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Abstract: This paper is concerned with a numerical method based on the improved block-pulse basis functions (IBPFs). It is
done mainly to solve linear and nonlinear Volterra and Fredholm integral equations of the second kind. These equations can be
simplified into a linear system of algebraic equations by using IBPFs and their operational matrix of integration. After that, the
system can be programmed and solved using Mathematica. The changes made to the method obviously improved - as it will be
shown in the numerical examples - the time taken by the program to solve the system of algebraic equations. Also, it is reflected
in the accuracy of the solution. This modification works perfectly and improved the accuracy over the regular block—pulse basis
functions (BPF). A slight change in the intervals of the BPF changes the whole technique to a new easier and more accurate
technique. This change has worked well while solving different types of integral equations. The accompanied theorems of the
IBPF technique and error estimation are stated and proved. The paper also dealt with the uniqueness and convergence theorems
of the solution. Numerical examples are presented to illustrate the efficiency and accuracy of the method. The tables and required
graphs are also shown to prove and demonstrate the efficiency.
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solve this equation such as the Lagrange method [2], modified
Homotopy perturbation method [3], rationalized Haar
function method [4, 5], differential transformation method [6],
and Tau method [7]. In 1999, He [8] tried to solve linear
differential and integral equations by using a new method
which is called (HPM). Furthermore, he managed to solve
some nonlinear problems [9]. After that, he developed his
technique to work on more complicated problems and
introduced a solution to a lot of applications [10]. The
Adomian decomposition method is used by Wazwaz [11] with
a lot of modifications to the method. He managed to solve and
get an approximate solution for most cases of that equation.

1. Introduction

In recent years, there has been a growing interest in the
formulation of many engineering and physical problems in
terms of integral equations. This has been fostered a parallel
rapid growth of the literature on their numerical solution.
Therefore, this article gives a further contribution to what is
becoming a subject of increasing concern to scientists,
engineers, and mathematicians. Moreover, linear/nonlinear
integral equations are typically hard to solve analytically,
however; some numerical techniques are used to solve these

equations. ’
During the last decade, many attempts have been made to In this paper, IBPFs are presented. Moreover, some
solve linear/nonlinear integral equations by several theorems are proved for the IBPFs method which shows some

results of these numerical expansions, that are more precise
than the results of the block pulse expansions. These functions
are disjoint, orthogonal, and complete. According to the

researchers by using numerical or perturbed methods. The
time collocation method and the projection method did a great
job in solving it [1]. Others applied an iterative method to
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disjointness of IBPFs, the joint terms will be disappeared in
each subinterval when multiplication, division, and some
other operations are applied. Additionally, the orthogonality
property of IBPFs will cause an operational matrix to be
sparse. The completeness of IBPFs guarantees an arbitrary
small mean square error that can be obtained from a real
bounded function. This has only a finite number of
discontinuous points in the interval x £ [0, 1) by increasing
the number of terms in the improved block pulse series. To
crystallize the presentation of the current paper, the rest of it is
organized as follows: In Section 2, we describe IBPFs and
their properties, also how to apply them to linear and nonlinear
different types of integral equations. Convergence analysis is
discussed in Section 3. Numerical results are given in Section
4 to illustrate the efficiency and accuracy of the proposed
method. Finally, Section 5gives the main outlines of the paper
as a conclusion.

2. The Basic Idea of the New Improved
Block Pulse Function (IBPF)

Suppose the integral equations in the forms of the following
Fredholm integral equation:

1
ﬂﬂ=ﬂ0+{h@@(ﬂ@¥mmemn.<n
or in a nonlinear version

y(t) = f(t) + {) ky(t,5). (v(s))ds, t € [0,1). o

where y(t) is the function to be determined, f(t)is an
analytical function over the interval [0,1), k,(t,s) and
k,(t,s) are called the kernels of the integral equation. They
are analytic on [0,1) X [0,1), r, and q are non-negative
integers. All these functions may be represented in a vector
form respectively as follows:

Y = [0 (), y1 (), -, ¥ (O], (€)
En = [fo@®, f1(®), ., fm (O], 4)

and
m = [kij(t,9)],i,j =01,..,m. )

The IBPFs were firstly introduced by Farshid Mirzaee [12].
Farshid solved a system of integral equations by using IBPFs.
However; in this article, an operator matrix of the Volterra
integral equation is modified to get better results. Here linear
and nonlinear integral equations will be solved. In addition,
mixed Fredholm and WVolterra integral equations will be
considered. The variable interval block pulse functions are
derived from the regular block pulse functions, but with a
slight change in interval width. This change caused a huge
alteration in the algorithm of the method which we will study
in detail. The variable of interval block pulse is a (m + 1)
agreed of functions defined over the interval [0,1) as follows:

1

1,t € [0,—),
%@={ Oz (6)
0, otherwise,
1 i3 i+
e =1Ll =12, ,m-1 (4
0, otherwise,
1
1,te[l——,1),
and ¢, (t) = { m
" 0, otherwise, ®)

where m is a positive constant represents the number of
sub-interval to be decided for the accuracy needed in solving
the problem. The IBPFs are disjointas

_ <P'(t): i= j!
Pi(O)e;() = {O,Lotherwise, ©)
where i,j = 0,1, ..., m and orthogonal to each other
2 =j €{0,mj},
f piDe;Odt =91 i = je(1,2,. -1, (10

0, otherwise,

where t € [0,1).
The first (m + 1) terms of the IBPF can be written in
vector form

G () = [@o (), @1 (), ...
Eq. (9) gives

Jpm(®O],t€[0,1) (11)

Po(t) 0 = 0
OGRS K G
0 0 Om (1)
diag(pm(t)). (12)

Furthermore, one gets

o

1

t,t € [0,%),

t
f Po (S) ds = 1 3
0 P’ otherwise,

(13)

i-1/2

),
{i(pi(s)ds = t—<—1> te [‘ 1/2 ‘“/2) (14)

1 .
—,otherwise,
m

ft<pn(s)ds={t_(1_ﬁ)’te [1_ﬁ’1)’
0

0, otherwise.

(0,t € [0,

(15)

It is worthy to note that at the first and last interval t = ﬁ.
So, it can be approximated by this value where m = 0 or n.

However, at any of the middle interval t — (%) can be

. 1 . .
approximated by P Then we can deduce that the integration

of the vector ¢,,(t) defined in Eq. (11) can be represented
approximately as
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t
[ dm(s)ds = B (t), (16)
0
where
1 1 1 1 1
2
0 f 1 1 1
2
1
_ 110 0 = 1 1
B=21 . 2 . (17
0 0 0 1
2
0 0 0 0o 1
I 5

This operational matrix may be modified and rewritten to
get better results than that used in the work of F. Mirzaee, [12].
By using the relation given in Eq. (12), one gets

1
J dm()pn(s)ds =V, (18)
0
where
100 - 0 0
020 « 00
100 2 0 0|
Tomlrororo o) (19)
lo 0 0 - 2 OJ
000 -« 0 1

Suppose y(t) is a continuous function, where y(t) €
1%([0,1)) and maybe expanded by the IBPFs as:

y(@) = Y () = X120 y:i90:(t) = Y (t) = P ()Y, (20)

Only m-terms of Eq. (20) are considered, where m is a
power of 2, and Y,,, isan (m + 1) X 1 vector given by

Ym = [yO'.VD'“:ym]T' (21)

In addition, f(t) can be expanded by the IBPFs as

O = fu(t) = 26 fi0i (1) = Frpm(t) = () Ep, (22)

where E,, isan (m + 1) X 1 vector given by
En = [fo fu o fl”

and ¢,,(t) is defined in Eq. (11), and y; are the improved
block pulse coefficients and are obtained by

(23)

1/2m

2m [ y(t)dt,i=0,
0
(i+1/2)/m

m [ y®dt1<i<m-1 (24)

@i-1/2)/m
m

Vi =

1
2m [ y(©)dt,i=m.

1-1/2m

Similarly a function of two variables, k(t,s) € L?([0,1) x
[0,1)) can be approximated by IBPFs as follows

k(t,s) = km(t' s) = ¢1?1(t)Km¢m(s)-

2.1. Solution Algorithm for Fredholm Integral Equation

(25)

Combining Eq. (20), Eq. (22) and Eq. (25) into Eq. (1) with
r=1, one finds

(O = P (OFy + {1) G (O Kin®m (5) i (5) Y ds. (26)
From Eq. (12), one gets

IOV = SO Fy + {1) (O Kmdiag(dm(s))Ymds, (27)

or

b (Y = b (OFy + <l>TTn(t)Kmf1 diag(¢m(s))dsYm, (28)
0

Pm (DY = P (OFy + dn(OKy VY, (29)
From Eq. (18), one obtains
1
[ diag(pm(s))ds = V. (30)
0
It follows that
Yoo = B + K VY, 3D

Therefore, the unknown coefficients Y; can be determined
from the relation

Yin = [Im+1 - A]_lFm- (32)

Hence, I,,,; is the identity matrix with dimensions
(m+1)x(m+1), and A = K,,,V. It can be calculated by
using Eq. (19) as follows:

koo koi Koz v komy [E 90 000
02 0 - 00
kio ki ki o kim ilo o 2 0 0
A= lkzo kyr  kyp o kom E| : : |. (33)
o C 000 — 2 o
kmO kml km2 kmm I—O 00 - 0 1J
r1 1
EkOO kOl kOZ EkO‘m
1 1
Eklﬂ kll k12 Ekl‘m
= —]1 1 ) 34
mltka ko ki v Shom 34
i 1
_Ekmo k‘ml ka 5 mm‘m+1xm+1

where kij can be computed in the following manner

1/2m1/2m
koo =4m? [ [ k(x t)dxdt;
1/20m 01
kmo =4m? [ [ k(x,t)dxdt
0 1-1/2m
1 1/2m
kom =4m? [ [ k(x, t)dxdt;

1-1/2m 0
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j+1/2 i+1/2

kij=m? [ [ k(x t)dxdt

j+1/2
m 1
kim =2m? [ [ k(x,t)dxdt;
j=1/21-1/2m

i+1/2
1 m

kpj=2m? [ [ k(x,t)dxdt
1-1/2mi=1/2

(35)

j+1/2
m 1/2m

kip=2m?* [ [ k(x,t)dxdt;

j-1/2

(=]

3

1 it1/2
2m m
koj =2m? [ [ k(x,t)dxdt

0 i-1/2

3

By solving the linear system in Eq. (32), Y, may be
obtained to get

y(@) = Yo yi9: (0). (36)
2.2. Solution Algorithm for Volterra Integral Equation

Combining Eq. (20), Eq. (22) and Eq. (25) into Eq. (2) with
g=1, one gets

() = DT (OFn + | SO Ko ()DL () ¥onds. (37)

From Eq. (10), one finds

t
OO = dn(OF, + [ dr(O)Kndiag($m(s))Ynds, (38)
0
or

() = BT (OFn + SO [ diag(dm(s))dsYm, (39)
0

I (O = () + G () Ky BY . (40)
Assuming that
t
B = [ diag(¢m(s))ds, 41)
0
[Hoqu(t) 0 0 -0 1
|O Hld)m (t) 0 0 |
B=|o 0 Hypp(t) - 0 | (42)
0 0 0 Hppm (1)
where H; is the ith row of H, it follows that
Y, = E, + K,BY,,, (43)

Therefore, the unknown coefficients Y; may be determined
from the following relation:

Y = [1m+1 - KmB]_lFm' (44)

where I,,, is the identity matrix with dimensions (m +
1) x (m + 1), and K,,,B can be calculated by using Eq. (17)
as follows:

[koo kor koz - kom ][H0¢m(t) 0 0 0 |
kio  kix  kiz o kim | 0 Hy ¢, @ 0 =0 |
KuB =|kso kp1 koo - kom ||0 0 Hypp(t) - 0 l (45)
|~km0 kml ka kmmJ 0 0 0 Hmd)m(t)
L . .
> koo ko1 ko kom In the same manner, [y(t)]” can be approximated in terms
. of IBPFs
) 0 gkn ki, kim OF = 776, () 49
— t = t).
=—o 0 %kzz ey, . (46) [y(®)] mPm (49)
: : : : Now, the vector ¥ needs to be calculated. So, one gets
1
0 0 0 = %
. 2 an y(t) = Yadn(t) and [y(O)]" = Yadn(t)  (50)
Solving the linear system in Eq. (44) Y,,, may be obtained Therefore, one gets
to get ~
Yad(t) = [Yndn (] (51

y() = Xito yiei (0). (47)

2.3. Solution Algorithm for Non-linear Integral Equations

In this section, the non-linear Volterra-Fredholm integral
equation given in Eq. (2) will be solved by using BPF. As
mentioned in the previous sections, it is seen that y(t) is a
function defined over the interval [0,1) maybe expanded as

y(@) = ¥ () = X120 yi90:(t) = Y (t) = Py ()Y, (48)

Hence, from Eq. (9), Eq. (12) and Eq. (19)
L
2m’

Zi=je12..,m-1 2
m

0, otherwise,

) i=j€e0,m,
J oi®@;®)dt =
0
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Qo) 0 0 the identity matrix with dimensions (m + 1) X (m + 1).
b, (DT (£) = O ipl (®) ‘ 0 _ Now, one finds
: : . L
0 0 O 08 = Th Ly = Ph.mPRY, [ ¢ (D@5 (O)dE, (57)
diag(¢m (D)), (53) 0
1
So, one finds T =mPaky [ PR pm(OPR(OdE.  (58)
0
2 O 0 By using Eq. (51) ¢
using Eq. , one gets
) 0 1 0 y gEq g
110 01 -« 0 O 1 - 1
[n@¢n@de=t0 0 0 0 0 = P (59 7= mpd | Won @V RO, (59)
0 0 O 1 0 )
1
000 2] Th = mPiky [ [VEm(OF Y dm(©1gh (Odt. (60)
0
1
| dm@© P (O)dt = % m+1 (55) The last equation can be written as
0
1
mPriy [ dm(®)m(t)dt = Ly (56)
0

where P,1, is the inverse of the matrix P, and I, is

rl/2m
| Yadm O i lom () ph ()]dt
0
i+1/2
Ph = mPky [+ ZE S (K (OF Y @n(O9h@lde (6D
) m
b T O Y (OOt
1
0 0 00 O
YT =mP;k, f (Yo, Y1, -+, Yl . o, y1, 0, yml . 0 : dt
0 0 0 0 0
+
ri+1/2 0 -1 0 0 0 ]
|7 |
B 1 01 0 0
+um-1i—1 f [yO,yp"',ym] . -[YO:yll"':ym] .0 . dt
i—;l/z 0 0 0 0
+
I[ ) ol 00 ..0 1|
) 0 0 0 0 O
+mPriy f (Yo, Y1, -+, Yl . Doy, Y] 0 : dt
1-1/2m 1 00 1

+1/2
i+1/ L -l

[ m
| f [yol" ™" [¥0,0,+-,0]dt + -+ f [y: 1" [0, y;,---,0]dt + - + f [ym]r‘l.[0.0,---,ym]dt|
[ 0 i-1/2 1-1/2m J

1/2m

— -1
- um+1
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i+1/2

1/2m

ZmPrZ}rl| f

l 0 i-1/2

m

[y§,0,-~,0]dt+~~+f [O,yir,~~,0]dt+~~+f [0,0,-~,y,§1]dt|
i 0

1/m

|

- 1 1 -
=mPpi, [m [¥5,0,+,0] 4+ -+ +=[0,y], 0] + -+ 5[0,0,---,%]] = Pr3al2y6, 71, 2yi] = Y5, 91, Yin—1, Yl (62)

Now, in order to solve the nonlinear Volterra-Fredholm

integral equation given in Eq. (2), the following
approximations must be used

MOESH) (63)

f(®) = m(OFn, (64)

YOI = 1 ¢ (0), (65)

Yy = ¥ ¢ (D), (66)

ky(t,5) = pm (K1 pm(s), (67)

ky(t,5) = P (K P (s), (68)

where the m + 1 vectors Yy, F,, VI, V¥ and the (m + 1) X
(m + 1) matrices K; and K, are the IBPFs coefficients the
non-linear equation

y© = @O+ [ la(6:5).(5()) ds
0

+f ky(t,5). (y(s)) ds, t € [0,1). (69)

It is transferring to

1
M@m=%@%+[%@&%@ﬂ%ﬂﬂk

+f b (OK2 P (5).- VS i (s)ds,t €0,1),  (70)

or

B = RO + PROK, | Bn(5). SR ()T,
0

X
+¢$1(t)Kz{) Pm(5). Pm(s)dsYy, t € [0,1), (71)
which will give the following the linear system
Ym = Fm"l‘KlVYl +K2B72, (72)

Solving this system in Eq. (72), Y,,, can be found and then
we can find y; and to get the solution substitute in

y(@) = Xito yipi (0). (73)

3. Convergence Analysis

In this section, we show that the current method is

convergent. Its order of convergence is O (i) or 0(h). We

define

1 1/2
umw=@wmwﬁ. (74)
5 1/2
and YOI =( Z|Lx)| | . 09
i=1

where y(x) € L2(D) and Y(x) is defined as in Eq. (2), and

11 1/2
llkCx, I = ({) {) Ik(x,y)lzdde> (76

1/2

and [lkeCe, I = (Zi2o Z7ollless e ]°)

where k(x,y) € L>(D x D) and k(x,y) is defined in Eq. (7).

(77)

For this purpose, we will need to prove the following
theorems:

Theorem 1

Let y(x) € L?(D) and y,,(x) be the IBPFs expansion of
y(x) that is defined as

Ym(x) = Xito yii (D), (78)

where y;; i=0, 1,..., m, are defined as in Eq. (24). Therefore,
the criterion of this approximation mean square error between
the functionsy(x) and y,,(x) in the interval x € Das

1
2
J () = ym () dx, (79)
0
achieves its minimum value and also
1
2 (o]
J () dx = 20 yE1d: COII% (80)
0

Proof

It is an immediate consequence of the theorem which is
proved in the work of Jiang and Schaufelberger, [13].

Theorem 2

Supposethaty(x) is a continuous on D, differentiable on
(0,1), and there exists a positive scalar M such that |y’ (x)| <
M, for every x € D. Then

ly(b) —y(a@)| < M|b —al,Va,b €D, (81)

Proof
see Ref.[14].
Theorem 3
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Suppose that y,,(x) is the IBPFs expansion of y(x),
defined as Eq. (22) and f(x) is differentiable on D such that
ly' Gl < M.

Also, assume that e, (x) = y(x) — y,(x), therefore, one
gets

llewm COll = 0(h). (82)

Proof

Suppose x, = 0,x; = ih —%,i =1,..,m and x4 = 1.
We define the error between the function y(x) and its IBPFs
expansion over every subinterval I; = [x;, x;4,) as follows:

emi(x) = y(x) —yi(x),x € I, (83)

where i = 0,1, ..., m.
By using the mean value theorem for integrals, one finds

=

lemoGO|* = [ €2 o(r)dx = [ 00 ~yo)dx =
2 ¥(20) = ¥0)%, (84)

where g, € I,. Also, for i = 1,2, ..., m — 1, we have

o/

5 ih+h/2 ih+h/2
lemi @] = [ eZ;xdx= [ &) —y)idx=
ih—h/2 ih—h/2

Z(e) =y

where ¢; € I;. Furthermore, we have

(85)

2 1 1
”em,m(x)” = f erzn,m(x)dx = f (Y(x) - Ym)zdx =
hy/2 1-h/2

2 (Em) = ym)? (86)

where &, € I,,.
By using Eq. (24) and the mean value theorem, we have
1/2m
2m [ y(@®)dt =2m3y(e) = y(e0), 1 =0,
0

i+1/2

m }n y(@®)dt = mhy(e;) = y(e),1<i<m—1, (87)

i-1/2

Vi =

m

1
2m [ y(®)dt = 2m2y(en) = y(em), i = m.
1-1/2m 2
where €; € I;,i = 0,1, ..., m.
From the above equations and Theorem 2, one gets

2
”em,i(x)” =
h 2p 2p8 |
2 (&) = y(M0))? < - leg =1l <=0 = 0,
h (y(e)) = y(:))? < M?hleg — 1ol S M?h3,1<i<m—1, (83)

h 2p 2p3
15 0(em) = YOm))? < - lem =Ml <50 = m.

We have

1 1 m 2

lewCOI = [ e2Godx = | (Zem,i(x)i> dx

0 0 =0

1 1
= fo (Z?;o em,i(x)i)dx + ZZ?;jfo (em,i(x)em,j(x)) dx dx. (89)

Since for i # j,I; N I; = ¢, then

lem@OI” = [ (1o €00 )dx = m lem:i @ dx. (90)

Afterward, one gets

3M?h3
llem(OII* < M?h? — ——

- ©1)

which completes the proof.
Suppose that e;,(x) is the error between y(x) and its
BPFs expansion. As in Ref.[13], it is clear that

llewm GOl < llem (OII- (92)

Lemma 1

Let f(x) be defined as in Eq. (24), g,,(x) be the IBPFs
expansion approximation of g(x) and eyz(x) = g(x) —
Gm(x). Then

lle, || = 0(R). (93)

Proof
From Eq. (83), we have

1/2
leg GOl = (E24ll9:0 = gmiOI) ™ %)
and from Theorem 2, ||g;(x) — gm‘,'(x)”2 < C;h. Then
lleg G|l < (Em, C2h?)V2 = (T, C2)2h = Ch, (95)

which completes the proof.

Theorem 4

Let k,,(x,y) be the IBPFs expansion approximation of
k(x,y) defined as in Eq. (7) and k(x,y) be differentiable on
D XD such that |k'(x,y)] <M. Also, assume that
em(x:Y) = k(x:Y) - km(x:Y), then

llem (x, I = 0(h). (96)

Proof

Suppose x5 =y, =0,x; =y; = ih —%,i =1,..,m and
Xm+1 = Ym+1 = 1. The error is defined between k(x, y)and
its IBPFs expansion over every subinterval I;; = [x;, X;41) X
[Vi, Vis1) as follows:

emij(x,y) = k(x,y) —kij(x,y),x € I ;,i,j = 0,1,...,m.

By using the mean value theorem for integral and similar to
the proof of Theorem 3, we get

lems e =15 1_ 97)
<

for i = 0,n and



26 Mahmoud Hamed Taha et al.:

Numerical Solution of Linear and Nonlinear Integral

Equations Via Improved Block-Pulse Functions

5M2p%

—,l = 0) )
”em,ij(X,J’)”z = { ! m
2M?*ht1<i<m-—1,

(98)

for i =1,2,..,n— 1. We have

1 1
llew Co,W)II% = f f e2.(x,y) dxdy
0 o0

m m

- .f fl (Z Z em,ij (X, J’)i>2 dxdy

i=0 i=0

( =0 Xj=0 erzn,ij(xJ’))dXdy +

ot —r

em,i]'(x: y)em,kl (x, 3’) dxdy (99)

o O T

1
2% ?slz{)

Since for i # k and j# 1, we have ;N[ =¢ and
[0l = ¢, then

llem Ce, W12 =f1f1
00

= 2 X lemsi e I

Directly, we get

m m

D> ehyy) |dxdy

i=0 j=0

(100)

2p3

llem G, 92 < 2M2h2 — 2 (101)

Suppose e;,(x,y) be the error between k(x,y) and its
BPFs expansion. From the work of Maleknejad et. al., [15], it
is clear that

llen Ce, M < llem (x, p) I (102)

Lemma 2
Let k(x,y) be as defined in Eq. (27), k,(x,y) be the
IBPFs of k(x,y) and

er(x,y) = k(x,y) — kn(x,¥). Then
llex Ce, MII = 0(h). (103)

Proof
From Eq. (84), we have

1/2
e, Ce M = (T, 25'71:1”"1'1'(%3’) — ki) (104)
From Theorem 3, we conclude that ||kl~ i y) —
kn,ij (6, 0)|| < Chh.
Therefore
lew (e M < (T2 ey C5h?)? = (120 X0 €F)?h = Ch (105)
Let the error of MBPF's be denoted by
En =1ly() = yn (Il x €D,

where y(x) was defined in Eq. (22). Furthermore, assume the

(106)

following hypotheses:
M1) Let |[y(x)|| <N for x €D
(M2) Let ||k(x,t)|| < N' for (x,t) ED XD
(M3) According to lemma 1 and 2, let

E; = |le,(0)| < Ch, (107)

and

Ey = llex(x, Ol < C'h, (108)

where C and C' are coefficients defined in Egs. (95) and
(105) and g(x) and k(x,t) were defined in Egs. (26) and
(25), respectively:

(M4)Let N' + C'h < 1.

Theorem 5

Let y(x) and y,(x) be the exact and approximate
solutions of Eq. (1) or Eq. (2) respectively. Also, the
assumptions (M1)-(M4) are satisfied.

Therefore, we have

c+Cc'N)n
(

E <
n = 1-N'-ch

(109)

Proof
For the first case, from Eq. (2), we have
V() = (2 = 93) — ga) + I (kx,0¥(0) -
ke (2, DY (1)) dlt, (110)
and therefore
En < Eg + x|k, )y () — kn(x, )y (Ol (111)
It is clear that ||x|| < 1, So
En < Eg + |lk(x, 0)y(8) — kn(x, )y, (O (112)

Also, for the second case, from Eq. (1), we have

V() =30 = 96) = 90D + J (ke 090 -
kn (x, )y, (1)) dt, (113)

and therefore
By < By + k(e 0y(0) — kar, Dya D). (114)

So, Eq. (98) is true in both cases.
Now, according to assumptions (M1)-(M3), we have

kG, )y () = ky(x, Dy (O < [[k(x, O|Ey +
Ex(En + ly(I) € N'E, + C'h(E, + N). (115)

Also, from assumption (M3), we have
E,<(C+C'N)h+ (N'+ C'h)E,. (116)

Therefore according to (M4), this equation is satisfied and
this completes the proof.
Also, we have E,, = 0(h).
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Lemma 3

Suppose that the functionsy(x) and y, (x) are the exact
and approximate solution of Eq. (2) or Eq. (1), respectively,
where y(x) was defined in Eq. (22) and

Yn(x) = [yl,n(x)ryz,n(x): ---:ym,n(x)]T

Then
n = [yt = yia | = 0w (117)

Proof
From Theorem 4, we have E, < Ch and according to Eq.
(83), one gets
ein < E, < Ch. (118)

The series solution ¥, (x) will be the approximate solution

of Eq. (2) or Eq. (1), where the function y(x) is defined in Eq.

(22) and
Ym (%) = Yin=1 i (%), (119)
converges to the exact solution y(x) then
lim [ly(x) = ym COII* = 0. (120)

Theorem 6

Let L2(R) be Helbert space and ¢;(x) defined in Eq. (13)
form a basis of IBPFs.

Let y(x) =~ ¥i,_, y;¢;(x) be the solution of Eq. (2) or Eq.
(1.

Now, we define a sequence of partial sums S; of
(am@i(x)). Let S;and S; be the partial sums with i = j. We
have to prove S; is a Cauchy sequence in the Hilbert space.

Proof

Let Si

= Yin=1 @i (%) (121)

Now,

>< y(x), Xin=1 Am i (x) 2 V=1 @m <
Zm=1lan|?. (122)

< Y(x), Si g
y(x), ¢i(x) = Yipoq O Ay =

We claim that

i

Is: = sl = am¢ (x)
< Z Onhi(x), Z Cnpi () >
m=j+1 m=j+1

Zm j+12m j+1 Amm < ¢ (x) ¢ (x) > =

el (123)

Therefore,

”z:m =j+1 am¢i(x) am¢i(x)”2 =

fmjr1 @m i (x) @2, fori > . (124)

From Bessel's inequality, we have

m=jr1 TP (%) lam|? (125)
It is convergent and hence
2 , .
[Zn=re1 @m@i(O||” = 0,asi,j > 0. (126)
Hence, we have
”Zin:jﬂ amdi(x)|| - 0, (127)

and §; is a Cauchy sequence and it converges to s (say). We
assert that y(x) = s.
Now,

<s—y(x), ¢i(x) 2<s,¢;(x) ><y(x), $i(x) =
< lim S;, §;(x) > ¢;(x) = lim < apd;(x), ¢;(x) >
T a0 =g h@ =0 ()

We conclude that
<s-y) ¢i(x) = 0.

Hence y(x) =s and S; = ¥},_; amp;(x) converges to
y(x) as i » o and proved.
The above relation is possible if

(129)

u(x) =s. (130)

4. Numerical Modeling

This part included some physical models that will be solved
by using the current improved technique to demonstrate the
reliability and efficiency of these modifications. Furthermore,
it includes numerical comparisons between the present
method and other similar methods in the algorithm, to show
the accuracy of each of them. Some figures and tables might
be included in each model for clarification. All methods used
in these comparisons are used by many authors to solve many
problems.

Example 1

We will start with a Fredholm type integral equations [16]

— éfl eZt_(g)sy(s)ds,

0

y(@) =e** (131)

where the exact solution is y(t) = e?*

Suppose
y(E) = Y Wiy () = Wiy (DY
1
QZH—5 = FTlp(m) (t)
5
€2t (3)5 =~ q’g,n) (S)K(m)l'p(m) (t)
where YT = [yg, ¥4, ..., V] are the undetermined coefficients

= [fo fi -

for the unknown function y(t), FT =
known and is found by using

, fm] are
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. YTlp(m) (t) =

1/2m
1 1
2m f e?t3dt,i = 0, FTW () () — gf Wl () Kamy ¥ amy (O Wy (DY .
0
0
i+;l/2 From Eq. (32), one gets
1
fi=<mf e’3dt,1<i<m-—1, 1 !
i~1/2 vr=rt fomny = §K(m)V]
1 ) By solving this system of linear equations, the improved
2m e?3dt, i = m. block pulse series coefficients can be found. After substituting
1-1/2m into Eq. (131), the IBPF approximate solution will be found.

Below are the graphs of the improved block pulse
Also, Kgn) = Kpyixm+1 can be found by using the  approximate solutions at m = 32. Also, the exact solution is

following relation: graphed on the same axes to see how close is the new method

to the exact solution in the selected intervals. The points here

Kany = [kijlane1xme) are taken as the midpoints of the intervals of the IBPFs that is

e why the graph of the exact solution absolutely coincides with
Substituting in Eq. (131) the graph of the TBPFs.

T T T T T T T T

Absolute Eror MBPF
-A&-Absolute Emror BPF

Error

t;

Figure 1. Absolute error of IBPFs and BPFs expansions. A comparison at the midpoints of the intervals of IBPFs was done.

One can notices that the error is huge in this case. However; if we choose random points the functions will be like

t

Figure 2. A comparison between the exact and approximation of both BPFs and IBPF's solutions.

It is noticed here that at some points the BPFs solution is better and at other points, the IBPFs solution is better. The error, in
this case, will be sometimes in the favor of IBPFs and at other points will be in the favor of BPFs as.
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Absolute Emor MBPF

A- Asolute Emor BPF

Errox

7

Figure 3. Absolute error of IBPFs and BPFs expansions. A comparison at random points is done.
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The following table shows numerical results of the absolute error by using the block pulse method and the improved block
pulse method at the midpoint of every subinterval. Also, the error for the present method is compared with the block pulse
functions error at some points in the following table at m = 16.

Table 1. The numerical results of example 1 at m=16.

Absolute error

t Exact solution IBPF BPF
IBPF BPF

0.0625 1.133148453 1.1335535982 1.2066444069 4.05145 x 107* 7.3496 x 1072
0.1875 1.45499141461 1.4555116313 1.5493620874 5.20217 x 10~* 9.43707 x 1072
0.3125 1.86824595743 1.86891392893 1.9894202999 6.67972 x 107* 1.21174 x 1071
0.4375 2.39887529396 2.3997329863 2.5544662295 8.57692 x 10™* 1.55591 x 1071
0.5625 3.0802168489 3.08131814774 3.2799995648 1.1013 x 1073 1.99783 x 1071
0.6875 3.9550767229 3.95649081860 4.211602808 1.4141 x 1073 2.56526 x 107!
0.8125 5.07841903718 5.0802347720 5.4078050504 1.81573 x 1073 3.29386 x 107!
0.9375 6.52081912033 6.5228219472 6.943759133 2.00283 x 1073 42294 x 1071

For m=32 we will find the following output

Table 2. The numerical results of example 1 at m=32.

t

Exact solution

IBPF

BPF

Absolute error

IBPF BPF
0.0625 1.1331484530668 1.1332478037112 1.1692188240521 9.93506 X 1075 3.60704 x 1072
0.1875 1.4549914146182 1.4551189833707 1.5013066877527 1.27569 x 10~* 4.63153 X 1072
0.3125 1.8682459574322 1.8684097589528 1.9277159453177 1.63802 x 107* 5.947 x 1072
0.4375 2.398875293967 2.3990856192828 2.4752362699422 2.10325 x 107* 7.6361 x 1072
0.5625 3.08021684891 3.0804869119692 3.1782662829132 2.70063 x 10™* 9.80494 x 1072
0.6875 3.955076722920 3.9554234907425 4.0809746882622 3.46768 x 10™* 1.25898 x 1071
0.8125 5.0784190371800 5.07886429587 5.2400752245881 445259 X 107* 1.61656 x 1071
0.9375 6.5208191203301 6.521390843816 6.728389773726 5.71723 x 10~* 2.07571 x 1071

It is worth noting here is that the midpoint of the intervals is
different for each method as each method has different
intervals. In the study of Maleknejad, and Mahmoudi, [16],
the authors used the hybrid Taylor and block-pulse functions.
They got the maximum norm of the error. We notice that at
m = 32, the IBPFs maximum norm of error is 5.71723 X
10~* which is less error and a more accurate solution than
that done by using the hybrid Taylor and block-pulse
functions. In the study of Maleknejad, and Mahmoudi, [16],
the table done is as follows:

Table 3. The numerical results as done by using hybrid Taylor and block-pulse

functions [16].
M N ly = ¥%1le Cond (I - KD)
3 10 3.005651 x 107 6.0920
3 20 8.668870 x 10° 7.0734
3 40 2.316608 x 107 7.6292
3 80 5.981580 x 10 7.9248
4 10 2.892984 x 107 7.1086
4 20 7351252 x 107 8.3168
4 40 1.847061 x 107 9.0048
4 30 4625381 x 10™ 9.3718
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Example 2
Now, we will study a Volterra numerical example to show
how the method works on it [17],

y(t) = Cos(t) + {t) (t — s)Cos(t — s)y(s)ds (132)
where the exact solution is y(t) = §(260s(\/§t + 1)).
Let
y(&) = YTWq, (1)
Cos(t) = FTW . (1)
(t = s)Cos(t —s) = W[y () Kamy ¥ my (1)

where YT = [yo, V1, ..., V] are the
coefficients for the unknown function y(t) ,
[fo, fi, - fin] are known and found by using

undetermined
FT =

1/.2m

2m f Cos(t)dt,i =0,
0

i+1/2
m

fi={m Cos(t)dt,1<i<m-1,

it1/2
m

1
2m f Cos(t)dt,i = m.

1-1/2m

Also, Kgn) = Kpyixm+1 can be found by using the
following relation:

Ky = [kijleme1xm+1)
Substituting in Eq. (132), one gets
YWy (8) = FTW iy (£)
t

+ f Wl (K my ¥ omy (O Wiy (DY
0

From Eq. (32), one finds
-1
YT = FTItms1) — KeyB] -

Then by solving this system of linear equations, the
improved block pulse series coefficients can be found. After
substituting into Eq. (132), the IBPF approximate solution will
be found. Below are the graphs of the improved block pulse
approximate solutions at m=32. Also, the exact solution is
graphed on the same axes to see how close is the new method
to the exact solution in the selected intervals. We notice here
that as we increase the number of intervals, the MPBF
coincides with the exact solution. The graphs of the block
pulse function solution at the same divisions of intervals are
also graphed. Now, we can look at the combined graphs of the
BPF, IBPF, and exact solutions at m=32.

L

Figure 4. Absolute error of IBPF's and BPF's expansions. A comparison at the
midpoints of the intervals of IBPFs was done.

The error, in this case, will be like this

Error

t

Figure 5. Absolute error of IBPF's and BPF's expansions. A comparison at the
midpoints of the intervals of IBPFsis was done.

One notices that the error is huge in this case. However; if
we choose random points the functions will be like this

L

Figure 6. A comparison between the exact and the approximation of both
BPFs and IBPFs solutions.

We notice here that at some points the BPFs solution is
better and at other points, the IBPFs solution is better. The
error in this case also will be sometimes in the favor of IBPFs
and at other points will be in the favor of BPFs as follows.

Now the following tables show the values of the exact, BPF,
and IBPF solutions at different points within the interval
[0,1). Notice that the modification done to the BPF made the



absolute error smaller than the regular BPF. Also, it's worth
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mentioning that it took less time to compute the solution using

Error

t

IBPF than BPF.

Figure 7. Absolute error of IBPFs and BPFs expansions. A comparison at random points is done.

Table 4. The numerical results of example 3 at m=8, 16 and 32.

31

Absolute error

t Exact solution IBPF BPF IBPF BPF
0.0625 0.99609757 0.99739787 0.97780024 1.3003 x 1073 1.82973 x 1072
0.1875 0.96515166 0.96643162 1.90563427 1.2800 x 1072 9.404826 x 107!
0.3125 0.90470478 0.90594438 1.77933478 1.2396 x 1073 8.746300 x 107t
0.4375 0.81757932 0.81875923 1.60339295 1.1799 x 1073 7.858136 x 107t
0.5625 0.70784335 0.70894532 1.38491319 1.1020 x 1073 6.770698 x 107!
0.6875 0.5806207 0.58162799 1.13268493 1.0073 x 1073 5.520642 x 107t
0.8125 0.44185167 0.44274958 0.85683929 8.979 x 107* 4.149876 x 1071
0.9375 0.29801567 0.29879217 0.60443488 7.765 x 10™* 3.064192 x 107¢
q Absolute error
t Exact solution IBPF BPF IBPF BPF
0.03125 0.99902368 0.99934909 0.99421874 3.254 x 107* 4.8049 x 1073
0.15625 0.97573459 0.97605619 1.94171116 3.216 x 107* 9.659766 x 107!
0.28125 0.92245038 0.92276315 1.83156224 3.128 x 107* 9.091119 x 107t
0.40625 0.84165902 0.84195808 1.66841447 2.991 x 107* 8.267555 x 107t
0.53125 0.73713282 0.73741355 1.45933925 2.807 x 10~* 7.222064 x 107t
0.65625 0.61375234 0.61401045 1.21337334 2.581 x 107* 5.996210 x 107t
0.78125 0.47727849 0.47751017 0.94113432 2.317 x 107* 4.638558 x 1071
0.90625 0.33408352 0.3342856 0.65436891 2.021 x 10~* 3.202854 x 107¢
q Absolute error
t Exact solution IBPF BPF IBPF BPF
0.015625 0.99975588 0.99983725 0.99852481 8.14 x 1075 1.2311x 1073
0.140625 0.98032218 0.98040276 1.95648495 8.06 x 1075 9.761628 x 1071
0.265625 0.93067917 0.9307577 1.85517284 7.85 x 10~° 9.244937 x 1071
0.390625 0.85314478 0.85322004 1.69912267 7.53 x 10~° 8.459779 x 1071
0.515625 0.75133926 0.75141007 1.49535215 7.08 x 10~° 7.440129 x 1071
0.640625 0.63001613 0.63008142 1.25300932 6.53 x 10~° 6.229932 x 1071
0.765625 0.49484024 0.49489903 0.98296517 5.88 x 10~° 4881249 x 1071
0.890625 0.35212323 0.35217472 0.69732962 5.15 x 10~° 3.452064 x 107!
Example 3 where the exact solution is y(t) = tan(t).
Now, a non-linear Volterra integral equation will be Let
considered [18],
H t YO = V"W 1)
. 1, 1 1
y(t) = sint + -sin2t — ¢t + {) E(y(s))zds (133) sint + %sinZt —it = FTW ) (£)
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where

and YT = [y,, V1, ..., V] are the undetermined coefficients
for the unknown function y(t), FT =[fy, fi, .., fim] are
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2

1
== WO () Ky ¥ imy ()

y(®)]* = YT, (1),

Y =[yé v

known and found by using

m
fi={m [ sint+

1/2m

i+1/2

i<1/2
m

1-1/2m

Vi1 Y]

2m [ sint +1sin2t —1tdt,i = 0,
A 8 4

1, 1 .

gSant—thtJSlSm—l,

1
. 1, 1 .
2m [ sint +=sin2t —-tdt,i = m.
8 4

Numerical Solution of Linear and Nonlinear Integral

Ky = [kijleme1xm+1)

Substituting in Eq. (133), one gets
t
YTW oy (8) = FTW 0 () + {) Wiy () Kamy¥ ) (D)W (Y

then
Y,, = E, + KBY,

Then by solving this system of linear equations, the
improved block pulse series coefficients can be found. After
substituting into Eq. (133), the IBPF approximate solution will
be found. Now, the following tables show the values of the
exact, BPF, and IBPF solutions at different points within the
interval [0,1). Notice that the modification done to the BPF
made the absolute error smaller than the regular BPF. Notice
that the collocation points are taken as the midpoints of the
subintervals of the IBPF.

Also, Kuny) = Kipyixm+1 can be found by using the
following relation:

Table 5. The numerical results of example 3 at m=16, 32 and 64.

Absolute error

t Exact solution BPF IBPF BPF IBPF
0.0625 0.06245931784 0.093612675778 0.062466951295 3.11534 x 1072 7.63345 x 107°
0.1875 0.18640329676 0.2170087570684 0.186410549346 3.06055 x 1072 7.25258 x 1076
0.3125 0.307438514580 0.337016820351 0.307444087500 2.95783 x 1072 5.57292 x 107°
0.4375 0.423676257203 0.451763228136 0.423677936691 2.8087 x 1072 1.67949 x 107
0.5625 0.53330267353 0.559456455022 0.533297375625 2.61538 x 1072 5.29791 x 1076
0.6875 0.634607080015 0.658415051904 0.634590915940 2.3808 x 1072 1.61641 x 1075
0.8125 0.726008655260 0.747093898134 0.725977021657 2.10852 x 1072 3.16336 x 107°
0.9375 0.80608110826 0.824108333579 0.806028807496 1.80272 x 1072 5.23008 x 1075
. Absolute error
t Exact solution BPF IBPF BPF IBPF
0.03125 0.0312449139853 0.046857834016 0.031245867786 1.56129 x 1072 9.53801 x 1077
0.15625 0.1556149927735 0.171029920177 0.155615881844 1.54149 x 1072 8.89071 x 1077
0.28125 0.277556751646 0.292532814144 0.277557294759 1.49761 x 1072 543113 x 1077
0.40625 0.3951673302409 0.409470265960 0.395167014811 1.43029 x 1072 3.15429 x 1077
0.53125 0.506611454814 0.520017268808 0.506609546436 1.34058 x 1072 1.90838 x 107°
0.65625 0.610150077075 0.622448539197 0.610145633976 1.22985 x 1072 44431 x 107°
0.78125 0.704167511454 0.715165442270 0.704159404855 1.09979 x 1072 8.1066 x 107°
0.90625 0.787196647331 0.796720942461 0.787183588996 9.5243 x 1073 1.30583 x 10~5
q Absolute error
t Exact solution BPF IBPF BPF IBPF
0.015625 0.01562436422 0.023435354237 0.01562448343 7.81099 x 1073 1.19213 x 1077
0.140625 0.14016197234 0.147892979326 0.14016207867 7.73101 x 1073 1.0633 x 1077
0.265625 0.26251239976 0.270042713246 0.26251242836 7.53031 x 1073 2.85989 x 1078
0.390625 0.38076640899 0.387978390767 0.38076623687 7.21198 x 1073 1.72115 x 1077
0.515625 0.49307868575 0.499859605785 0.49307813398 6.78092 x 1073 5.51765 x 1077
0.640625 0.59769663453 0.603940430592 0.59769547162 6.2438 x 1073 1.16292 x 107°
0.765625 0.69298772724 0.69859666112 0.69298567393 5.60893 x 1073 2.05332 x 107°
0.890625 0.77746497824 0.78235116319 0.77746171413 4.88618 x 1073 3.26411 x 107
Example 4 where the exact solution is y(t) = 1 — 2t + 3t2.
Now, consider the non-linear Fredholm integral equation Let
18],
o 1 Y(E) = VT (0
YO =—=—St+ 22+ fo (1 + st + s2t2)(y(s))?ds (134)
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2 83 50,
_E_%t-i-ﬁt ~F l}’(m)(t)

1+ st + 522 = Wl () Ky Wmy (8
YO = VT (0),
where
Y =08t i1 vl

and YT = [y,, V1, ..., V] are the undetermined coefficients
for the unknown function y(t), FT =[fy, fi, .., fin] are
known and found by using

1/2m s
2 83 0 .
2m [ —=——t+=—t%dti=0,
0 15 30 21
i+1/2
m 2 83 50
= — 422 <i<m-1,
fi <mi_f1/2 — -ttt tldt1<i<m-1,
m
! 2 83 50
2m [ —=——t+=—tidti=m.
1-i/z2m 15 30 21

Also, Ky = Kjpy1xm+1 can be found by using the
following relation:

Ky = [kijlime1xm+1)
Substituting in Eq. (134)

t
YTW oy (8) = FTW 0 () + {) Wiy () Kamy¥ ) (D)W (Y

Then we have the system
Y, = E, + KVY,

By solving this system of linear equations, the improved
block pulse series coefficients can be found. After substituting
into Eq. (134), the IBPF approximate solution will be found.
Now, the following tables show the values of the exact, BPF,
and IBPF solutions at different points within the interval
[0,1). Notice that the modification done to the BPF made the
absolute error smaller than the regular BPF. Notice that the
collocation points are taken as the midpoints of the
subintervals of the IBPF. This table shows the errors between
exact, BPF, and IBPF solutions. It's obvious that the IBPF
solution is better than that of BPF.

Table 6. The numerical results of example 8 at m=$.

Absolute error

t Exact solution BPF IBPF IBPF BPF

0.125 0.796875 0.74395255813 0.8083499317 5.29224 x 1072 1.14749 x 1072
0.25 0.6875 0.68110821524 0.6987662714 6.39178 x 1073 1.12663 x 1072
0.375 0.671875 0.71184740027 0.6828093009 3.99724 x 1072 1.09343 x 1072
0.5 0.75 0.83617011321 0.7604790205 8.61701 x 1072 1.0479 X 1072
0.625 0.921875 1.05407635405 0.9317754300 1.32201 x 107t 9.90043 x 1073
0.75 1.1875 1.36556612281 1.1966985294 1.78066 x 1071 9.19853 x 1073
0.875 1.546875 1.77063941948 1.5552483188 2.23764 x 1071 8.37332 x 1073

This method is extended to be coupled with other known methods as done in the work by Ramadan and Osheba, [19]. It gave very accurate results that can be

used to develop this work thoroughly.

5. Conclusion

The IBPFs, also the operational matrices B and V are used
to get numerical solutions of linear and nonlinear Volterra and
Fredholm integral equations. The mentioned method reduces
the integral equations into an algebraic matrix equation. After
solving the matrix equation, we can get the solution easily.
The operational matrices have many zeros which make them
easier to deal with than other methods. When this method is
compared to the original BPF method, it shows a high
accuracy at the midpoint of its intervals. This accuracy is
much better than that of the original technique. It is stated by
the graphs in the numerical applications section. Also, the
convergence proved in the current article for the proposed
method. The absolute error is shown to state the applicability
and accuracy of the method. The article is compared with the
work done with many other methods to prove the
effectiveness and convenience of the method. It is worth
mentioning that the method is extended to solve nonlinear
Volterra and Fredholm integral equations.
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