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Abstract: In this manuscript we insert the concept of derivations in associative PU-algebras and discuss some of its
important results such that we prove that for a mapping being a (Left, Right) or (Right, Left)-derivation of an associative PU-
algebra then such a mapping is one-one. If a mapping is regular then it is identity. If any element of an associative PU-algebra
satisfying the criteria of identity function then such a map is identity. We also prove some useful properties for a mapping
being (Left, Right)-regular derivation of an associative PU-algebra and (Right, Left)-regular derivation of an associative PU-
algebra. Moreover we prove that if a mapping is regular (Left, Right)-derivation of an associative PU-algebra then its Kernel is
a subalgebra. We have no doubt that the research along this line can be kept up, and indeed, some results in this manuscript
have already made up a foundation for further exploration concerning the further progression of PU-algebras. These definitions
and main results can be similarly extended to some other algebraic systems such as BCH-algebras, Hilbert algebras, BF-
algebras, J-algebras, WS-algebras, Cl-algebras, SU-algebras, BCL-algebras, BP-algebras and BO-algebras, Z- algebras and so
forth. The main purpose of our future work is to investigate the fuzzy derivations ideals in PU-algebras, which may have a lot
of applications in different branches of theoretical physics and computer science.

Keywords: PU-Algebras, (Left, Right)-derivations of PU-algebras, (Right, Left)-derivations of PU-algebras,
Regular Derivations of PU-algebras.

. properties, defined a d -derivations ideal and gave conditions for
1. Introduction an ideal to be d-derivations. Later, Abujabal and Al-Shehri [13],
defined a left derivations in BCl-algebras and investigated a
regular left derivations. Zhan and Liu [14] studied f-derivations
in BCl-algebras and proved some results. Muhiuddin and Al-
roqi [15, 16] introduced the notions of (o, P)-derivations in a
BCl-algebras and investigated related properties. They provided
a condition for a (a, B) - derivations to be regular. They also
introduced the concepts of a d (o, B) - invariant (a, B) -
derivations and o-ideal, and then they investigated their relations.
Furthermore, they obtained some results on regular (o, P) -
derivations. Moreover, they studied the notions of t-derivations
on BCl-algebras [17] and obtain some of its related properties.
Further, they characterized the notions of p-semisimple BCI-
algebras X by using the notions of t-derivations. Abujabal and
Shehri in their pioneer paper [18], defined the derivations as, for
a self-map, d, for any algebra X, d is a left-right derivation
(briefly (I, r)-derivation) of X if it satisfies the identity d(a *
b)=(d(a) * b) A (a *d(b)). For alla,b € X. If d satisfies the
identity d(a * b) = (a * d(b)) A (d(a) *b) for alla,b € X,

In 1966, Y. Imai and K. Iséki introduced two classes of
abstract algebras: BCK-algebras and BCl-algebras [1-3]. It is
known that the class of BCK-algebras is a proper subclass of the
class of BCl-algebras. Neggers et al. [4] introduced a notions,
called Q-algebras, which is a generalization of BCH / BCI /
BCK-algebras and generalized some theorems discussed in BCI-
algebras. Megalai and Tamilarasi [5] laid down the foundation
of a notion, called TM-algebra. Moreover, Mostafa et al. [6]
introduced a new algebraic structure called PU-algebra, which is
a dual for TM-algebra and investigated severed basic properties.
Moreover they derived new view of several ideals on PU-
algebra and studied some properties of them. Derivation is a
very interesting and important area of research in the theory of
algebraic structures in mathematics. Several authors [7-11] have
studied derivations in rings and near rings. Jun and Xin [12]
applied the notions of derivations in ring and near-ring theory to
BCl-algebras, and they also introduced a new concept called a
regular Derivation in BCI-algebra. They investigated some of its
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then d is a right-left derivation (briefly (r, /)-derivation) of X. If
d is both (I, r)- derivation and (r, /)-derivation, then d is a
derivation of X. The aim of the paper is to complete the studies
on PU-algebra; in particular, we aim to apply the notion of
derivation on associative PU-algebra and obtain some related
properties. We start with definitions and propositions on PU-
algebra taken from [6].

Then, we redefine the notion of derivation in associative
PU-algebra and prove that for ¢ being a (Left, Right) or
(Right, Left) -derivation of an associative PU-algebra £ then
¢ is one-one map. If § is a regular map then it is identity. If
there exists an element a € Z such that ¢(a)=a then the map
¢ is identity. We prove that If ¢ is (Left, Right) -regular
derivation of Z then ¢ (a) = a A ¢ (a) also if ¢ is
(Right, Left) -regular derivation of Z then ¢p(a)=d(a) A a,
V a € Z We prove that if ¢ is a self-map of an associative
PU-Algebra Zthen (a * (a * ¢(a))) * a=(P(a) * (d(a) *
a))* a. We also prove that if ¢ is a regular (Right, Left)-
derivation of an associative PU-algebra £ then Ker(¢)={a €
4 ®(a)=0} is a subalgebra of Z.

2. Preliminaries

This section consists of some preliminary definitions and
basic facts about PU-algebra which are useful in the proofs of
our results. Throughout this research work we denote the PU-
algebra always by Z.

Definition 2.1: [6] PU-algebra (Z,*, 0) is a class of the type
(2, 0) algebras which satisfies the (P;) and (P,) conditions for
all p,q,t € Z, where

PPOxa=a@Py)(a*xc)*(b* c)=bx*a

While the binary relation ‘<’ on Zis definedasa < b &
b * a=0.

Proposition 2.2: [6] In PU-algebra (£,*, 0) the following
results are true for all a, b, ¢ € Z.

(P3) a * a=0

(P (axc)x c=a

(Ps)ax(b*c)=b*(axo

(Pg)ax(b*a)=b=x0

(P;) The following three results are similar in (Z,*, 0)

(1):b=c@):b*xa=c*xaB):a*xb=axc

(Ps) Both (left and right) cancellation properties hold in
(4., 0).

Definition 2.3: [6] PU-algebra (Z,*, 0) is said to be
associative if it satisfies the condition a * (b * ¢)=(a * b) * ¢
foralla,b,¢c € Z

3. Main Results

Definition 3.1:- Let (£*, 0) is an associative PU-algebra
and ¢: £— Zis a self-map then ¢ called (Left, Right) -
derivation on Zif ¢d(a * b) = (d(a) * b) A (a * d(b)).

Definition 3.2:- Let (£, *, 0) is an associative PU-algebra
and ¢: £ — Zis a self-map then ¢ is called (Right, Left)-
derivation on Zif ¢(a * b)=(a * d(b)) A (d(a) * b).

Definition 3.3: If ¢ is both (Left, Right)-derivation and
(Right, Left)-derivation on £ then ¢ is called derivation on Z.
Definition 3.4: A self-map ¢: £ — Z on associative PU-

algebra Zis called regular if $(0) = 0.
Example 3.5: Let the set Z={0, a, b, ¢ } defined by the
following table.

Table 1. Tabular arrangement of the values of the set satisfying the axioms of
associative PU -algebra.

* 0 a b (4
0 0 a b 4
a a 0 ¢ b
b b 4 0 a
C C b a 0

Is an associative PU-algebra and a map, ¢: Z — Z
defined by

& (0)=c P (a)=b d(b)=a and P(c)=0 is both (Left, Right)-
derivation and (Right, Left) -derivation on Z and thus a
derivation of Z.

Proposition 3.6: Let ¢ be a (Left, Right)-derivation of an
associative PU-algebra Z then

(Po): d(0)=d(a) * a, Va € Z.

(P1o): ¢ is one-one map.

(Py)): If ¢ is a regular map then it is identity.

(P1y): If there exists an element a € Z such that ¢(a)=a
then the map ¢ is identity.

(P13): If ¢(b) * a=0 or a* ¢(b)=0 then p(b)=a, Va,
b € Zi.e. § is constant.

Proof (Py):

$(0)=d(a * a), = by (P3)
=(d(a) * a) A (a * d(a))
=(a * ¢(a)) * [(a * () * (P(a)* a)]
=[(a * d(a)* (a * P(a))] * (d(a) * a), ~* Zis associative
=0 * (¢p(a) * a), = by (P)
=(¢(a) * a), = by (Py)
Proof (Py): Let a, b € Zsuch that

$(a)=0(b) (1
From (Py) we have
d(0)=dp(a) * aVa € 4 (@)
Also from (Po) we have
$(0)=p(b) * bVD € (©)
From (2) and (3) we get
d(a) * a=¢(b)* b 4)
Using the result of equation (1) in equation (4) we get
d(a) * a=¢(a)* b (5)

By (Pyg) left cancellation law holds in Z therefore from (5) we
get a = b. Hence ¢ is one to one.
Proof (Py;): Let ¢ is regular then we have

$(0)=0 (6)
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From (Py) we have

d(0)=¢p(a) * aVa € Z (7)
From (6) and (7) we get
d(a)* a=0Va€E g ®)

Now by using (P;) in the right hand side of equation (8)
then (8) becomes

dla)xa=a*xaVa€E L~ a* a=0 9)

By (Pg) right cancellation law holds in Z therefore (9)
becomes p(a)=aVa € 4.

Hence ¢ is the identity map.

Proof (Py;): Let

d(0)=a

Now by proposition (P;) equation (10) is equivalent to

(10)

d(a)* a=a * a = P(a) * a=0,"" by (P;) (11)
From (Py) we have
d(0)=p(a) * aVae g (12)

So now using the result of equation (12) in the left hand
side of equation (11) we get

®(0)=0 = ¢ is regular which by (P;;) ¢ is the identity
map.

Proof (Py;): Let

$(b) * a=0 (13)
by proposition (P3) equation (13) becomes
od)*xa=a *a (14)

by (Pg) right cancellation law holds in Z therefore (14)
becomes ¢p(b)=a.
Similarly for

a * ¢(b)=0 (15)
by (P3) equation (15) becomes
a * ¢(b)=a * a (16)

by (Pg) left cancellation law holds in £ therefore (16)
becomes ¢p(b)=a.

Proposition 3.7:- Let ¢ be a (Right, Left)-derivation of an
associative PU-algebra Z then

(P14): ¢(0)=a * ¢p(a),Va e Z

(P15): ¢ is one-one map.

(P16): If d is a regular map then it is identity.

(Py7): If there exists an element a € £ such that ¢(a)=a
then the map

¢ is identity.

(Pg): If d(b) * a=0 or a* ¢(b)=0 then ¢p(b)=a, Va,
b € Zi.e. ¢ is constant.

Proof (P14):

d(0)=d(a * a), = by (P3)

=(a * () A (P(a) * )
=(d(a) * a) * [(P(a) * a) * (a * P(a))]
=[(d(a) * @) * (d(a) * A)] x(a * P(a)), = Zis associative
=0 * (a * ¢(a)), = by (P3)
=a * ¢(a), = by (Py)
Proof (Pys): Let a, b € £ such that

$(a)=¢(b) (17
From (P,;) we have
d(0)=a * ¢(a)VaeE S (18)
Also from (P3) we have
$(0)=b * ¢(b) Vb € 4 (19)
From (17) and (18) we get
a * ¢(a)=b * d(b) (20)

Using (17) in the right hand side of equation (20) we get
a * ¢(a)=b * d(a) 21

By (Pg) right cancellation law holds in £ therefore from
(21) we get a = b that is ¢ is one to one.
Proof (Pys): Let ¢ is regular then we have

$(0)=0 (22)
From (P4) we have
¢(0)=a * p(a)Va€Z (23)
From (22) and (23) we get
ax* d(a)=0Va€eg (24)

Now by using (P3) in the right hand side of equation (24)

then (24) becomes
a*x ¢la)=a * aVa€eZ ~ a * a=0 (25)

By (Pg) left cancellation law holds in Z therefore (iv)
becomes ¢p(a)=a, Va € Z.

Hence ¢ is the identity map.

Proof (Py7): Let

d(a)=a

Now by proposition (P;) equation (26) is equivalent to

(26)

a* p(a)=a * a = a * ¢(a)=0, by (P;) (27)
From (P4) we have
d(0)=a * d(a)Va € Z (28)

so now using (28) in (27) we get $(0)=0 = ¢ is regular
which by (Py4) ¢ is the identity map.
Proof (Py3):
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Let $(b) * a=0 (29)

by proposition (P;) the right hand side of equation (29)

becomes
oMd)*xa=a *a (30)

by (Pg) right cancellation law holds in Z therefore (30)
becomes ¢p(b)=a

Similarly
a * ¢(b)=0 31
by (P3) equation (31) becomes,
a * ¢(b)=a * a (32)

by (Pg) left cancellation law holds in 4 therefore (32)
becomes ¢p(b)=a.

Theorem 3.8: Let £ is an associative PU-algebra

(P,): If ¢ is (Left, Right) -regular derivation of Z then

d(@)=a A p(a)VaeZ
(Py): If ¢ is (Right, Left) -regular derivation of Z then

d(a)=¢p(a) AaVa€E Z

Proof (P,): Since ¢ is regular therefore we have
$(0)=0
Now consider for some a € Z we have
$(a)=¢p(0 * a), ~ by (P)
=(d(0) * a) A (0 * d(a)),~by definition 3.1

(33)

=0 * a) A (0 * P(a)), ~ by using (33)

=a A ¢(a), ~ by (Py)

Proof (Py): Since ¢ is regular therefore we have

$(0)=0

Now consider for some € Z, $(a)=¢(0 * a), * by (P;)
=0 * P(a)) A ($(0) * a) ~ by definition 3.1
=0 * d(a)) A (0 * a) ~ by using (34)

=d(a) Aa by (Py)

Theorem 3.9: Let ¢ is a self-map of an associative PU-

Algebra Zthen (a * (a * $(a))) * a=(d(a) * (Pp(a) * a))* a.
Proof: Since by (theorem 3.8 (P,)) we have,

(34

d(@)=d(a) Aa=a *(a * d(a)) (35)
By (P;) equation (35) is equivalent to
d(0) * a=(a * (a * ¢(a)) * a (36)
on the other hand from (theorem 3.8 (P,)) we have
d(0)=a A d(a)=d(a) * (db(a) * a) (37
Similarly by (P;) equation (37) is equivalent to
d(0) * a=(d(a) * (d(a) * ) * a (38)

from (36) and (38) we get
(a * (@ * §(a)) * a=(d(a) * (Pp(a) * a)) *a.

Theorem 3.10: If ¢ is a derivation on an associative PU-
algebra ZthenVa € 4

(Po): d(a * d(a))=0
(Po): d(Pp(a) * a)=0
Proof (P.): Let ¢ is a (Left, Right)-derivation on £ then

da* d(a)=(p(a) * d(a) A (a * d(d(a)))=0 A (a *
d(d(a))), ~* by using (Ps)

= d(a * dpla))=(a * d(d(a)) * [(a * d(d(a)) * 0] (39)

As Zis an associative PU-algebra therefore we can write
equation (39) as

da * d(a)=[a * d(d(0)) * (a * d(d(a))] * 0=0 * 0=0,

- by using (P3)
Proof (Py): Let ¢ is a (Right, Left)-derivation on Z then

d(d(a) * A)=(P(a) * d(a)) A ((P(a)) * a)=0 A (d(P(a)) *
a), ~* by using (P3)

= d(d(0) * A)=(d(P(a) * @) * [(P(P(a)) * a) * 0] (40)

As Zis an associative PU-algebra therefore (39) can be
written as

d(d(a)) * a)=[(d(d(a)) * a) * (d(d(a)) * a)] * 0=0 + 0=0,
by using (P3)

Theorem 3.11: Let ¢ is a regular (Left, Right)-derivation
of an associative PU-algebra Z then the following results
hold in Z.

(Po): d(a)=a
(Pp:d(@)* b=a * d(b)Va,b €4
(Po): d(b * a)=d(a) * b= d(a) * Pp(b)=a * P(b)
(Py): Ker(d)={ a € Z d(a)=0} is a subalgebra of Z.
Proof (Pe): d(a)=d(0 * a),
* by using (P,)
=($(0)* a) A (0 * P(a))
=0 a) A (0% d(a)),~ ¢ is regular
=a A ¢(a), ~ by using (Py)
=d(a) * (d(a) * a)
=(d(a) * d(a)) * a,~ Zis associative
=0 * a =a * byusing (P))

Hence ¢(a)=a.
Proof (Py): As ¢ is a regular (Left, Right)-derivation of an
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associative PU-algebra £ then by (P.) we have

d(a)=a,Va€ @1

And
o(b)=b,VbE J

By using the results of equations (41) and (42) we get
d(a)* b=a * b=a * d(b).

Proof (Py): As ¢ is a regular (Left, Right)-derivation of an
associative PU-algebra £ then by (P.) we have

(42)

d(a)=a,Va € g (43)
Therefore for any a, b € Z,
We have ¢(a * b)=a * b - by using (P.) (44)
= ¢(a * b)=d(a) * d(b), ~ by equation (43)  (45)
= ¢(a * b)=d(a) * b, * by equation (43) (46)
And ¢(a * b)=a * P(b) ~ by equation (43) 47)
The equations (45), (46) and (47) imply that
d(b * a)=d(a) * b = d(a) * p(b)=a * d(b)
Proof (Py): Let a, b € Ker(¢) then ¢p(a)=0 (48)
And
$(6)=0 (49)

As ¢ is a regular derivation therefore from (P,) we have,

d(a * b)=d(a) * b(b) (50)

Using (48) and (49) in the right hand side of equation (50)
we get ¢(a * b)=0
= a * b € Ker(¢p) = Ker() is a subalgebra of Z.

4. Conclusion

We see that derivations with special properties play a
central role in the investigation of the structure of an
algebraic system.

The forthcoming study of derivations in PU-algebras may
be the following topics are worth to be taken into account.

To describe left derivations in PU-algebras and investigate
a regular left derivations by using this concept.

To introduce the concept of f-derivations, t-derivations, t-
bi-derivations and (o, B)-derivations in PU-algebras.

To refer this concept to some other algebraic structures.

To consider the results of this concept to some possible
applications in information systems and computer sciences.
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