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Abstract: Gravitational field equations are written in the form of Maxwell’s type field equations. Lorentz gauge on the 

gravitational scalar and vector potentials is discarded by introducing a gravitational scalar field. It makes the mass particles to 

be time-dependent. The non-conserving part of the mass causes to produce the gravitational scalar field, which further con-

tributes to the gravitational and gravitomagnetic vector fields. This contribution makes possible to produce a repulsive 

gravitational field by a decaying mass particle beyond a critical distance. 
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1. Introduction 

Many authors have studied the effect of the Lorentz con-

dition on potentials with different aspects in classical elec-

trodynamics. The Maxwell-Heaviside equations prescribe 

both open dissipative systems as well as equilibrium sys-

tems. By imposition of the Lorentz symmetrical regauging, 

the reduced equation’s subset discards open dissipative 

Maxwellian systems and retains only those in equilibrium 

[1]. However, the discarded class of Maxwellian systems 

contains all Maxwellian EM power systems exhibiting 

COP>1.0, by functioning as open dissipative systems freely 

receiving and using excess energy from the active vacuum 

[2], where COP is the coefficient of performance. Similar 

results have been deduced in [3-7] from the condition of a 

nonzero charge density from vacuum fluctuations. In [8], 

the Lorentz condition on potentials of charges is removed 

by introduction of an electric scalar field, which makes the 

charges to be time-dependent in nature. The non-conserved 

part of the charge then causes to produce the electric scalar 

field, which further contributes to the electric and magnetic 

vector fields. This contribution makes it possible to produce 

a negative electric field from a non-conserving positive 

charge beyond a critical distance. The critical distance de-

pends on the instantaneous value of the charge as well as 

the rate of decay of the charge. In similar way, the effect of 

the rate of change of mass on its gravitational field can be 

studied. Hence, the concept of the gravitational field is 

analogous to the electromagnetic field as is supported by 

the reasons i) Newton’s law of gravity is analogous to the 

Coulomb’s law, ii) the linearized Einstein’s equations for 

weak fields and slow speeds have same form as Maxwell’s 

equations [9-12] and iii) the geodic equation has the same 

form as the Lorentz equation of motion [13]. 

In section 2, the gravitational equations are generalized 

by introducing a gravitational scalar field G0, which re-

moves the Lorentz condition on the potentials. In section 3, 

the gravitational scalar field, in addition to the gravitational 

vector field and the gravitomagnetic vector field of a 

time-dependent mass particle, are obtained. It is found that 

the gravitational scalar field G0 is a function of the time rate 

of change of the mass. In section 4, the gravitational vector 

field and the gravitational scalar field of a stationary 

time-dependent mass particle have been discussed. Section 

5 includes result and discussion. 

2. Generalization of Maxwell Type 

Gravitational Field Equations 

The Maxwell-like gravitational field equations [9-11] can 

be written as 
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where G, Hg are the gravitational vector field and 

gravitomagnetic vector field, ρg, jg are the source mass 

density and the source mass current density respectively 

and cg is the gravitational wave velocity. 

Introduction of a scalar function G0 into these equations 

accommodates the time-dependent part of the source densi-

ties [8]: 
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where P1 and P2 are operators and G0 is the scalar field. 

As usual the vector fields can be expressed in terms of 

the potentials, 
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These potentials satisfy the usual differential equations, 
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This gives 
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with 
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The gravitational scalar field G0 is the actual replacement 

of the Lorentz condition. Satisfying the Lorentz condition 

will make the scalar field to zero. The generalized gravita-

tional equations are then 
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3. Fields of a Time-Dependent Mass 

Particle 

For a time-dependent point mass particle, the equations 

(4) have usual solutions given by Panofsky and Philip [12]. 
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Where
gc

rS
vr ⋅−= , 'αα xxr −= and αx  is the field 

point vector and 'αx  is the source point vector at the re-

tarded time gc/rt't −= and v is the instantaneous velocity 

of the charged particle. 

The electromagnetic fields for such a particle, which is in 

arbitrary motion, using equations (3), (6) and (9), are as  
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Both the fields G and Hg receive contributions from the 

instantaneous value of the mass as well as the rate of 

change of mass with time. Clearly the gravitational scalar 

field G0 is a function of the rate of change of mass with 

time as required. For time-independent mass the scalar field 

disappears and the above equations reduce to their usual 

forms.  
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4. Fields Produced By a Stationary 

Mass Particle 

The gravitational field due to a mass particle at rest is 

(from equation (10) with dt′ = dt): 
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Thus it is possible that G vanishes r = r0, if 
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which gives 

 
dt/dm
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Thus, if r0 to be positive, dm/dt should be negative, i.e. the 

mass should decrease with time. 

Equation (11) with respect of equation (13) gives 
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It suggests that at r = r0, G = 0, at r < r0, G is positive 

means attractive, and at r > r0, G is negative means repul-

sive. 

5. Results and Discussion 

It is always expected that there should exist, any how, a 

repulsive gravitational field, having significant role in the 

expansion of the universe. Many authors [13,14] tried to 

solve the problem of existence of the repulsive gravitational 

field ether by reforming the general relativity in accordance 

with Mach’s principle or by dealing with the dark energy or 

gravitational global monopole. Clearly, the net mass of the 

universe is not constant and is decreasing with time. No 

one has yet taken into consideration its effect on the gravi-

tational field. The net mass in the universe does not obey 

the classical continuity equation which further leads to 

disobey of the Lorentz condition on the gravitational poten-

tials, i.e. 0
1 ≠

∂
∂

+⋅∇
tc

g

g
g

ϕ
A . This non-zero part is a 

scalar and is equated to a gravitational scalar field G0. The 

calculations show that it can be produced only due to ex-

istence of the rate of change of mass with respect to time, 

as expected. It gives correction to the usual gravitational 

vector field. If the mass of the particle increases with time, 

then it gives positive correction to the field due to which 

the net field increases (equation (10a)). If dm/dt is negative, 

then it gives negative correction to the field due to which 

the net field decreases. For a rest mass particle, if it de-

creases by the rate dm/dt, then below, at, and above the 

critical distance 
dt/dm

mc
r

g=0  from the mass particle, its 

gravitational field is attractive, zero and repulsive respec-

tively, where m is the instantaneous value of the mass and 

cg, the gravitational wave velocity. If the mass of the parti-

cle is time-independent then the scalar field G0 disappears 

with obeying the Lorentz condition by the potentials and 

the generalized Maxwell type gravitational field equations 

reduce to their usual form. 
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