 
[9]. Introducing the product A1 * A2, with outcomes 

simultaneously taking possible values ±1, expectation value 
are calculated and the CHSH inequality follows. Again the 
assumption of metric variable-type is implicitly made. 

Concerning the inoperative independence condition (15), it 
seems to contradict Outcome independence of the Shimony 
treatment. More significantly, however, the reason given for 
its invalidity, that of previous interaction, concurs with the 
initial-conditions mechanism of BM. 

Before exploring the role of the hidden variables 
parameter it is important to be very clear on the nature of 
Bell’s theory. The theory is not data analysis; where 
experimental outcomes are direct input to statistical 
techniques used to extract underlying relations between 
variables. Nor is the theory an operational analysis of 
experiment leading to a conjuring of counterfactual 
paradoxes. Rather, the theory is a mathematical modeling of 
experiment, in which sense it is a “physical theory”, subject 
to issues of variable representation. Experiment outcome are 
assumed to be metric variable-type i.e. taking number-values, 
thereby forming a field, and having, as a mathematical 
property, measurability, irrespective of whether they are 
actually measured. 

On first impression it may appear that outcomes, being 
eigenvalues, meet both conditions. However, this is not the 
case. Eigenvalues are extracted from variables which in 
general are non-metric, most notably spin. The mathematical 
apparatus of QM obtains for non-metric variables both the 
number-value of their eigenvalues, as well as define the 
appropriate conditions for measurability. Dirac refers to 
obtaining c-values from q-values. It is not simply a 
mathematical procedure of converting a non-metric variable, 
representing a physical quantity, to metric, yet somehow 
representing the same quantity. 

Questions on the universality of the hidden variables 
parameter, and attributing factorization solely to locality, are 
peripheral to this discussion. The assumption of metric 
variable-type is made in calculating expectation values. 
Further, it will be accepted that inclusion of the parameter in 
conditional probability definitions enables defining 
constraints on the nature of possible hidden variables theories. 

Violation can then also be interpreted to disallow hidden 
variables theories which algebraically represent physical 
quantities by metric variable-type. The “hidden variables 
theory” being proposed here is not this type of theory. 

A “dissent” analysis is worth considering [30]. 
Mathematically, the analysis follows Bell’s EPR free 
particles work utilizing the non-negativity of Wigner 
functions [25]. Concerning the all-important underlying 
assumptions, the authors argue that while “locality is not an 
issue”, two explicit assumptions are made: “(1) independence 
of A on the settings of B (and vice versa) and (2) each 
dynamical variable has values for the observables, whether 
or not they are simultaneous measured.” 

Firstly, the work re-affirms Bell’s expectation that 
correlations of observables for the EPR state “would not 
allow for BIQV” i.e. inequality violation. More generally, 
especially in reference to CHSH, the authors assert that “it is 
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really the second assumption which leads to Bell’s inequality 
– whose violation, therefore, implies the theory disallows it.” 

The main conclusion is that Bell’s inequality “hinges on 
the assumption of having definite values for all the 
dynamical variables – thus endowing them with physical 
reality – and not the issue of locality.” Implicit in the first 
premise is again the assumption of metric variable-type. The 
inference of the second premise, that “physical reality” is 
endowed to a dynamical variable by associating to it a 
definite number-value, is false. Physical characteristics of a 
particle i.e. position, momentum, spin, can be algebraically 
represented by non-metric variables without denying their 
inherent reality. 

5. Quantum Lorentz Transformations 

Special Relativity is based on a fundamental postulate 
referred to as the Principle of Relativity, which imposes 
departure from basic physical characteristics of Newtonian 
mechanics. Geometrically, however, space and time remain 
described by metrical i.e. Euclidean geometry. Further, 
relativity remains “Newtonian” in the sense that it maintains 
the reality of a particle path and description of phenomena is 
space and time. Spatial and temporal dimensions are merged 
into the Minkowski notion of spacetime. Recently, however, 
this concept has come under question [31]. Quantum 
mechanics, of course, differs radically from classical theory; 
at least according to its orthodox interpretation. Although 
reasons are available to suggest otherwise, the “tension” with 
relativity is deepened with the commonly accepted reason for 
the violation of Bell inequalities [29]. Non-compatibility of 
the two grand theories makes finding conceptual consistency 
difficult. Consistency, however, is desirable if it is reasonably 
assumed that nature is defined from a common set of 
underlying physical principles. 

Within the context of this proposal there is foundational 
common ground between the theories. Quantum theory is 
essentially “Newtonian” in maintaining realism, determinism 
and locality; as well as a physically real space and time 
motion. Departure from classical theory is in the details of 
the geometry. As will be discussed, measurability, however, 
does present a fundamental difference from classical thinking. 
A neo-classical quantum mechanics has the simple 
interesting consequence that “quantum” Lorentz 
transformations become physically meaningful. In the micro-
domain being proposed, Lorentz transformations would be 
subject to the “relativity principle”, a requirement of special 
relativity, and also be subject to division ring algebra for 
position and velocity variables, as required by quantum 
mechanics. 

Mathematically, of course, there is no impediment to 
obtaining modified transformations subject to a different 
algebra. The issue is one of physical meaning. Within the 
framework of current orthodoxy it is difficult to envisage 
what physical reality could be attributed to such 
mathematical constructions. 

Standard derivations of the LT are founded on a further 

postulate, namely, constancy of the speed of light. However, 
the procedure utilized here follows those derivations based 
on the homogeneity and isotropy of space and time together 
with the relativity principle [31, 32, 33]. Group properties of 
the LT are also used as a mathematical condition. These 
derivations give rise to a free parameter, with dimensionality 
of speed. Identification with the speed of light, and 
implications for the veracity of spacetime concept, will not 
be pursued here [31, 32]. 

The usual relativistic assumptions apply in the following: 
two inertial reference frames O and O`, moving at relative 
speed % along the )O axis, with coordinate transformations 

)P# = )P , )Q# = )Q , )O# =  3O�)O , /�, /# =  3(�)O , /�    (16) 

Since the space-geometry is now projective, position 
coordinates obey a non-commutative algebra w.r.t the relative 
speed. Homogeneity of space and time require the 
transformation functions to be linear. Thus 

)O# = R&ST&SR
� + U/                          (17) 

/# = V&ST&SV
� + W/                          (18) 

As usual, the coefficients A, B, C, D are functions of the 
relative speed but with the modification of non-commutation 
included in the expressions. These coefficients are then 
obtained by considering several special-case conditions. 
Firstly, the origin of O` has coordinate )O# = 0 and moves 
with velocity %  relative to O, so that )O = %/ ; where the 
relative velocity is defined as the rate of change of position. 
Applying some basic algebra gives the first relation between 
coefficients as U =  −%K. 

Alternatively, the origin of O has coordinate q = 0 and 
moves with a negative relative velocity relative to O`. 
Applying this condition results in D = A. Introducing the 
more usual notation A = γ, and the new variable E = CA-1 the 
relations become 

)O# = Y�&S9Z(�
� + �&S9Z(�Y

�                       (19) 

/# = Y�[&ST(�
� + �)O\ + /�]/2                  (20) 

The next special case condition is to consider two 
subsequent transformations where, because of the group 
property of LT, the combined transformation is also a Lorentz 
transformation. Since, for a general LT the coefficients of q 
and t are equal, the condition follows that 

\�%� =  \�%�                               (21) 

In which case \ = Z
^ where a is a constant to be identified. 

The transformations now become 

)O# = Y�&S9Z(�
� + �&S9Z(�Y

�                       (22) 

/# = Y_à&ST(b
� + �)O Z

^ + /�]/2                (23) 
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The next special-case condition, to determine the γ 
function, is to make a transformation followed by the inverse. 
For the time coordinate this leads to 

/ =  ]9Z ]Z _1 + ZJ
^ b /                        (24) 

So that 

]9Z]Z = 1/�1 + ZJ
^ �                          (25) 

Because of space symmetry the two gamma functions 
must be equal, and identifying the constant, � =  − c�, gives 
the usual form. An interesting complication emerges in the 
final special-case condition for the position coordinate giving 
the relation 

)O = &S� + Y&SY
� +  ]%)O])O/2�                  (26) 

Clearly, the coefficients on the RHS appear problematic. 
However, introducing the Feynman bracket (although non-
relativistic) 

d), 3�%�] = �ħ
f  gh

gZ                            (27) 

Re-arranging the ordering of the position and velocity 
terms gives the required result of unity for the RHS 
coefficient. The final transformations are 

)O# = Y�&S9Z(�
� + �&S9Z(�Y

�                              (28) 

/# = Y_9ìJ &ST(b
� +  �−)O Z

jJ + /�]/2                   (29) 

Under appropriate geometrical conditions the standard 
classical equations are obtained. 

Two signification extensions follow: the addition of 
velocities and “relativistic” mass relations. Following 
standard algebraic procedures, while assuming all velocities 
variables commute, gives relations which are unchanged in 
their mathematical form. The critical difference, however, is 
that momentum and velocity variables are no longer metric-
type. 

Invariance of the space-time and energy-momentum 4-
vectors is somewhat more complicated. Since the latter 
relation involves only velocity dependent terms, all of which 
commute, the energy-momentum 4-vector remains invariant. 
This is expected since the rest mass is the same in all 
reference frames. The space-time 4-vector is, however, found 
to not be invariant. Mathematically this is not an unexpected 
result. Invariance of the space-time vector in standard 
relativity is a consequence of the Minkowski spacetime 
metric; which does not apply to the Projective-Euclidean 
dual geometry for space and time being proposed. 

As a general condition space and time in the proposed new 
structure are treated differently. This raises potential 
contradiction with experimentally verified fundamental 
configurations where space and time are treated equivalently. 
As has been shown, the wave function in position 
representation is embedded in a Euclidean subspace. Position 

(as defined in the wave function) is then Euclidean, as is time. 
Hence in this special case configuration the treatment of 
space and time are geometrically equivalent as Euclidean. 
The asymmetry of space and time manifests in the path 
description, i.e. position as a function of time, but this aspect 
is not described by the wave function for which it is a 
“hidden variable”. 

Space and time equivalence deepens with relativity. Again, 
there is no contradiction for quantum phenomena described 
by the wave function (which at present is all quantum 
phenomena). For the wave function the relative inertial 
frames are “Euclidean”. Relativistic invariance conditions for 
the Dirac equation remain unchanged. 

While the implications of this proposal for Quantum Field 
Theory would require deeper consideration, it cannot be 
assumed that space and time asymmetry will cause 
contradiction. Again, it becomes a question of defining a 
special case geometrical configuration which underpins QFT. 

6. Measurement 

The central concept of this discussion is to understand 
quantum mechanics within a non-metric structure of space. 
Conceptually, this minimizes the departure from classical 
mechanics to mainly alterations in the underlying geometry. 
While there is no longer a need to introduce a complex 
metaphysics, there is nevertheless a fundamental shift from 
classical understanding. A non-metric space introduces 
concepts whose measurability cannot be geometrically 
defined directly. Consequently, accepting such a structure 
requires accepting that measurement is a secondary aspect of 
“nature”. Only under appropriate conditions is measurement 
definable. This presents an immediate contradiction with the 
principle that immeasurable concepts have no place in a 
physical theory. 

However, this “principle” is itself a philosophical thought 
tool only. Indeed, in the axiomatic formulation of quantum 
mechanics it was disused in the first axiom. The then non-
measurable wave function was nevertheless postulated to 
describe all that was measurable of a quantum state. 

Measurability is obviously a deep question in natural 
philosophy and its rejection as fundamental is to be 
carefully considered. However, it is important to emphasize 
the conservatism of this re-definition. Measurability 
remains defined within space and time. Further, 
measurability is passive; observation does not create or 
bring into being “an element of reality”. The latter contrasts 
with the orthodox interpretation where measurement is an 
intrusive procedure actualizing an element of reality, for 
example position, from a “super-reality” of potentialities. 
Departure from classical definition is restricted to 
Euclidean metric properties being founded on more 
fundamental invariant generic conditions. 

There are nevertheless parallels with aspects of orthodox 
concepts. While the need to introduce a “measurement 
apparatus” is circumvented, there is no return to simple 
classical measurability. Measurability of the wave function is 
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conditional on imposing a “Euclidean” overlay on a 
projective subspace, as defined by quantum isometric 
symmetry. Physical quantities which then become defined as 
measurable can be measured classically. Orthodox QM 
interprets measurement as arising from the interaction of the 
quantum micro-domain with the classical macro-domain. 
Measurability here emerges from the interface of projective 
space with a “classical” Euclidean subspace. An interesting 
possibility arises as to whether the probabilistic feature of 
QM results from a loss of path measurability (not a loss of 
realism) in transition between the two geometrical spaces. 

Nevertheless, reservations are understandable. However, 
as has been previously stated, unless an explanation is found 
to show otherwise, violation of Bell inequalities requires 
some fundamental aspects of classical understanding to be 
revised. Currently the considered options are: rejection of 
“locality” (the sole option for some) or rejection of “realism” 
(unpalatable to many if not most). This proposal would 
appear the least radical alternative. In what may be more 
significant however, it enables definition of a core set of non-
contradictory physical characteristics common to both 
quantum mechanics and relativity. 

While Bell’s theory has attracted enormous attention it is 
nevertheless a secondary question only. The primary question 
remains whether quantum mechanics can be more 
completely described by a deeper structure. Bell initially 
showed that such a structure was possible, contrary to 
impossibility proofs in vogue at the time. The motivation for 
asking such a question was (and still is) a legitimate disquiet 
by some on the radical departure from “common sense” 
notions of reality that quantum mechanics seemingly implies. 
Bell subsequently showed that even with a more complete 
description some “unsavory” features persisted. This 
proposal offers two potentialities: a more conservative 
(locality and realism are preserved) interpretation on the 
violation of Bell inequalities, and a possible “neo-classical 
hidden variables” structure. However, all options are open to 
consideration. 

7. Conclusion 

A key foundational concept in the early development of 
quantum mechanics was that then then “new mechanics”, 
was to be formulated without reference to a particle path. 
Since orthodox quantum mechanics has been found to be a 
matter of philosophical choice rather than necessity the 
question arises whether such a radical departure from 
classical mechanics is required. If the idea of a particle path 
is resumed then some kind of space and time description 
would follow. This proposal offers a possibility. 

New ideas are seldom correct. And, it would be foolish to 
not be mindful of this balance of probabilities. However, 
exploring new hypothesis remains a necessity; even for 
physical theories of such empirical grandeur as quantum 
mechanics. Especially, perhaps with quantum mechanics, 
where after almost a century there is still unease as to what it 
physically means. 
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