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Abstract: This paper is concerned with a numerical method based on the improved block-pulse basis functions (IBPFs). It is 

done mainly to solve linear and nonlinear Volterra and Fredholm integral equations of the second kind. These equations can be 

simplified into a linear system of algebraic equations by using IBPFs and their operational matrix of integration. After that, the 

system can be programmed and solved using Mathematica. The changes made to the method obviously improved - as it will be 

shown in the numerical examples - the time taken by the program to solve the system of algebraic equations. Also, it is reflected 

in the accuracy of the solution. This modification works perfectly and improved the accuracy over the regular block–pulse basis 

functions (BPF). A slight change in the intervals of the BPF changes the whole technique to a new easier and more accurate 

technique. This change has worked well while solving different types of integral equations. The accompanied theorems of the 

IBPF technique and error estimation are stated and proved. The paper also dealt with the uniqueness and convergence theorems 

of the solution. Numerical examples are presented to illustrate the efficiency and accuracy of the method. The tables and required 

graphs are also shown to prove and demonstrate the efficiency. 

Keywords: Linear Integral Equations, Nonlinear Integral Equations, Improved Block-Pulse Functions, Operational Matrix, 

Vector Forms, Error Analysis 

 

1. Introduction 

In recent years, there has been a growing interest in the 

formulation of many engineering and physical problems in 

terms of integral equations. This has been fostered a parallel 

rapid growth of the literature on their numerical solution. 

Therefore, this article gives a further contribution to what is 

becoming a subject of increasing concern to scientists, 

engineers, and mathematicians. Moreover, linear/nonlinear 

integral equations are typically hard to solve analytically, 

however; some numerical techniques are used to solve these 

equations. 

During the last decade, many attempts have been made to 

solve linear/nonlinear integral equations by several 

researchers by using numerical or perturbed methods. The 

time collocation method and the projection method did a great 

job in solving it [1]. Others applied an iterative method to 

solve this equation such as the Lagrange method [2], modified 

Homotopy perturbation method [3], rationalized Haar 

function method [4, 5], differential transformation method [6], 

and Tau method [7]. In 1999, He [8] tried to solve linear 

differential and integral equations by using a new method 

which is called (HPM). Furthermore, he managed to solve 

some nonlinear problems [9]. After that, he developed his 

technique to work on more complicated problems and 

introduced a solution to a lot of applications [10]. The 

Adomian decomposition method is used by Wazwaz [11] with 

a lot of modifications to the method. He managed to solve and 

get an approximate solution for most cases of that equation. 

In this paper, IBPFs are presented. Moreover, some 

theorems are proved for the IBPFs method which shows some 

results of these numerical expansions, that are more precise 

than the results of the block pulse expansions. These functions 

are disjoint, orthogonal, and complete. According to the 
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disjointness of IBPFs, the joint terms will be disappeared in 

each subinterval when multiplication, division, and some 

other operations are applied. Additionally, the orthogonality 

property of IBPFs will cause an operational matrix to be 

sparse. The completeness of IBPFs guarantees an arbitrary 

small mean square error that can be obtained from a real 

bounded function. This has only a finite number of 

discontinuous points in the interval x  [0, 1) by increasing 

the number of terms in the improved block pulse series. To 

crystallize the presentation of the current paper, the rest of it is 

organized as follows: In Section 2, we describe IBPFs and 

their properties, also how to apply them to linear and nonlinear 

different types of integral equations. Convergence analysis is 

discussed in Section 3. Numerical results are given in Section 

4 to illustrate the efficiency and accuracy of the proposed 

method. Finally, Section 5gives the main outlines of the paper 

as a conclusion. 

2. The Basic Idea of the New Improved 

Block Pulse Function (IBPF) 

Suppose the integral equations in the forms of the following 

Fredholm integral equation: 

�(�) = �(�) + � 	
� ��(�, �). ��(�)����, � ∈ [0,1),   (1) 

or in a nonlinear version 

�(�) = �(�) + � 	
� ��(�, �). ��(�)����, � ∈ [0,1).     (2) 

where �(�)  is the function to be determined, �(�) is an 

analytical function over the interval [0,1) , ��(�, �)  and ��(�, �) are called the kernels of the integral equation. They 

are analytic on [0,1) × [0,1) , r, and q are non-negative 

integers. All these functions may be represented in a vector 

form respectively as follows: �� = [�
(�), ��(�), … , ��(�)] ,            (3) !� = [�
(�), ��(�), … , ��(�)] ,             (4) 

and "� = #�$%(�, �)&, ', ( = 0,1, … ,).          (5) 

The IBPFs were firstly introduced by Farshid Mirzaee [12]. 

Farshid solved a system of integral equations by using IBPFs. 

However; in this article, an operator matrix of the Volterra 

integral equation is modified to get better results. Here linear 

and nonlinear integral equations will be solved. In addition, 

mixed Fredholm and Volterra integral equations will be 

considered. The variable interval block pulse functions are 

derived from the regular block pulse functions, but with a 

slight change in interval width. This change caused a huge 

alteration in the algorithm of the method which we will study 

in detail. The variable of interval block pulse is a () + 1) 
agreed of functions defined over the interval [0,1) as follows: 

*
(�) = +1, � ∈ [0, ���),0, ,�ℎ./0'�.,                   (6) 

*$(�) = 11, � ∈ [	$234� , $534� ),0, ,�ℎ./0'�., 	' = 1,2, . . . , ) − 1       (7) 

and *�(�) = +1, � ∈ [1 − ��� , 1),0, ,�ℎ./0'�.,              (8) 

where )  is a positive constant represents the number of 

sub-interval to be decided for the accuracy needed in solving 

the problem. The IBPFs are disjointas 

*$(�)*%(�) = 8*$(�), ' = (,0, ,�ℎ./0'�.,             (9) 

where ', ( = 0,1, … ,) and orthogonal to each other 

� 	
� *$(�)*%(�)�� = 9 ��� , ' = ( ∈ {0,)},�� , ' = ( ∈ {1,2, … ,) − 1},0, ,�ℎ./0'�.,   (10) 

where � ∈ [0,1). 
The first () + 1)  terms of the IBPF can be written in 

vector form <�(�) = [*
(�), *�(�), … , *�(�)] , � ∈ [0,1)  (11) 

Eq. (9) gives 

<�(�)<� (�) = =*
(�) 0 ⋯ 00 *�(�) ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ *�(�)A =�'BC�<�(�)�.                 (12) 

Furthermore, one gets 

� 	
D *
(�)�� = E�, � ∈ [0, ���),��� , ,�ℎ./0'�.,             (13) 

� 	
D *$(�)�� = FGH
GI0, � ∈ [0, $2�/�� ),
� − K$234� L , � ∈ [$2�/�� , $5�/�� ),
�� , ,�ℎ./0'�.,

  (14) 

� 	
D *M(�)�� = +� − N1 − ���O , � ∈ [1 − ��� , 1),0, ,�ℎ./0'�..    (15) 

It is worthy to note that at the first and last interval � = �P�. 
So, it can be approximated by this value where ) = 0 or Q. 

However, at any of the middle interval � − N$2�/�� O can be 

approximated by 
���. Then we can deduce that the integration 

of the vector <�(�) defined in Eq. (11) can be represented 

approximately as 
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� 	
D <�(�)�� ≃ S<�(�),                 (16) 

where 

S = ��

TUU
UUU
UUV
�� 1 1 ⋯ 1 10 �� 1 ⋯ 1 10 0 �� ⋯ 1 1⋮ ⋮ ⋮ ⋱ ⋮ ⋮0 0 0 ⋯ �� 10 0 0 ⋯ 0 �� WX

XXX
XXX
Y
.            (17) 

This operational matrix may be modified and rewritten to 

get better results than that used in the work of F. Mirzaee, [12]. 

By using the relation given in Eq. (12), one gets 

� 	
� <�(�)<� (�)�� ≃ Z,               (18) 

where 

Z = ���
TUU
UUV
1 0 0 ⋯ 0 00 2 0 ⋯ 0 00 0 2 ⋯ 0 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮0 0 0 ⋯ 2 00 0 0 ⋯ 0 1WX

XXX
Y.            (19) 

Suppose �(�)  is a continuous function, where �(�) ∈[��[0,1)� and maybe expanded by the IBPFs as: �(�) ≃ ��(�) = ∑ �$*$(�)�$]
 = �� <�(�) = <� (�)��. (20) 

Only m-terms of Eq. (20) are considered, where m is a 

power of 2, and �� is an () + 1) × 1 vector given by �� = [�
 , ��, ⋯ , ��] ,              (21) 

In addition, �(�) can be expanded by the IBPFs as �(�) ≃ ��(�) = ∑ �$*$(�)�$]
 = !� <�(�) = <� (�)!�, (22) 

where !� is an () + 1) × 1 vector given by !� = [�
, ��, ⋯ , ��] ,              (23) 

and <�(�) is defined in Eq. (11), and �$  are the improved 

block pulse coefficients and are obtained by 

�$ =
FGG
GH
GGG
I2) � 	
�/�� �(�)��, ' = 0,
) � 	(^_3/4)/``

(^a3/4)/`` �(�)��, 1 ≤ ' ≤ ) − 1.
2) � 	�2�/�c

� �(�)��, ' = ).
       (24) 

Similarly a function of two variables, �(�, �) ∈ [�([0,1) ×[0,1)) can be approximated by IBPFs as follows 

�(�, �) ≃ ��(�, �) = <� (�)"�<�(�).       (25) 

2.1. Solution Algorithm for Fredholm Integral Equation 

Combining Eq. (20), Eq. (22) and Eq. (25) into Eq. (1) with 

r=1, one finds 

<� (�)�� = <� (�)!� + � 	
� <� (�)"�<�(�)<� (�)����. (26) 

From Eq. (12), one gets 

<� (�)�� = <� (�)!� + � 	
� <� (�)"��'BC�<�(�)�����,  (27) 

or 

<� (�)�� = <� (�)!� + <� (�)"� � 	
� �'BC�<�(�)�����, (28) 

<� (�)�� = <� (�)!� + <� (�)"�Z��,     (29) 

From Eq. (18), one obtains 

� 	
� �'BC�<�(�)��� ≃ Z.              (30) 

It follows that �� = !� + "�Z�� ,               (31) 

Therefore, the unknown coefficients �$ can be determined 

from the relation �� = [d�5� − e]2�!�.               (32) 

Hence, d�5�  is the identity matrix with dimensions () + 1) × () + 1), and e = "�Z. It can be calculated by 

using Eq. (19) as follows: 

e =
TUU
UV�

 �
� �
� ⋯ �
���
 ��� ��� ⋯ �����
 ��� ��� ⋯ ���⋮ ⋮ ⋮ ⋱ ⋮��
 ��� ��� ⋯ ���WX

XXY . ���
TUU
UUV
1 0 0 ⋯ 0 00 2 0 ⋯ 0 00 0 2 ⋯ 0 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮0 0 0 ⋯ 2 00 0 0 ⋯ 0 1WX

XXX
Y, (33) 

= ��
TU
UUU
UV�� �

 �
� �
� ⋯ ���
��� ��
 ��� ��� ⋯ ������� ��
 ��� ��� ⋯ �����⋮ ⋮ ⋮ ⋱ ⋮�� ��
 ��� ��� ⋯ �����WX

XXX
XY

�5�×�5�

,   (34) 

where �'( can be computed in the following manner 

�

 = 4)� � 	
�/�� � 	
�/�� �(g, �)�g��; 
��
 = 4)� � 	
�/�� � 	�2�/�c

� �(g, �)�g�� 
�
� = 4)� � 	�2�/�c

� � 	
�/�� �(g, �)�g��; 
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�$% = )� � 	h_3/4`

ha3/4` � 	^_3/4`

^a3/4` �(g, �)�g�� 
	�$� = 2)� � 	h_3/4`

ha3/4` � 	�2�/�c
� �(g, �)�g��; 

��% = 2)� � 	�2�/�c
� � 	^_3/4`

^a3/4` �(g, �)�g��       (35) 

�$
 = 2)� � 	h_3/4`

ha3/4` � 	
�/�� �(g, �)�g��; 
�
% = 2)� � 	


34` � 	^_3/4`

^a3/4` �(g, �)�g�� 
By solving the linear system in Eq. (32), ��  may be 

obtained to get �(�) ≃ ∑ �$*$(�)�$]
 .             (36) 

2.2. Solution Algorithm for Volterra Integral Equation 

Combining Eq. (20), Eq. (22) and Eq. (25) into Eq. (2) with 

q=1, one gets 

<� (�)�� = <� (�)!� + � 	
D <� (�)"�<�(�)<� (�)����. (37) 

From Eq. (10), one finds 

<� (�)�� = <� (�)!� + � 	
D <� (�)"��'BC�<�(�)�����,  (38) 

or 

<� (�)�� = <� (�)!� + <� (�)"� � 	
D �'BC�<�(�)�����, (39) 

<� (�)�� = <� (�)!� + <� (�)"�S��.       (40) 

Assuming that 

S = � 	
D �'BC�<�(�)���,              (41) 

S =
TUU
UVi
<�(�) 0 0 ⋯ 00 i�<�(�) 0 ⋯ 00 0 i�<�(�) ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮0 0 0 ⋯ i�<�(�)WX

XXY,  (42) 

where i$  is the ith row of i, it follows that �� = !� + "�S�� ,                 (43) 

Therefore, the unknown coefficients �$ 	may be determined 

from the following relation: �� = [d�5� − "�S]2�!�,            (44) 

where d�5�  is the identity matrix with dimensions () +1) × () + 1), and "�S can be calculated by using Eq. (17) 

as follows: 

"�S =
TUU
UV�

 �
� �
� ⋯ �
���
 ��� ��� ⋯ �����
 ��� ��� ⋯ ���⋮ ⋮ ⋮ ⋱ ⋮��
 ��� ��� ⋯ ���WX

XXY TUU
UVi
<�(�) 0 0 ⋯ 00 i�<�(�) 0 ⋯ 00 0 i�<�(�) ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮0 0 0 ⋯ i�<�(�)WX

XXY,              (45) 

= ��
TU
UUU
UV�� �

 �
� �
� ⋯ �
�0 �� ��� ��� ⋯ ���0 0 �� ��� ⋯ ���⋮ ⋮ ⋮ ⋱ ⋮0 0 0 ⋯ �����WX

XXX
XY

�5�×�5�

. (46) 

Solving the linear system in Eq. (44) �� may be obtained 

to get �(�) ≃ ∑ �$*$(�)�$]
 .                  (47) 

2.3. Solution Algorithm for Non-linear Integral Equations 

In this section, the non-linear Volterra-Fredholm integral 

equation given in Eq. (2) will be solved by using BPF. As 

mentioned in the previous sections, it is seen that �(�) is a 

function defined over the interval [0,1) maybe expanded as �(�) ≃ ��(�) = ∑ �$*$(�)�$]
 = �� <�(�) = <� (�)��. (48) 

In the same manner, [�(�)]� can be approximated in terms 

of IBPFs [�(�)]� ≃ �j� <�(�).              (49) 

Now, the vector �j  needs to be calculated. So, one gets �(�) = �� <�(�)	BQ�	[�(�)]� ≃ �j� <�(�)    (50) 

Therefore, one gets �j� <(�) = [�� <�(�)]�           (51) 

Hence, from Eq. (9), Eq. (12) and Eq. (19) 

� 	
� *$(�)*%(�)�� = 9 ��� , ' = ( ∈ 0,),�� , ' = ( ∈ 1,2, … ,) − 1,0, ,�ℎ./0'�.,    (52) 
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<�(�)<� (�) = =*
(�) 0 ⋯ 00 *�(�) ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ *�(�)A =�'BC�<�(�)�,          (53) 

So, one finds 

� 	
� <�(�)<� (�)�� = ��
TUU
UUU
V�� 0 0 ⋯ 0 00 1 0 ⋯ 0 00 0 1 ⋯ 0 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮0 0 0 ⋯ 1 00 0 0 ⋯ 0 �� WX

XXX
XY = ��k�5�  (54) 

� 	
� <�(�)<� (�)�� = ��k�5�             (55) 

)k�5�2� � 	
� <�(�)<� (�)�� = d�5�              (56) 

where k�5�2�  is the inverse of the matrix k�5�, and d�5� is 

the identity matrix with dimensions () + 1) × () + 1). 
Now, one finds 

�j� = �j� . d�5� = �j� . )k�5�2� � 	
� <�(�)<� (�)��,  (57) 

�j� = )k�5�2� � 	
� �j� . <�(�)<� (�)��.        (58) 

By using Eq. (51), one gets 

�j� = )k�5�2� � 	
� [�� <�(�)]�<� (�)��,        (59) 

�j� = )k�5�2� � 	
� [�� <�(�)]�2�[�� <�(�)]<� (�)��. (60) 

The last equation can be written as 

�j� = )k�5�2�

TUU
UUU
UUV � 	

�/�c [�� <�(�)]�2��� [<�(�)<� (�)]��
+∑ � 	^_3/4`

^a3/4` [�� <�(�)]�2��� [<�(�)<� (�)]���2�$]�
+ � 	�2 34`

� [�� <�(�)]�2��� [<�(�)<� (�)]�� WXX
XXX
XXY
                             (61) 

�j� = )k�5�2�
TUU
UV l 	

�/��

TUU
UV[�
, ��, ⋯ , ��] m10:0oWXX

XY�2� . [�
, �� , ⋯ , ��] m1 0 . . 00 0 0 0: 0 ⋱ :0 0 . . 0o��WXX
XY
 

+ : 
+)k�5�2�

TUU
UV l 	^_3/4`

^a3/4`

TUU
UV[�
, �� , ⋯ , ��] m01:0oWXX

XY�2� . [�
 , ��, ⋯ , ��] m0 0 . . 00 1 0 0: 0 ⋱ :0 0 . . 0o��WXX
XY
 

+ : 
+)k�5�2�

TUU
UV l 	�2�/�c

�
TUU
UV[�
, ��, ⋯ , ��] m00:1oWXX

XY�2� . [�
 , ��, ⋯ , ��] m0 0 . . 00 0 0 0: 0 ⋱ :0 0 . . 1o��WXX
XY
 

= )k�5�2�
TUU
UV l 	

�/�� [�
]�2�. [�
, 0,⋯ ,0]�� + ⋯+ l 	^_3/4`

^a3/4` [�$]�2�. [0, �$ , ⋯ ,0]�� + ⋯+ l 	�2�/�c
� [��]�2�. [0,0,⋯ , ��]��WXX

XY
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= )k�5�2�
TUU
UV l 	

�/�� [�
� , 0,⋯ ,0]�� + ⋯+ l 	^_3/4`

^a3/4` [0, �$� , ⋯ ,0]�� + ⋯+ l 	

�/� [0,0,⋯ , ��� ]��WXX

XY
 

= )k�5�2� p ��� [�
� , 0,⋯ ,0] + ⋯+ �� [0, �$� , ⋯ ,0] + ⋯+ ��� [0,0,⋯ , ��� ]q = k�5�2� [2�
� , ��� , ⋯ ,2��� ] = [�
� , ��� , ⋯ , ��2�� , ��� ]. (62) 

Now, in order to solve the nonlinear Volterra-Fredholm 

integral equation given in Eq. (2), the following 

approximations must be used �(�) ≃ <� (�)�� ,                     (63) �(�) ≃ <� (�)!�,                      (64) �(�)]� ≃ �j� <�(�),                    (65) �(�)]� ≃ �j� <�(�),                    (66) ��(�, �) ≃ <� (�)"�<�(�),                (67) ��(�, �) ≃ <� (�)"�<�(�),                (68) 

where the )+ 1 vectors ��, !�, �j� , �j�  and the () + 1) ×() + 1) matrices "� and "� are the IBPFs coefficients the 

non-linear equation 

�(�) = �(�) + l 	

� ��(�, �). ��(�)���� 

+� 	
� ��(�, �). ��(�)����, � ∈ [0,1).      (69) 

It is transferring to 

<� (�)�� = <� (�)!� +l 	

� <� (�)"�<�(�). �j� <�(�)�� 

+� 	
� <� (�)"�<�(�). �j� <�(�)��, � ∈ [0,1),    (70) 

or 

<� (�)�� = <� (�)!� + <� (�)"�l 	

� <�(�). <� (�)���j� 

+<� (�)"� � 	
� <�(�). <� (�)���j�, � ∈ [0,1),       (71) 

which will give the following the linear system �� = !� + "�Z�j� + "�S�j�,           (72) 

Solving this system in Eq. (72), �� can be found and then 

we can find �$  and to get the solution substitute in �(�) ≃ ∑ �$*$(�)�$]
 .                 (73) 

3. Convergence Analysis 

In this section, we show that the current method is 

convergent. Its order of convergence is r N ��O ,/	r(ℎ). We 

define 

‖�(g)‖ = K� 	
� |�(g)|��gL
�/�,           (74) 

and ‖�(g)‖ = u 2

1

)(∑
=

m

i
i xY v�/�,      (75) 

where �(g) ∈ [�(w) and �(g) is defined as in Eq. (2), and 

‖�(g, �)‖ = K� 	
� � 	
� |�(g, �)|��g��L
�/�,     (76) 

and ‖�(g, �)‖ = N∑ ∑ x�$%(g, �)x��%]
�$]
 O�/�,		   (77) 

where �(g, �) ∈ [�(w × w) and �(g, �) is defined in Eq. (7). 

For this purpose, we will need to prove the following 

theorems: 

Theorem 1 

Let �(g) ∈ [�(w) and ��(g) be the IBPFs expansion of �(g) that is defined as ��(g) = ∑ �$*$(�)�$]
 ,            (78) 

where �$; i=0, 1,..., m, are defined as in Eq. (24). Therefore, 

the criterion of this approximation mean square error between 

the functions�(g) and ��(g) in the interval g ∈ was 

� 	
� ��(g) − ��(g)���g,             (79) 

achieves its minimum value and also 

� 	
� ��(g)���g = ∑ �$�‖<$(g)‖�y$]
 .          (80) 

Proof 

It is an immediate consequence of the theorem which is 

proved in the work of Jiang and Schaufelberger, [13]. 

Theorem 2 

Supposethat�(g) is a continuous on w, differentiable on (0,1), and there exists a positive scalar M such that |�z(g)| ≤{, for every g ∈ w. Then |�(|) − �(B)| ≤ {|| − B|, ∀B, | ∈ w,      (81) 

Proof 

see Ref.[14]. 

Theorem 3 
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Suppose that ��(g)  is the IBPFs expansion of �(g) , 

defined as Eq. (22) and �(g) is differentiable on w such that |�z(g)| ≤ {. 
Also, assume that .�(g) = �(g) − �M(g),	therefore, one 

gets ‖.�(g)‖ = r(ℎ).            (82) 

Proof 

Suppose g
 = 0, g$ = 'ℎ − ~� , ' = 1, … ,)  and g�5� = 1. 
We define the error between the function �(g) and its IBPFs 

expansion over every subinterval d$ = [g$ , g$5�) as follows: .�,$(g) = �(g) − �$(g), g ∈ d$ ,          (83) 

where ' = 0,1, … ,). 
By using the mean value theorem for integrals, one finds 

x.�,
(g)x� = � 	

�4 .�,
� (g)�g = � 	


�4 (�(g) − �
)��g =~� (�(�
) − �
)�,             (84) 

where �
 ∈ d
. Also, for ' = 1,2, … ,) − 1,	we have 

x.�,$(g)x� = � 	$~2�/�
$~5�/� .�,$� (g)�g = � 	$~2�/�

$~5�/� (�(g) − �$)��g =~� (�(�$) − �$)�,             (85) 

where �$ ∈ d$ . Furthermore,	we have 

x.�,�(g)x� = � 	�2�/�
� .�,�� (g)�g = � 	�2�/�

� (�(g) − ��)��g =~� (�(��) − ��)�,           (86) 

where �� ∈ d�. 
By using Eq. (24) and the mean value theorem, we have 

�$ =
FGG
GH
GGG
I2) � 	
�/�� �(�)�� = 2) ~� �(�
) = �(�
), ' = 0,
) � 	^_3/4`

^a3/4` �(�)�� = )ℎ�(�$) = �(�$), 1 ≤ ' ≤ ) − 1,
2) � 	�2�/�c

� �(�)�� = 2) ~� �(��) = �(��), ' = ).
 (87) 

where �$ ∈ d$ , ' = 0,1, … ,). 
From the above equations and Theorem 2, one gets 

x.�,$(g)x� =

FGH
GI~� (�(�
) − �(�
))� ≤ �4~� |�
 − �
| ≤ �4~�� , ' = 0,ℎ	(�(�$) − �(�$))� ≤ {�ℎ|�
 − �
| ≤ {�ℎ�, 1 ≤ ' ≤ ) − 1,~� (�(��) − �(��))� ≤ �4~� |�� − ��| ≤ �4~�� , ' = ).  (88) 

We have 

‖.�(g)‖� = l 	

� .�� (g)�g = l 	


� ��.�,$(g)$�
$]
 �� �g 

= � 	
� �∑ .�,$(g)$�$]
 ��g + 2∑ � 	
� N.�,$(g).�,%(g)O �g�$�% �g. (89) 

Since for ' ≠ (, d$ ∩ d% = <,	then 

‖.�(g)‖� = � 	
� �∑ .�,$� (g)$�$]
 ��g = ∑ x.�,$(g)x��$]
 �g.  (90) 

Afterward, one gets 

‖.�(g)‖� ≤ {�ℎ� − ��4~�P ,                (91) 

which completes the proof. 

Suppose that .�z (g)  is the error between �(g)  and its 

BPFs expansion. As in Ref.[13], it is clear that ‖.�(g)‖ ≤ ‖.�z (g)‖.                  (92) 

Lemma 1 

Let �(g) be defined as in Eq. (24), C�(g) be the IBPFs 

expansion approximation of C(g)  and .�(g) = C(g) −C�(g). Then x.�(g)x = r(ℎ).	                  (93) 

Proof 

From Eq. (83), we have 

x.�(g)x = N∑ xC$(g) − C�,$(g)x��$]� O�/�,    (94) 

and from Theorem 2, xC$(g) − C�,$(g)x� ≤ �$ℎ. Then x.�(g)x ≤ (∑ �$�ℎ��$]� )�/� = (∑ �$��$]� )�/�ℎ = �ℎ,  (95) 

which completes the proof. 

Theorem 4 

Let ��(g, �)  be the IBPFs expansion approximation of �(g, �) defined as in Eq. (7) and �(g, �) be differentiable on w × w  such that |�z(g, �)| ≤ {.  Also, assume that .�(g, �) = �(g, �) − ��(g, �), then ‖.�(g, �)‖ = r(ℎ).           (96) 

Proof 

Suppose g
 = �
 = 0, g$ = �$ = 'ℎ − ~� , ' = 1, … ,)  and g�5� = ��5� = 1. The error is defined between �(g, �)and 

its IBPFs expansion over every subinterval d$,$ = [g$ , g$5�) ×[�$ , �$5�)	as follows: .�,$%(g, �) = �(g, �) − �$%(g, �), g ∈ d$,% , ', ( = 0,1, … ,). 
By using the mean value theorem for integral and similar to 

the proof of Theorem 3, we get 

x.�,$%(g, �)x� = E�4~�� , ' = 0,),��4~�� , 1 ≤ ' ≤ ) − 1,    (97) 

for ' = 0, Q and 
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x.�,$%(g, �)x� = 1��4~�� , ' = 0,),2{�ℎP, 1 ≤ ' ≤ ) − 1,     (98) 

for ' = 1,2, … , Q − 1. We have 

‖.�(g, �)‖� = l 	

� l 	


� .�� (g, �)�g�� 

= l 	

� l 	


� ���.�,$%(g, �)$�
$]


�
$]
 �� �g�� 

=� 	
� � 	
� �∑ ∑ .�,$%� (g, �)�%]
�$]
 ��g�� +
2∑ ∑ � 	
� � 	
� .�,$%(g, �).�,��(g, �)�$���$�� �g��. (99) 

Since for ' ≠ �  and ( ≠ �,  we have d$ ∩ d� = <  and d% ∩ d� = <, then 

‖.�(g, �)‖� = l 	

� l 	


� u��.�,$%� (g, �)�
%]


�
$]
 v�g�� 

= ∑ ∑ x.�,$%(g, �)x��%]
�$]
 .            (100) 

Directly, we get 

‖.�(g, �)‖� ≤ 2{�ℎ� − ��4~�� .           (101) 

Suppose .Mz (g, �)  be the error between �(g, �)  and its 

BPFs expansion. From the work of Maleknejad et. al., [15], it 

is clear that ‖.�(g, �)‖ ≤ ‖.�z (g, �)‖.             (102) 

Lemma 2 

Let �(g, �)  be as defined in Eq. (27), �M(g, �)  be the 

IBPFs of �(g, �) and .�(g, �) = �(g, �) − �M(g, �). Then ‖.�(g, �)‖ = r(ℎ).              (103) 

Proof 

From Eq. (84), we have 

‖.�(g, �)‖ = �∑ ∑ x�$%(g, �) − �M,$%(g, �)x�%]��$]� ��/� (104) 

From Theorem 3, we conclude that x�$%(g, �) −�M,$%(g, �)x ≤ �$%�ℎ. 
Therefore 

‖.�(g, �)‖ ≤ �∑ ∑ �$%�ℎ��%]
�$]
 �34 = �∑ ∑ �$%��%]
�$]
 �34ℎ = �ℎ (105) 

Let the error of {Sk!s be denoted by �M = ‖�(g) − �M(g)‖, g ∈ w,          (106) 

where �(g) was defined in Eq. (22). Furthermore, assume the 

following hypotheses: 

(M1) Let ‖�(g)‖ ≤ � for g ∈ w 

(M2) Let ‖�(g, �)‖ ≤ �z for (g, �) ∈ w × w 

(M3) According to lemma 1 and 2, let �� = x.�(g)x ≤ �ℎ,                (107) 

and �� = ‖.�(g, �)‖ ≤ �zℎ,             (108) 

where �  and �z  are coefficients defined in Eqs. (95) and 

(105) and C(g) and �(g, �) were defined in Eqs. (26) and 

(25), respectively: 

(M4) Let �z + �zℎ < 1. 

Theorem 5 

Let �(g)  and �M(g)  be the exact and approximate 

solutions of Eq. (1) or Eq. (2) respectively. Also, the 

assumptions (M1)-(M4) are satisfied. 

Therefore, we have 

�M ≤ ��5����~�2��2�~               (109) 

Proof 

For the first case, from Eq. (2), we have 

�(g) − �M(g) = C(g) − CM(g) + � 	
� ��(g, �)�(�) −�M(g, �)�M(�)���,            (110) 

and therefore �M ≤ �� + ‖g‖‖�(g, �)�(�) − �M(g, �)�M(�)‖.  (111) 

It is clear that ‖g‖ ≤ 1, So �M ≤ �� + ‖�(g, �)�(�) − �M(g, �)�M(�)‖     (112) 

Also, for the second case, from Eq. (1), we have 

�(g) − �M(g) = C(g) − CM(g) + � 	
� ��(g, �)�(�) −�M(g, �)�M(�)���,		          (113) 

and therefore �M ≤ �� + ‖�(g, �)�(�) − �M(g, �)�M(�)‖. (114) 

So, Eq. (98) is true in both cases. 

Now, according to assumptions (M1)-(M3), we have ‖�(g, �)�(�) − �M(g, �)�M(�)‖ ≤ ‖�(g, �)‖�M +��(�M + ‖�(g)‖) ≤ �z�M + �zℎ(�M + �).  (115) 

Also, from assumption (M3), we have �M ≤ (� + �z�)ℎ + (�z + �zℎ)�M .        (116) 

Therefore according to (M4), this equation is satisfied and 

this completes the proof. 

Also, we have �M = r(ℎ). 
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Lemma 3 

Suppose that the functions�(g) and �M(g) are the exact 

and approximate solution of Eq. (2) or Eq. (1), respectively, 

where �(g) was defined in Eq. (22) and �M(g) = [��,M(g), ��,M(g), … , ��,M(g)]  

Then .$,M = x�$(g) − �$,M(g)x = r(ℎ)        (117) 

Proof 

From Theorem 4, we have �M ≤ �ℎ and according to Eq. 

(83), one gets .$,M ≤ �M ≤ �ℎ.                  (118) 

The series solution �M(g) will be the approximate solution 

of Eq. (2) or Eq. (1), where the function �(g) is defined in Eq. 

(22) and ��(g) = ∑ �$<$(g)$�]� ,               (119) 

converges to the exact solution �(g) then lim�→y‖�(g) − ��(g)‖� = 0.                (120) 

Theorem 6 

Let [�(ℝ) be Helbert space and <$(g) defined in Eq. (13) 

form a basis of IBPFs. 

Let �(g) ≃ ∑ �$<$(g)$�]�  be the solution of Eq. (2) or Eq. 

(1). 

Now, we define a sequence of partial sums �$  of 

( �<$(g)). Let �$and �% be the partial sums with ' ≥ (.	We 

have to prove �$ is a Cauchy sequence in the Hilbert space. 

Proof 

Let �$ = ∑  �<$(g)$�]�                  (121) 

Now, < �(g), S$ ≥< �(g), ∑  �<$(g)$�]� ≥ ∑  �$�]� <�(g), <$(g) = ∑  �$�]�  � = ∑ | �|�$�]� . (122) 

We claim that 

x�$ − �%x� = £�  �<$(g)$
�]� £� =

< �  �<$(g)$
�]%5� , �  �<$(g)$

�]%5� > 

= ∑ ∑  � � < <$(g), <$(g) >$�]%5�$�]%5� =∑ | �|�$�]%5� .              (123) 

Therefore,  

x∑  �<$(g)$�]%5�  �<$(g)x� =∑  �<$(g)$�]%5� | �|�, for' > (.       (124) 

From Bessel's inequality, we have ∑  �<$(g)$�]%5� | �|�             (125) 

It is convergent and hence  

x∑  �<$(g)$�]%5� x� → 0, B�', ( → ∞.      (126) 

Hence, we have  x∑  �<$(g)$�]%5� x → 0,          (127) 

and �$ is a Cauchy sequence and it converges to � (say). We 

assert that �(g) = �. 
Now, < � − �(g), <$(g) ≥< �, <$(g) ≻< �(g), <$(g) ≥ < lim�→y�$ , <$(g) ≻ <$(g) = lim�→y <  �<$(g), <$(g) ≻<$(g) = <$(g) − <$(g) = 0.        (128) 

We conclude that < � − �(g), <$(g) ≥ 0.            (129) 

Hence �(g) = �  and �$ = ∑  �<$(g)$�]�  converges to �(g) as ' → ∞ and proved. 

The above relation is possible if ª(g) = �.                   (130) 

4. Numerical Modeling 

This part included some physical models that will be solved 

by using the current improved technique to demonstrate the 

reliability and efficiency of these modifications. Furthermore, 

it includes numerical comparisons between the present 

method and other similar methods in the algorithm, to show 

the accuracy of each of them. Some figures and tables might 

be included in each model for clarification. All methods used 

in these comparisons are used by many authors to solve many 

problems. 

Example 1 

We will start with a Fredholm type integral equations [16] 

�(�) = .�D53� − ��� 	
� .�D2N«�O¬�(�)��,         (131) 

where the exact solution is �(�) = .�D . 
Suppose �(�) ≃ � Ψ(�)(�) ≃ Ψ(�) (�)� 

.�D53� ≃ ! Ψ(�)(�) 
.�D2N«�O¬ ≃ Ψ(�) (�)"(�)Ψ(�)(�) 

where � = [�
, ��, … , ��] are the undetermined coefficients 

for the unknown function �(�) , ! = [�
, ��, … , ��]  are 

known and is found by using 
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�$ =

FGG
GGH
GGG
GI2) l 	




�/��
.�D53���, ' � 0,

) l 	
^_3/4`

^a3/4`
.�D53���, 1 b ' b ) 7 1,

2) l 	
�2�/�c

�
.�D53���, ' � ).

. 

Also, "��� � "�5���5�  can be found by using the 

following relation: 

"��� ≃ ��$%���5���5�� 
Substituting in Eq. (131) 

� Ψ������ ≃
! Ψ������ 7 �

�� 	

� Ψ��� ���"���Ψ������Ψ��� ����. 

From Eq. (32), one gets 

� � ! pd��5�� 7 13"���Zq2�. 
By solving this system of linear equations, the improved 

block pulse series coefficients can be found. After substituting 

into Eq. (131), the IBPF approximate solution will be found. 

Below are the graphs of the improved block pulse 

approximate solutions at ) � 32. Also, the exact solution is 

graphed on the same axes to see how close is the new method 

to the exact solution in the selected intervals. The points here 

are taken as the midpoints of the intervals of the IBPFs that is 

why the graph of the exact solution absolutely coincides with 

the graph of the IBPFs. 

 

Figure 1. Absolute error of IBPFs and BPFs expansions. A comparison at the midpoints of the intervals of IBPFs was done. 

One can notices that the error is huge in this case. However; if we choose random points the functions will be like 

 

Figure 2. A comparison between the exact and approximation of both BPFs and IBPFs solutions. 

It is noticed here that at some points the BPFs solution is better and at other points, the IBPFs solution is better. The error, in 

this case, will be sometimes in the favor of IBPFs and at other points will be in the favor of BPFs as. 
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Figure 3. Absolute error of IBPFs and BPFs expansions. A comparison at random points is done. 

The following table shows numerical results of the absolute error by using the block pulse method and the improved block 

pulse method at the midpoint of every subinterval. Also, the error for the present method is compared with the block pulse 

functions error at some points in the following table at ) � 16. 
Table 1. The numerical results of example 1 at m=16. 

t Exact solution IBPF BPF 
Absolute	error  IBPF  BPF  0.0625  1.133148453  1.1335535982  1.2066444069  4.05145 � 102P  7.3496 � 102�  0.1875  1.45499141461  1.4555116313  1.5493620874  5.20217 � 102P  9.43707 � 102�  0.3125  1.86824595743  1.86891392893  1.9894202999  6.67972 � 102P  1.21174 � 102�  0.4375  2.39887529396  2.3997329863  2.5544662295  8.57692 � 102P  1.55591 � 102�  0.5625  3.0802168489  3.08131814774  3.2799995648  1.1013 � 102�  1.99783 � 102�  0.6875  3.9550767229  3.95649081860  4.211602808  1.4141 � 102�  2.56526 � 102�  0.8125  5.07841903718  5.0802347720  5.4078050504  1.81573 � 102�  3.29386 � 102�  0.9375  6.52081912033  6.5228219472  6.943759133  2.00283 � 102�  4.2294 � 102�  

For m=32 we will find the following output 

Table 2. The numerical results of example 1 at m=32. 

t Exact solution IBPF BPF 
Absolute	error IBPF  BPF  0.0625  1.1331484530668  1.1332478037112  1.1692188240521  9.93506 � 102�  3.60704 � 102�  0.1875  1.4549914146182  1.4551189833707  1.5013066877527  1.27569 � 102P  4.63153 � 102�  0.3125  1.8682459574322  1.8684097589528  1.9277159453177  1.63802 � 102P  5.947 � 102�  0.4375  2.398875293967  2.3990856192828  2.4752362699422  2.10325 � 102P  7.6361 � 102�  0.5625  3.08021684891  3.0804869119692  3.1782662829132  2.70063 � 102P  9.80494 � 102�	 0.6875  3.955076722920  3.9554234907425  4.0809746882622  3.46768 � 102P  1.25898 � 102�  0.8125  5.0784190371800  5.07886429587  5.2400752245881  4.45259 � 102P  1.61656 � 102�  0.9375  6.5208191203301  6.521390843816  6.728389773726  5.71723 � 102P  2.07571 � 102�  

 

It is worth noting here is that the midpoint of the intervals is 

different for each method as each method has different 

intervals. In the study of Maleknejad, and Mahmoudi, [16], 

the authors used the hybrid Taylor and block-pulse functions. 

They got the maximum norm of the error. We notice that at m � 32, the IBPFs maximum norm of error is 5.71723 �102P which is less error and a more accurate solution than 

that done by using the hybrid Taylor and block-pulse 

functions. In the study of Maleknejad, and Mahmoudi, [16],  

the table done is as follows: 

Table 3. The numerical results as done by using hybrid Taylor and block-pulse 

functions [16]. 

M N ‖¸ 7 ¸¹‖y  Cond (I - KD) 

3 10 3.005651 x 10-2 6.0920 

3 20 8.668870 x 10-3 7.0734 

3 40 2.316608 x 10-3 7.6292 

3 80 5.981580 x 10-4 7.9248 

4 10 2.892984 x 10-2 7.1086 

4 20 7.351252 x 10-3 8.3168 

4 40 1.847061 x 10-3 9.0048 

4 80 4.625381 x 10-4 9.3718 
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Example 2 

Now, we will study a Volterra numerical example to show 

how the method works on it [17], 

���� � �,���� � � 	

D �� 7 ���,��� 7 �������� (132) 

where the exact solution is ���� � �
� N2�,��√3� � 1�O. 

Let 

���� ≃ � Ψ������ 
�,���� ≃ ! Ψ������ 

�� 7 ���,��� 7 �� ≃ Ψ��� ���"���Ψ������ 
where � � ��
, �� , … , ���  are the undetermined 

coefficients for the unknown function ���� , ! ���
, ��, … , ��� are known and found by using 

�$ �

FG
GG
GH
GG
GG
I2) l 	




�/.��
�,������, ' � 0,

) l 	
^_3/4`

^a3/4`
�,������, 1 b ' b ) 7 1,

2) l 	
�2�/�c

�
�,������, ' � ).

. 

Also, "��� � "�5���5�  can be found by using the 

following relation: 

"��� � ��$%���5���5�� 
Substituting in Eq. (132), one gets 

� Ψ������ � ! Ψ������
� l 	




D
Ψ��� ���"���Ψ������Ψ��� ����. 

From Eq. (32), one finds 

� � ! #d��5�� 7 "���S&2�. 
Then by solving this system of linear equations, the 

improved block pulse series coefficients can be found. After 

substituting into Eq. (132), the IBPF approximate solution will 

be found. Below are the graphs of the improved block pulse 

approximate solutions at m=32. Also, the exact solution is 

graphed on the same axes to see how close is the new method 

to the exact solution in the selected intervals. We notice here 

that as we increase the number of intervals, the MPBF 

coincides with the exact solution. The graphs of the block 

pulse function solution at the same divisions of intervals are 

also graphed. Now, we can look at the combined graphs of the 

BPF, IBPF, and exact solutions at m=32. 

 

Figure 4. Absolute error of IBPFs and BPFs expansions. A comparison at the 

midpoints of the intervals of IBPFs was done. 

The error, in this case, will be like this 

 

Figure 5. Absolute error of IBPFs and BPFs expansions. A comparison at the 

midpoints of the intervals of IBPFsis was done. 

One notices that the error is huge in this case. However; if 

we choose random points the functions will be like this 

 

Figure 6. A comparison between the exact and the approximation of both 

BPFs and IBPFs solutions. 

We notice here that at some points the BPFs solution is 

better and at other points, the IBPFs solution is better. The 

error in this case also will be sometimes in the favor of IBPFs 

and at other points will be in the favor of BPFs as follows. 

Now the following tables show the values of the exact, BPF, 

and IBPF solutions at different points within the interval �0,1�. Notice that the modification done to the BPF made the 
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absolute error smaller than the regular BPF. Also, it's worth 

mentioning that it took less time to compute the solution using 

IBPF than BPF. 

 

Figure 7. Absolute error of IBPFs and BPFs expansions. A comparison at random points is done. 

Table 4. The numerical results of example 3 at m=8, 16 and 32. 

t Exact solution IBPF BPF 
Absolute	error  IBPF  BPF  0.0625  0.99609757  0.99739787  0.97780024  1.3003 � 102�  1.82973 � 102�  0.1875  0.96515166  0.96643162  1.90563427  1.2800 � 102�  9.404826 � 102�  0.3125  0.90470478  0.90594438  1.77933478  1.2396 � 102�  8.746300 � 102�  0.4375  0.81757932  0.81875923  1.60339295  1.1799 � 102�  7.858136 � 102�  0.5625  0.70784335  0.70894532  1.38491319  1.1020 � 102�  6.770698 � 102�  0.6875  0.5806207  0.58162799  1.13268493  1.0073 � 102�  5.520642 � 102�  0.8125  0.44185167  0.44274958  0.85683929  8.979 � 102P  4.149876 � 102�  0.9375  0.29801567  0.29879217  0.60443488  7.765 � 102P  3.064192 � 102�  

 

t Exact solution IBPF BPF 
Absolute	error  IBPF  BPF  0.03125  0.99902368  0.99934909  0.99421874  3.254 � 102P  4.8049 � 102�  0.15625  0.97573459  0.97605619  1.94171116  3.216 � 102P  9.659766 � 102�  0.28125  0.92245038  0.92276315  1.83156224  3.128 � 102P  9.091119 � 102�  0.40625  0.84165902  0.84195808  1.66841447  2.991 � 102P  8.267555 � 102�  0.53125  0.73713282  0.73741355  1.45933925  2.807 � 102P  7.222064 � 102�  0.65625  0.61375234  0.61401045  1.21337334  2.581 � 102P  5.996210 � 102�  0.78125  0.47727849  0.47751017  0.94113432  2.317 � 102P  4.638558 � 102�  0.90625  0.33408352  0.3342856  0.65436891  2.021 � 102P  3.202854 � 102�  

 

t Exact solution IBPF BPF 
Absolute	error  IBPF  BPF  0.015625  0.99975588  0.99983725  0.99852481  8.14 � 102�  1.2311 � 102�  0.140625  0.98032218  0.98040276  1.95648495  8.06 � 102�  9.761628 � 102�  0.265625  0.93067917  0.9307577  1.85517284  7.85 � 102�  9.244937 � 102�  0.390625	  0.85314478  0.85322004  1.69912267  7.53 � 102�  8.459779 � 102�  0.515625  0.75133926  0.75141007  1.49535215  7.08 � 102�  7.440129 � 102�  0.640625  0.63001613  0.63008142  1.25300932  6.53 � 102�  6.229932 � 102�  0.765625  0.49484024  0.49489903  0.98296517  5.88 � 102�  4.881249 � 102�  0.890625  0.35212323  0.35217472  0.69732962  5.15 � 102�  3.452064 � 102�  

 

Example 3 

Now, a non-linear Volterra integral equation will be 

considered [18], 

���� � sin� � �
� sin2� 7 �

P � � � 	

D �
� ���������     (133) 

where the exact solution is ���� � tan���. 
Let 

���� ≃ � Ψ������  

sin� � �
� sin2� 7 �

P � ≃ ! Ψ������  



32 Mahmoud Hamed Taha et al.:  Numerical Solution of Linear and Nonlinear Integral  

Equations Via Improved Block-Pulse Functions 

�
� ≃ Ψ(�) (�)"(�)Ψ(�)(�)  

�(�)]� ≃ �j <�(�),  

where �j = [�
�, ���, ⋯ , ��2�� , ��� ] 
and � = [�
 , ��, … , ��]  are the undetermined coefficients 

for the unknown function �(�) , ! = [�
, ��, … , ��]  are 

known and found by using 

�$ =
FGG
GH
GGG
I2) � 	
�/�� sin� + �� sin2� − �P ���, ' = 0,
) � 	^_3/4`

^a3/4` sin� + �� sin2� − �P ���, 1 ≤ ' ≤ ) − 1,
2) � 	�2�/�c

� sin� + �� sin2� − �P ���, ' = ).
  

Also, "(�) = "�5�×�5�  can be found by using the 

following relation: 

"(�) ≃ [�$%](�5�×�5�) 
Substituting in Eq. (133), one gets 

� Ψ(�)(�) = ! Ψ(�)(�) + � 	
D Ψ(�) (�)"(�)Ψ(�)(�)Ψ(�) (�)�  

then �� = !� + "S�j, 
Then by solving this system of linear equations, the 

improved block pulse series coefficients can be found. After 

substituting into Eq. (133), the IBPF approximate solution will 

be found. Now, the following tables show the values of the 

exact, BPF, and IBPF solutions at different points within the 

interval [0,1). Notice that the modification done to the BPF 

made the absolute error smaller than the regular BPF. Notice 

that the collocation points are taken as the midpoints of the 

subintervals of the IBPF. 

Table 5. The numerical results of example 3 at m=16, 32 and 64. 

t Exact solution BPF IBPF 
Absolute	error  

BPF  IBPF  0.0625  0.06245931784  0.093612675778  0.062466951295  3.11534 × 102�  7.63345 × 102¿  0.1875  0.18640329676  0.2170087570684  0.186410549346  3.06055 × 102�  7.25258 × 102¿  0.3125  0.307438514580  0.337016820351  0.307444087500  2.95783 × 102�  5.57292 × 102¿  0.4375  0.423676257203  0.451763228136  0.423677936691  2.8087 × 102�  1.67949 × 102¿  0.5625  0.53330267353  0.559456455022  0.533297375625  2.61538 × 102�  5.29791 × 102¿  0.6875  0.634607080015  0.658415051904  0.634590915940  2.3808 × 102�  1.61641 × 102�  0.8125  0.726008655260  0.747093898134  0.725977021657  2.10852 × 102�  3.16336 × 102�  0.9375  0.80608110826  0.824108333579  0.806028807496  1.80272 × 102�  5.23008 × 102�  

 

t Exact solution BPF IBPF 
Absolute	error  

BPF  IBPF  0.03125  0.0312449139853  0.046857834016  0.031245867786  1.56129 × 102�  9.53801 × 102À  0.15625  0.1556149927735  0.171029920177  0.155615881844  1.54149 × 102�  8.89071 × 102À  0.28125  0.277556751646  0.292532814144  0.277557294759  1.49761 × 102�  5.43113 × 102À  0.40625  0.3951673302409  0.409470265960  0.395167014811  1.43029 × 102�  3.15429 × 102À  0.53125  0.506611454814  0.520017268808  0.506609546436  1.34058 × 102�  1.90838 × 102¿  0.65625  0.610150077075  0.622448539197  0.610145633976  1.22985 × 102�  4.4431 × 102¿  0.78125  0.704167511454  0.715165442270  0.704159404855  1.09979 × 102�  8.1066 × 102¿  0.90625  0.787196647331  0.796720942461  0.787183588996  9.5243 × 102�  1.30583 × 102�  

 

t Exact solution BPF IBPF 
Absolute	error  

BPF  IBPF  0.015625  0.01562436422  0.023435354237  0.01562448343  7.81099 × 102�  1.19213 × 102À  0.140625  0.14016197234  0.147892979326  0.14016207867  7.73101 × 102�  1.0633 × 102À  0.265625  0.26251239976  0.270042713246  0.26251242836  7.53031 × 102�  2.85989 × 102�  0.390625  0.38076640899  0.387978390767  0.38076623687  7.21198 × 102�  1.72115 × 102À  0.515625  0.49307868575  0.499859605785  0.49307813398  6.78092 × 102�  5.51765 × 102À  0.640625  0.59769663453  0.603940430592  0.59769547162  6.2438 × 102�  1.16292 × 102¿  0.765625  0.69298772724  0.69859666112  0.69298567393  5.60893 × 102�  2.05332 × 102¿  0.890625  0.77746497824  0.78235116319  0.77746171413  4.88618 × 102�  3.26411 × 102¿  

 

Example 4 

Now, consider the non-linear Fredholm integral equation 

[18], 

�(�) = − ��� − ���
 � + �
�� �� + � 	
� (1 + �� + ����)(�(�))��� (134) 

where the exact solution is �(�) = 1 − 2� + 3��. 
Let �(�) ≃ � Ψ(�)(�) 
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7 215 − 8330 � + 5021 �� ≃ ! Ψ(�)(�) 
1 + �� + ���� ≃ Ψ(�) (�)"(�)Ψ(�)(�) �(�)]� ≃ �j <�(�), 

where �j = [�
�, ���, ⋯ , ��2�� , ��� ] 
and � = [�
 , ��, … , ��]  are the undetermined coefficients 

for the unknown function �(�) , ! = [�
, ��, … , ��]  are 

known and found by using 

�$ =
FGG
GH
GGG
I2) � 	
�/�� − ���− ���
 � + �
�� ����, ' = 0,
) � 	^_3/4`

^a3/4` − ���− ���
 � + �
�� ����, 1 ≤ ' ≤ ) − 1,
2) � 	�2�/�c

� − ���− ���
 � + �
�� ����, ' = ).
.  

Also, "(�) = "�5�×�5�  can be found by using the 

following relation: 

"(�) ≃ [�$%](�5�×�5�) 
Substituting in Eq. (134) 

� Ψ(�)(�) = ! Ψ(�)(�) + � 	
D Ψ(�) (�)"(�)Ψ(�)(�)Ψ(�) (�)�  

Then we have the system �� = !� + "Z�j, 
By solving this system of linear equations, the improved 

block pulse series coefficients can be found. After substituting 

into Eq. (134), the IBPF approximate solution will be found. 

Now, the following tables show the values of the exact, BPF, 

and IBPF solutions at different points within the interval [0,1). Notice that the modification done to the BPF made the 

absolute error smaller than the regular BPF. Notice that the 

collocation points are taken as the midpoints of the 

subintervals of the IBPF. This table shows the errors between 

exact, BPF, and IBPF solutions. It's obvious that the IBPF 

solution is better than that of BPF. 

Table 6. The numerical results of example 8 at m=8. 

t Exact solution BPF IBPF 
Absolute	error  

IBPF BPF 0.125 0.796875 0.74395255813 0.8083499317 5.29224 × 102�	 1.14749	 × 102�	0.25 0.6875 0.68110821524 0.6987662714 6.39178 × 102� 1.12663 × 102� 0.375 0.671875 0.71184740027 0.6828093009 3.99724 × 102� 1.09343 × 102� 0.5 0.75 0.83617011321 0.7604790205 8.61701 × 102� 1.0479 × 102� 0.625 0.921875 1.05407635405 0.9317754300 1.32201 × 102� 9.90043 × 102� 0.75 1.1875 1.36556612281 1.1966985294 1.78066 × 102� 9.19853 × 102� 0.875 1.546875 1.77063941948 1.5552483188 2.23764 × 102� 8.37332 × 102� 

This method is extended to be coupled with other known methods as done in the work by Ramadan and Osheba, [19]. It gave very accurate results that can be 

used to develop this work thoroughly. 

5. Conclusion 

The IBPFs, also the operational matrices B and V are used 

to get numerical solutions of linear and nonlinear Volterra and 

Fredholm integral equations. The mentioned method reduces 

the integral equations into an algebraic matrix equation. After 

solving the matrix equation, we can get the solution easily. 

The operational matrices have many zeros which make them 

easier to deal with than other methods. When this method is 

compared to the original BPF method, it shows a high 

accuracy at the midpoint of its intervals. This accuracy is 

much better than that of the original technique. It is stated by 

the graphs in the numerical applications section. Also, the 

convergence proved in the current article for the proposed 

method. The absolute error is shown to state the applicability 

and accuracy of the method. The article is compared with the 

work done with many other methods to prove the 

effectiveness and convenience of the method. It is worth 

mentioning that the method is extended to solve nonlinear 

Volterra and Fredholm integral equations. 
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