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Abstract: It is well known that the quasi-exact solvable eigenvalues of the Schrödinger equation with potential V(x)=-

(ξcosh2x-iM)
2
 is real for PT-invariant non-Hermitian potential in case the parameter M is odd integer and complex conjugate 

pairs when M is even integer. In this work the Asymptotic Iteration Method (AIM) were used to solve this problem for M odd 

and even integer, and for any non-integer M values. 
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1. Introduction 

Recently, there has been a growing interest in the study of 

non-Hermitian Hamiltonians which appearing in different 

branches of physics [1, 2, and 3]. The main reason for this is 

that the energy eigenvalues for a number of complex 

potentials turned out to be real [4].  

Several non-Hermitian PT symmetric potentials with real 

or complex eigenenergies have been analyzed using a variety 

techniques, such as perturbation theory[5], semi classical 

estimations[6], algebraic methods[7], analytical arguments[8], 

numerical experiments[9], potential algebras [10, 11], 

supersymmetrization [12] or some generalizations thereof, 

and quasi-solvability[13]. 

In this paper we applied the Asymptotic Iteration Method 

(AIM) to study the complex potential which had been 

studded by quasi-exactly solvable (QES) technique [14]. 

They considered the system described by the non-Hermitian 

PT-invariant potential 

2)2cosh()( MixxV −= ξ                 (1) 

where the parameter ζ  is real and parameter M has only 

integer values. They clarify that when the parameter M is odd 

integer the eigenvalues of the Schrödinger equation is real, 

and it is complex conjugate pairs when M is even integer. In 

the literature the non quasi exact solvable (QES) spectrums 

for this problem was not revealed yet.  

In our work we solved the QES and non QES eigenvalue 

problem for the complex non-hermitian PT-invariant 

potential equation (1) by using the Asymptotic Iteration 

Method (AIM). The results we found for QES case by the 

AIM technique are in full agreements with the analytical 

results obtained by Avinash Khare, et. al. [14]. Moreover the 

Asymptotic Iteration Method (AIM) technique showed very 

interesting results for the non- quasi exact solvable (QES) 

case which has not been solved before [15-19]. 

2. Method and Calculations 

The Asymptotic Iteration Method (AIM) was used to solve 

the one dimensional Schrödinger equation in the field of PT 

invariant complex potential V(x) equation (1),  
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where H is a non Hermitian PT invariant Hamiltonian and 

( 12 == mh ) is in atomic units. The one dimensional wave 

function )(xψ of the form 
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was used, 0)( →xψ as ∞→x  on the real axis.  

The AIM was applied to this problem without any 

complicated transformations, and the Schrödinger equation 

obtained for this potential is of the form, 
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and could be written as follows 

φφλφ )()( 0

/
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// xsx +=               (4) 

Where )cosh()sinh(4)( xxiaxo −=λ  and  

( )EMiaMxiaMaiaxiaxso +−+−+−−= 222 2)(cosh42)(cosh4)(
2  

According to the Asymptotic Iteration Method (AIM), we 

differentiate equation (4) with respect to x, and we get this 

form, 
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Where, 
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Thus, for (n+1)th and thn )2( +  derivatives, n=1,2,…….., 

we have: 
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where 10
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For some suitable large iterations j, one can numerically 

determine the eigenvalues from the roots of the equation 

)()()()( 11 xxsxsx jjjjj λλδ −− −=    (5) 

3. Results and Conclusion 

To test our method, the Asymptotic Iteration Method (AIM) 

was applied to this problem for M even integer and our 

results are listed in Table (1) and Table (2). We have obtained 

exactly the same complex conjugate pairs for the energy 

eigenvalues that obtained by quasi exactly solvable method 

(QES). Our results are in full agreements with the results 

obtained in the literatures. The Asymptotic Iteration Method 

(AIM) is also applied to the problem when M is odd integers 

and the energy eigenvalues were calculated for ζ
2
=0.01 and 

the results obtained are listed in Table (3) for M=5 and in 

Table (4) for M=7 and in Table (5) for M=9. From these 

tables one can easily recognized that the Asymptotic Iteration 

Method (AIM) works smoothly and the results obtained are 

in good agreements with the quasi exact solvable (QES) 

method [14]. It is important to mention that the AIM works 

for any M odd or even integer, while the QES method face 

very complicated mathematical formulas for higher M values. 

4. A non Quasi Exact Solvable (QES) by 

Asymptotic Iteration Method (AIM) 

We extend our work to treat the non- quasi exact solvable 

(QES) eigenvalues for the non Hemitian PT- invariant 

potential Eq. (1) by considering non-integer M values, which 

is not available in the quasi exactly solvable method due to 

the very complicated formulas which appear when M is 

becoming non-integer. The results obtained in this case were 

listed in Table (6). The Asymptotic Iteration Method (AIM) 

showed that the eigenvalues has imaginary parts, and this 

imaginary part is very small and approaches zero as the non-

integer M values are getting bigger. 
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Figure (1). The relation between the real and imaginary part of the 

eigenvalues versus the non-integer M values. 

Figure (1) shows the relation between the real and 

imaginary part of the eigenvalues versus the non-integer M 

values. It is important to note that the imaginary parts of the 

eigenvalues are small enough to be neglected. We conclude 

that the eigenvalues for non-integer M values were becoming 

real, just as in the case when M is an odd integer. These 

results are considered to be valuable because they reveal all 

aspects of this problem which are unable to solve by exact 

technique. 

Table (1). Comparison of the eigenvalues obtained by QES with AIM for M 

even integer 

Energy levels for M=2, 0102 .=ζ  

 QES AIM 

0
±E  i02000000000.099000000.2 ±  i02000000000.099000000.2 ±  

Table (2). Comparison of the eigenvalues obtained by QES with AIM for M 

even integer  

Energy levels for M=4, 010
2

.=ζ  

 QES AIM 
0
±E  i0007523395.0004990401.7 ±  i0007523395.0004990401.7 ±  

1
±E  i4007523395.097500960.14 ±  i4007523395.097500960.14 ±  

Table (3). Comparison of the eigenvalues obtained by QES with AIM for M 

odd integers  

Energy levels for M=5, 0102 .=ζ  

 QES AIM 

Eo 9.00331480 9.003314792 

E1 9.00334818 9.003348181 

E2 20.97665182 20.97665182 

E3 21.10018724 21.10018724 

E4 24.86649797 24.86649797 
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Table (4). Comparison of the eigenvalues obtained by QES with AIM for M 

odd integers 

Energy levels for M=7, 0102 .=ζ  

 QES AIM 

Eo 13.00199970 13.00199970 
E1 13.00199971 13.00199971 

E2 33.01123852 33.01123852 

E3 33.01140573 33.01140573 
E4 44.95659457 44.95659457 

E5 45.21134926 45.21134926 

E6 48.73541251 48.73541251 

Table (5). Comparison of the eigenvalues obtained by QES with AIM for M 

odd integers  

Energy levels for M=9, 010
2

.=ζ  

 QES AIM 

Eo 17.00096869 17.00142845 

E1 17.00153729 17.00142847 
E2 45.00607980 45.00656978 

E3 45.00751350 45.00656989 

E4 65.02149678 65.02171309 
E5 65.02298207 65.02221570 

E6 76.92940084 76.92978572 

E7 77.37417833 77.37448084 
E8 80.5458427 80.54580802 

Table (6). The real and imaginary eigenvalues for non-integer M values 

computed by (AIM) 

Imaginary Part of Eo Real part of  Eo M 

0.197849 0.486299  0.5 

0.163822 1.865428  1.5 
0.48799 3.963098  2.5 

0.002973 6.003646  3.5 

0.000083 8.002855  4.5 
0.153127×10-5 10.002855 5.5 

0.207869×10-7 12.002221  6.5 

0.223279×10-9 14.001818  7.5 
0.197518×10-11 16.001538  8.5 

0.170342×10-10 18.001333  9.5 

0.836227×10-8 20.001176  10.5 
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