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Abstract: The real physical conditions of appearance the negative dielectric permittivity (DP) within frequency T−L 

splitting of polar vibrations in crystals are discussed in this paper. We have derived the simple quantitative criterion for the 

existence of negative DP band using single oscillation model. Our criterion is presented in three equivalent forms as 

inequalities between the fundamental crystal constants and spectroscopic parameters of polar vibration. Applicability of our 

theoretical results for multimode case is demonstrated using 7 known polar vibrations in the model crystal of boron nitride. 
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1. Introduction 

The fundamental features of electromagnetic waves 

propagation in condensed media today are the subject of 

heightened researcher’s attention. Most efforts are 

concentrated on the anomalous dispersion areas in materials. 

There are the negative values of dielectric and/or magnetic 

permittivity may be accumulated only in the anomalous 

dispersion regions. Deepen interest to the negative values of 

the material parameters is explained by the part of such 

extraordinary electrodynamics of "left-sided" media [1- 3] 

now named as metamaterials [4]. In addition the 

phenomenal perspectives are promised by the metamaterials 

synthesis: from fundamentals of transformation optics [5-7] 

to design various functional devices, including invisible 

cloaks [8,9], perfect lens [10], etc.  

It should be noted the occurrence of negative dielectric 

values due to anomalous dispersion wasn’t the new 

phenomenon and it is recorded by many experts in the field 

of vibrational spectroscopy of crystals. 

However, the analysis of the physical conditions leading 

to the presence or absence of negative dielectric permittivity 

(DP) doesn’t made jet. In particular the wave attenuation 

effects inside T-L frequency splitting of polar oscillation 

previously have almost always been neglected. The wave 

dumping in the photon-phonon interaction theory [2] as well 

as in the metamaterials [5, 7] optics is considered as a 

harmful but the secondary factor. It is assumed that the 

polariton damping does not cause any physical 

consequences and attenuation influence may be eliminated 

by a simple gain of the light wave. Such approach is quite 

reasonable in the transparency of the crystal but it is 

inapplicable in the anomalous dispersion region where the 

imaginary part of the DP ε″ not only quit being negligible 

and it may greatly exceed the real permittivity part ε′. Actual 

negative DP limits as function of phonon dumping are 

obtained in our work. 

2. Problem Statement and Theoretical 

Base 

The start point of the quantitative theory of 

photon-phonon interaction may be taken using the 

well-known Lyddane-Sachs-Teller (LST) [11] ratio: 
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where 
Lω  and 

Tω  are accordingly the longitudinal and 

transverse vibration frequencies in the single fundamental 

mode case; 
0ε  and ∞ε  are dielectric constants in the limit 

points on the dispersion dependence of DP ( )ε ω , 

respectively, at 0ω →  and ω → ∞ . 

Formation of modern conceptions of alliance between 

crystal spectroscopic and material parameters is based on 
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approximation of the phonon damping absence Γi = 0, where 

index i denotes the count of separate mode.  

Using no dumping restriction the main values of DP 

tensor components with polarization along the k
th

 axis can be 

expressed in general form through the frequencies of 

longitudinal L

ik
ω  and transverse T

ikω  vibrations as 

Kurosawa [12] equation: 
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which describes the DP frequency dispersion in the damping 

absence. 

 

Fig 1. The real part of the dielectric function of frequency around the polar 

oscillation resonance at the absence of damping (dotted line) and for the 

normalized attenuation  constant Γ/ωT = 0.2 (solid line). 

It should be noted the Eq. (2) guarantees the existence of a 

negative DP for arbitrary polar lattice vibrations in the 

frequency range of T L

ik ikω ω ω< < , i.e., in T-L splitting also 

known as residual ray band [13]. 

The last conclusion remains valid in practice only for 

oscillations with large oscillator strength and, accordingly, 

with a large T-L-splitting of the phonon frequencies. 

Otherwise, if phonons damping is increased (it is observed 

with increasing of temperature) then the negative DP region 

is considerably narrowed and it may be fully disappeared. 

Generally interaction of light with Nk polar lattice 

vibrations of crystal is described within the semi-classical 

approach [14]. As result the dispersion dependence of DP 

tensor ( )k
ε ω  is determined by the common expression: 
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where ωjk and Sjk are respectively transverse phonon 

frequency and the oscillator strength of j-th lattice vibration 

with polarization along the k-th axis and the damping 

constant Γj; kε ∞ is the principal value of the dielectric tensor 

at optical frequencies. 

One can to determine the oscillator strength directly by 

comparing Eq. (3) and (2) in Γi=0 approximations as: 
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where the index k to denote polarization is omitted to 

simplify the notation. 

2.1. Single Mode Model and Complex Refractive Index 

The DP real parts for a crystal with single polar oscillation 

(parameters ∞ε = 2.3 and S = 2.6 are nearly closed to the 

model crystal KBr) as functions of frequency are shown on 

Fig. 1. The case of normalized attenuation of Γ/ωT = = 0.2 is 

plotted by solid line. The dotted line shows the graph of the 

dielectric function (3) in the damping absence (Γ = 0). It is a 

damping of optical phonon eliminates the infinity interrupt 

of the dielectric function as shown in Fig. 1. In fact the 

anomalous dispersion of waves in a crystal should be 

observed only in case of Γ > 0 where dε'(ω)/dω<0. 

Moreover the negative DP region with ε'min<0 may exist only 

in case where Γ does not exceed a certain critical value as we 

will obtain below. 

The expression (3) for ε (ω) takes a most simple form 

within the limits of a single oscillator model. So the complex 

refractive index nɶ  combined real part n and extinction 

coefficient κ as imaginary part in form n n iκ= −ɶ  (see for 

example [13]) and it may be written as: 
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The single mode equation (5) is the basis for the 

description of the electromagnetic waves reflection from the 

crystal in the phonon resonance area and it allows us to fully 

restore the dielectric function form using experimental data. 

Such numerical technique is widespread and it is well 

known as dispersion analysis (DA) of reflection spectra. 

2.2. Dispersion Analysis of Reflection Spectra 

Measured values of the reflection coefficient R for normal 

incidence are expressed through a refractive index n and 

extinction coefficient κ as: 

2 2

2 2
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R

n

κ
κ
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.               (6) 

Equation (6) proper describes the reflection spectrum R(ω) 

including frequencies around the polar oscillation resonance. 

Indeed both parts of nɶ  are the functions of ω namely n = 

n(ω) and κ=κ(ω) if one take into account the equation (5). 

So dispersion analysis technique is the fitting of 

experimental reflection spectrum by function R(ω) (6) using 

numerical methods and best fitting results are the set of 

parameters S, ωT, and Γ.  

The universal DP form (3) should be used in eq. (5) for 

general DA procedure. Therefore obtained parameters Sjk, 

ωjk and Γj from spectroscopic measurements actually 

determines the form both function ( )′ε ω  and ( )′′ε ω  of the 
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crystal including all anomalous dispersion regions. We have 

used the data [15] of general DA procedure for testing our 

results on the 7 measured vibrations in three modifications 

of boron nitride (cubic, orthorhombic and hexagonal). 

Single mode model allow us to obtain criterion for the 

existence of negative DP in the simple analytic form and 

next analysis of the physical conditions of proper regions 

formation with ( ) 0′ε ω <  is the subject of this investigation. 

3. Criterion of the Negative DP 

Existence 

If the crystal has one vibration then common eq. (3) can 

be rewritten in the simplest form as: 

2
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T

S
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ωε ω ε
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∞= +
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,          (7) 

where S is the oscillator strength, ε ∞
is the dielectric 

constant at high frequencies, ωT is the fundamental own 

frequency of transverse vibrations, Γ is the damping 

constant. Here the oscillator strength is defined as 

0

∞= −S ε ε  (see Fig.1), and 
0 0

( ) ωε ε ω
→

= is the value of 

the dielectric function in the low-frequency region where 

ω→0. 

3.1. Minimum DP Analysis 

Let the ( ) ( ) ( )iε ω ε ω ε ω′ ′′= +  then the dielectric 

function (7) may be written in the following form: 
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         (8) 

Negative values, according to (8), takes only the real part 

of the DP ( )′ε ω , but only in a limited range of values Γ (Fig. 

2a). The imaginary part ( )′′ε ω  is responsible for the 

absorption and it is always positive. Function ( )′ε ω  

reaches its extremes at frequencies where the condition: 

0
d

d

ε
ω

′
= ,                    (9) 

which by direct substitution of first equation (8) into (9) 

leads to the equation: 

2 2 2 2 2( )
T T

ω ω ω− = Γ .               (10) 

Minimum frequency position ε′(ω) is determined by one 

of the equation (10) roots namely this root should be 

belonged to the frequency interval ω > ωT. Therefore the 

minimum (ω min) point on frequency scale is located at: 

2

min T T
ω ω ω= + Γ ,               (11) 

Substituting ω min into (8), we obtain the minimum value 

of the dielectric function ε′(ω). The minimum frequency 

position and the minimum value ε′(ω) according to (11) are 

noticeably depended on the damping parameter Γ (see also 

Fig. 1). Indeed, increment of value Γ leads to grows of the 

function ε′(ωmin) value with simultaneously narrowing of the 

negative DP bandwidth. It is shown on Fig.2. If ε′(ωmin) = 0 

for certain "critical" damping (curve 2 on Fig.2) then 

negative DP band is fully disappeared. So for the existence 

of negative permittivity region where ε′(ω) < 0 it is 

necessary to: 

2

2
( ) 0

2

T
min

T

Sωε ω ε
ω

∞′ = − <
Γ − Γ

.          (12) 

It is resulted to the following inequality: 

2 2
2 0T T

Sω ω
ε ∞Γ + Γ − < .          (13) 

 

Fig 2. Dielectric function ε′(ω) (a) and infrared reflection spectra (b) with 

phonons attenuation close to the critical value defined by (17). The negative 

DP region disappears at 
crΓ = Γ  and it can exist only for 

crΓ < Γ  

Excluding the Г term from inequality (13) for interval Г > 

0 we obtain the condition that restricts the damping constant: 

0 1
T

εω
ε ∞

 
Γ < −  

 
.             (14) 

Consequently within the model of single oscillator crystal 

we have obtained the fairly simple quantitative criterion for 

the existence of frequency bands with negative DP. This 

criterion is based on the ratio of the phonon damping 

constant to the frequency ωT and it contains only material 

parameters of crystal such as 0ε  and ε ∞ . 
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As 
0

S ε ε ∞= −  the inequality (14) can be represented in 

an equivalent form for the oscillator strength S: 

2
T T

S ε
ω ω

∞  Γ Γ> + 
 

.          (15) 

This second form of our criteria for the oscillator strength 

S is expressed in terms of relative phonon attenuation Γ/ωT. 

Inequality (15) gives a lower limit for the oscillator strength 

of the polar vibrations when negative DP is created by this 

phonon. 

Finally, the substitution LST ratio (1) in the expression 

(14) leads to a further alternative form of our criterion: 

( )L T
ω ωΓ < −  or 1

L T
ω ω

Γ <
− .      (16) 

The inequality (16) is directly resulted the region of 

negative permittivity. It exists until the phonon attenuation 

constant does not exceed T-L splitting for this phonon. 

Thus, it is useful to define the critical damping Γcr value 

using the inequalities (14) and (16): 

0 1 1cr L

T T

∞

Γ
= − = −

ε ω
ω ε ω

           (17) 

as an upper limit of the phonon damping and it enclose the 

area of negative DP existence in the crystal. 

Minimum of dielectric function ε′(ω) is equal to zero for 

critical damping as one can see on Fig. 2a (curve 2). All 

material parameters except Γ in our calculation for Fig. 2 are 

corresponded to the crystal KBr with one polar vibration. 

Certain frequency band with negative DP values around 

the minimum frequency ωmin is formed in the case of Γ<Γcr 

and it is located within the T-L frequency splitting of this 

oscillation. In contrast function ε′(ω) is positive everywhere 

in the case of Γ>Γcr (curve 3 on Fig. 2a) including the 

residual ray band (T-L). 

Note the reflectance spectrum on Fig. 2b doesn’t show 

any characteristic changes just pointing to the presence or 

absence of the negative DP region. Thus it is necessary to 

apply full DA processing of the IR measurements data to 

restore the dielectric function ε′(ω) and our criterion may be 

used to significantly simplify this analysis of negative DP.  

Moreover if polar vibration is active in Raman spectrum 

than the presence or absence of negative DP band may be 

determined directly using our criterion. It's enough to 

first-hand define the fundamental frequencies of transverse 

ωT and longitudinal ωL vibrations from the appropriate 

Raman lines position in the spectrum and damping constant 

Γ is found as half-width of corresponding Raman line. At 

last the presence of negative DP band is determined by a 

simple test of inequality (16). 

3.2. Negative DP Bandwidth 

The frequency range of negative DP area really doesn’t 

match to the T-L splitting, unlike the idealized case of no 

damping, which describes the Kurosawa ratio (2). Negative 

DP area is shrinking relative to T-L splitting up to its 

complete disappearance by damping constant increasing, as 

shown in Fig. 1 (b). Therefore, we have studied behavior of 

the frequency band of negative DP as function of the 

damping constant parameter. 

Let introduce the notation of the frequencies: ω 
-
 is the 

frequency when DP starts to take negative values, and ω+
 is 

the frequency when DP out from negative region. If one 

consider the case of single oscillator model (N=1) for 

expression (3) and substitution of the resulting S value in the 

first equation of system (6), then it is obtain: 

( )
2 2 22

2 2 2 22
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ωω ω ω
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ω
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The frequencies ω-
 and ω+

 are found in terms of equality 

of the real DP part described by expression (18) to zero ε′(ω) 

= 0. After simple mathematical transformations and 

rejecting no physical variations we obtain: 
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Let ∆ω=ω
+ 

- ω
-
 is the real frequency band of negative DP. 

Explicit expression for ∆ω may be easily founded using the 

relations (19), so we have: 

( )
2

1L T
L T

ω ω
ω ω

ω
 

− −  −
=



Γ∆ .      (20) 

The expression (20) is the generalization of no damping 

idealized case as if Г=0 then ∆ω=ωL - ωT. Similarly, if the 

damping constant is directed to zero in expressions (19) then 

we get: ω
-
=ωT, and ω

+
=ωL. 

Our criterion and single oscillation model may be applied 

to crystals with one pronounced vibration in the infrared 

region without any restrictions. Such objects are 

alkali-halide crystals (NaCl, KBr, NaF, LiF and many others) 

and very significant negative DP in absolute value is 

observed in this crystals. Typical difference ωL − ωT can be 

reached up to several hundreds of cm
-1

 for such crystals 

whereas damping Γ is not exceeding of a few tens of cm
-1

 at 

room and low temperatures. Thus Γ/(ωL − ωT) <0,1 and it is 

ensures in accordance with (16) the existence of large 

negative DP values as it is observed in practice. The 

frequency range of ε′(ω) <0 almost coincides with the 

interval ωT <ω <ωL in this case. 

It should be noted the application of our criterion is 

substantially limited by restrictions of the single oscillation 

model only in the first form (14) since it is contained the 

material parameters 
0ε  and ∞ε . Alternatively the third 
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criterion form (16) is independent from material parameters 

and exclusively vibration parameters ωL, ωT and Γ terms are 

implied. So we assume the alternative criterion forms may 

be used to analysis of negative dielectric properties in the 

great number of more complex crystalline solids with 

multi-phonon spectrum. 

Below we present the test results of negative dielectric 

properties in the model crystal of boron nitride BN. 

4. Test Results in BN and Discussion 

The boron nitride BN crystal is of interest for test our 

results due the presence of three crystal modifications 

specifically cubic, orthorhombic and hexagonal. Boron 

nitride BN crystals were grown relatively recently, and their 

phonon spectra sufficiently investigated in [15]. 

Table 1. Material parameters and polar vibrations characteristics in boron nitride of cubic, orthorhombic and hexagonal crystals modifications 

vibration number Structure Orientation εεεε∞∞∞∞ S ωT (cm-1) ωL (cm -1) Г(cm -1) 

 2 3 4 5 6 7 8 

1 Cubic  4,6 2,40 1057 1306 5,39 

2 Orthorhombic ||k C
� �

 5,2 2,00 1374 1617 6,87 

3 

Hexagonal 

E C⊥
��

 3,2 
0,34 795 829 7,47 

4 0,51 1498 1616 80,89 

5 

||k C
� �

 3,8 

0,22 779 794 49,08 

6 1,10 1373 1487 31,58 

7 0,13 1508 1615 102,54 

 

 

Fig 3. (a) IR reflection spectra (after [15]). (b) Our calculation of frequency 

dispersion ε′(ω) for the cubic (1) and orthorhombic (2) BN systems. The 

negative DP narrowing can be neglected in comparison with the frequency 

T-L splitting for both crystal modifications. 

We have analyzed the variance ε′(ω) near seven 

fundamental vibrations for different crystal systems of BN 

structure (1 cubic, 1 orthorhombic and 5 hexagonal). These 

modes were observed at different orientations of the wave 

vector k
�

 and the electric field vector E
�

 of the 

electromagnetic wave relatively to the crystal C axis. 

C axis direction is the preferred orientation of the 

crystallographic axes and it is coincides with the normal to 

the sediment-crystal growth. The dumping constant Γ, T and 

L frequencies are given in Table 1 after the data of [15]. The 

oscillator strengths S (column 5) was calculated by us using 

(4). 

There is different number of polar oscillations in the IR 

reflection spectrum depending on the BN crystal symmetry. 

Only one oscillation is appeared both in cubic and in 

orthorhombic crystal modifications. These cases may be 

directly analyzed in accordance with single mode approach 

and our results are illustrated using Fig.3.  

In contrast several fundamental modes can be observed in 

the hexagonal BN crystal symmetry for appropriate 

orientation of wave vector k
�

 and/or polarization of vector 

E
�

 with respect to C axis. Namely two polar vibrations are 

appeared in experimental geometry E C⊥
�

 (see Fig.4a) and 

three polar vibrations are seen in the orientation ||k C
�

 

(Fig.5a). Thus the spectral analysis of the hexagonal BN 

system allows us to determine the applicability limits of the 

criterion for the complex spectra case with multiple polar 

modes. 

Table 2. The relative damping γ=Γ/(ωL-ωT), minε ′ , and negative DP 

bandwidth in BN crystal  

No.e 
(ωωωωL−−−−ωωωωT)

, cm-1 
γγγγ 0

ω−
,cm-1 

0
ω+

,cm-1 minε ′  0 0

+ −−ω ω
, cm-1 

1 249 0,02 1057,02 1305,73 -232 248,71 

2 243 0,03 1374,04 1616,73 -194 242,69 
3 34 0,22 795,41 828,59 -14 33,18 

4 118 0,69 1513,38 1599,57 -1,4 86,19 

5 15 3,27 No negative DP region 
6 114 0,28 

1374,46 1604,57 
-19 

230,11 
7 107 0,96 -1,5 

The DP real parts ε ′  we have calculated for all phonon 

oscillations presented in Table 1. Results of our quantitative 

analysis of damping effect on the negative DP are collected 

in the Table 2. The relative damping γ is determined as 
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γ=Γ/(ωL − ωT) and its value is directly used for the criterion 

of the negative DP existence in form of inequality (16). Both 

characteristic frequencies 
0

ω−  and 
0

ω +  was calculated 

using (19) and its values (if exist) are presented accordantly 

in 4
th

 and 5
th

 columns of the Table 2. Sufficiently small 

attenuation ( 0)Γ ≈  leads to approximate equality 

0 T
ω ω− ≈ and 

0 L
ω ω+ ≈ . It is fully matched to theoretical 

prediction based on (19) and (20). The real narrowing degree 

of negative DP band 0 0ω ω ω+ −∆ = −  is followed by relative 

damping value γ  until γ < 1.  

The frequency dispersion relations ( )ε ω′  are shown on 

Fig. 3b, 4b, 5b for all studied BN crystal structures. 

Continuous numbering of vibration we use in both tables 

and figures 3-5. It is marked by the corresponding numeric 

symbols below each dispersion curves on figures. 

Single fundamental oscillation is appeared with large 

frequency shift of ωT, exceeding 300 cm
-1

 at crystal 

symmetry is lowered from the cubic system to the 

orthorhombic modification (Fig. 3). But T-L frequency 

splitting is almost equals ~ 250 cm
-1

 for both cubic 

modification and orthorhombic system (orientation ||k C
�

) 

in the boron nitride crystal.  

 

Fig 4. (a) Experimental (triangles) and calculated (solid line) IR reflection 

spectrum of hexagonal BN in the experimental orientation E ⊥
�

C [15] (b) 

Frequency dispersion ε′(ω). Dumping effect on the negative DP narrowing 

is especially noticeable for mode no.4 as its relative attenuation is close to 

unity (γ ≈ 0.7). 

 

Fig 5. (a) Experimental (triangles) and calculated (solid line) IR reflection 

spectrum of hexagonal BN in geometry ||k C
�

 [15]; (b) Frequency 

dispersion ε′(ω). Too dumped mode no.5 does not create the negative DP 

area as γ > 1. Unity of modes no.6 and no.7 get two picks
min

0ε ′ <  since γ 

<1 for both vibrations. 

The same attenuation of the fundamental vibrations in 

absolute terms is about of <10 cm
-1

. Thus relatively T-L 

splitting γ  is equal to 0.02 for phonon of cubic system and it 

is γ=0.03 for orthorhombic modification as indicated in the 

Table 2. As result the negative DP narrowing can be 

neglected in full accordance with the criteria (14) and (16) 

because it is only on ~ 0.3 cm
-1

 less than the T-L frequency 

splitting. Simultaneously 
min

200ε ′ ≈ −  in both cases and it 

is almost by 40 times the value of low-frequency dielectric 

constant of crystalline compounds. 

The presence of several phonon vibrations in hexagonal 

BN spectra actually does not allow to direct use of the 

criterion (14). However the presence of experimentally 

determined data ωT and ωL was for us the basis for formal 

application of criteria form (16). Indeed the observable 

negative DP narrow ~ 1 cm
-1

 for mode no.3 with ωT = 795 

cm
-1

 in the orientation of E ⊥
�

C (see Fig. 4) is associated 

with significantly higher (by 10 times) than in the previous 

as the relative attenuation γ=0.22.  

Simultaneously, the minimum value 
min

14ε ′ ≈ −  for this 

mode also by the order of magnitude is decreased in absolute 

value in comparison to the previous cases of cubic and 

orthorhombic modifications. 

Even more brightly phonon damping effect is associated 

with vibration of ωT = 1498 cm
-1

 (Fig. 4, mode no.4). The 

substantially higher relative attenuation factor γ = 0.69 does 
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not only reduced the absolute value 
min

ε ′  to −1.4, but it also 

is lowered the negative DP region on more than 30 cm
-1

 as 

would be predicted using our criterion in form (16). 

Our analysis of three phonons in spectrum of hexagonal 

BN modification at orientation ||k C
�

 gives the dispersion 

curve ε′(ω) and it is shown on Fig.5b. The relative attenuation 

is γ = 3.3 for too damped mode no. 5, i.e. it is three times the 

critical value. The variance ε′ is leaved quite positive for this 

mode without the formation of any negative DP area and it 

again is in full compliance with the criterion (16). 

The existence of negative DP values 
min

ε ′  for vibrations 

no.6 and no.7 is confirmed by our criterion (16) since the 

relative attenuation are 0.28 and 0.96 respectively. In 

addition they are really appeared on Fig. 5b with individual 

values: 
min

ε ′ = −19 and 
min

ε ′ = −1.5. However, there are some 

features at the formation of negative DP band in the last case. 

Significant overlap are associated with one phonon line at 

frequency ωT = 1373 cm
-1

 and second line at frequency ωT = 

1508 cm
-1

. The result there is the union of two overlapping 

bands in the common frequency interval of negative DP with 

∆ω = 230 cm
-1

 from 
0

ω− = 1374.5 cm
-1

 to 
0

ω +  = 1604.6 cm
-1

. 

The start frequency 
0

ω−  of this common negative DP 

interval is shifted on 1.5 cm
-1

 from ωT for the first phonon 

and end frequency 
0

ω +  is located on about of 10 cm
-1

 lower 

than the corresponding second phonon frequency ωL. 

Thus, the introduced criterion allows us to clearly predict 

the existence of negative DP region based on spectroscopic 

parameters of single mode spectrum and its form (16) may be 

useful for the analysis of particular complex IR reflection 

spectra. 

5. Conclusion 

In summary, it is obtained the boundary limits of negative 

DP existence in real crystalline media due to oscillation 

damping effects in this work. Damping effect on the 

negative DP area is shrinking relative to T-L splitting up to 

its complete disappearance. The critical damping Γcr value is 

defined in our paper as an upper limit of the phonon 

damping and it enclose the area of negative DP existence in 

the crystal. The physical meaning of Γcr is zeroing of the 

dielectric function ε′(ω) minimum. 

The simple quantitative criterion for the negative DP 

existence is given based on single oscillation model. Our 

criterion is presented in three equivalent forms as 

inequalities between the fundamental crystal constants and 

spectroscopic parameters of polar vibration. All three forms 

of our criterion are characterized by simplicity of its 

analytical expressions and the practical application.  

Criterion applicability to multimode case is verified by set 

of vibrations testing in three crystalline modifications of 

boron nitride. We expect the proposed criteria of negative 

DP existence may be specifically useful in the studies of 

noncentrosymmetric crystals when the value ωT, ωL and Γ 

available for direct measurement from Raman spectra. 
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