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Department of Exacts Sciences, Faculté des Sciences et Techniques, University Marien N’Gouabi, Brazzaville, Congo

Email address:
bonayindoula@yahoo.fr (J. B. Yindoula)
∗Corresponding author

To cite this article:
Joseph Bonazebi Yindoula, Stevy Mikamona Mayembo, Gabriel Bissanga. Application of Laplace Variation Iteration Method to Solving the
Nonlinear Gas Dynamics Equation. American Journal of Mathematical and Computer Modelling. Vol. 5, No. 4, 2020, pp. 127-133.
doi: 10.11648/j.ajmcm.20200504.15

Received: September 11, 2020; Accepted: October 19, 2020; Published: December 16, 2020

Abstract: In this work, we use a new analytical technique called Laplace variational iteration method to construct the exact
solution of the nonlinear equation of gas dynamics. This method is based on the determination of the Lagrange multiplier in an
optimal way. Application of the method to three test modeling problems from mathematical physics leads to a sequence which
tends towards the exact solution of the problem. The solution procedure shows the reliability of the method and is high accuracy
evident.
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1. Introduction

Gas dynamics is the science of the flow of air and other
gas and or the notion of badies through air and other gas,
and its effects on physical systems, based on the principes of
fluid mechanics and thermodynamics; This Science considers
also products of combustion (and combustion). In the major
studes,the speed of gases is similar to sound velocity, and
some times one found a signifiant change in gas and objects
temperatures.[3, 16]. Theoretical equations need for the
computational of gas dynamics effects, based on: fluid
dynamics principles; gas laws; gas thermodynamic properties
(real gas or gas mixtures);energy equation; combustion
laws.These equations are written in terms of pressure (P)
and temperature (T), or volume (V) and T, and their
partial derivatives.Thus Many problems of gas dynamics are
governed by linear and non linear partial differential equations
(PDE).In the area of non linear gas dynamics, the last 20 years
have witnessed of a remarkable number of advances in the
solving of PDEs based on wide variety of numerical methods.

We can list: Adomian decomposition method [15],
Homotopy analysis method [18], finite difference scheme[19],
reduced differential transform method [20]. Reconstruction
of Variational Iteration Method [21, 24], Homotopy

perturbation method [11-14], Variational iterative method
[22], El-Zaki transform homotopy perturbation method
[2], Natural decomposition method [23], Variational
homotopy perturbation method [27], Differential transform
method, Modified Homotopy perturbation method [25],
Homotopy perturbation transformation method [28, 29] and
so on.However, it is difficult to find the exact solutions of non
linear PDEs of gas dynamics.

In this work, we use the Laplace Variational Iteration
Method to find the exact solution of the gas dynamics
equation[26]

∂u(x, t)

∂t
+

1

2

∂u2(x, t)

∂x
= u(x, t)− u2(x, t) + g(x, t);

0 6 x 6 1, t > 0

2. Description of the Method [9,10]
Consider the general nonlinear, inhomogeneous partial

differential equation.
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Lu(x, t) +Nu(x, t) = g(x, t) (1)

Where L is the highest power derivative which is easily
invertible, N represents a general nonlinear differential
operator and g(x, t) is a source term. with the initial condition

and here L is operator
(
∂

∂t

)
, u(x, 0) = h(x)

Taking the Laplace transform to the both sides of the given
equation.

LLu(x, t) + LNu(x, t) = Lg(x, t) (2)

we obtain:

sLu(x, t)− u(x, 0) = Lg(x, t)− LNu(x, t) (3)

We have

Lu(x, t) = 1

s
h(x) +

1

s
Lg(x, t)− 1

s
LNu(x, t) (4)

Taking the inverse Laplace

u(x, t) = h(x)+L−1
[
1

s
Lg(x, t)

]
−L−1

[
1

s
LNu(x, t)

]
(5)

Derivative (5) by
∂

∂t
both sides, we have

∂

∂t
u(x, t)−

∂

∂t
L−1

[
1

s
Lg(x, t)

]
+

∂

∂t
L−1

[
1

s
LNu(x, t)

]
= 0 (6)

The correction functional of the variational iteration method
is given as

un+1(x, t) = un(x, t) +

∫ t

0

λ

[
∂

∂τ
u(x, τ)− ∂

∂τ
L−1

[
1

s
Lg(x, τ)

]
+

∂

∂τ
L−1

[
1

s
LNu(x, τ)

]]
dτ (7)

The general lagrange multiplier for (7) can be identified optimally via variation theory to get

1 + λ/τ=t = 0 λ
′
/τ=t = 0 (8)

From, (8), we obtain
λ = −1 (9)

Substituting λ = −1 into ( 7), we get the iterative formula for n = 0, 1, 2, . . . , as follows

un+1(x, t) = un(x, t)−
∫ t

0

[
∂

∂τ
u(x, τ)− ∂

∂τ
L−1

[
1

s
Lg(x, τ)

]
+

∂

∂τ
L−1

[
1

s
LNu(x, τ)

]]
dτ (10)

Start with the intial iteration
u0(x, t) = u(x, 0) = h(x) (11)

The exact solution is given as a limit of the successive approximations un(x, t), n = 0, 1, 2, . . . , in other words,

u(x, t) = lim
n−→+∞

un(x, t) (12)

3. Numerical Examples

In this section, three problems are presented to illustrate the efficiency of the method.

3.1. Problem 1: The Following Nonlinear Homogeneous Gas Dynamics Equation [1,2,3,4,5,6,7,8,16]


∂u(x, t)

∂t
= −1

2

∂u2(x, t)

∂x
+ u(x, t)− u2(x, t), 0 6 x 6 1, t > 0

u(x, 0) = e−x

(13)

Consider the following homogenous gas dynamic equation :

∂u(x, t)

∂t
= −1

2

∂u2(x, t)

∂x
+ u(x, t)− u2(x, t) (14)

Taking Laplace transfom on equation (14)

L
(
∂u(x, t)

∂t

)
= L

(
−1

2

∂u2(x, t)

∂x

)
+ L (u(x, t))− L

(
u2(x, t)

)
(15)
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We obtain:

sLu(x, t)− u(x, 0) = L
(
−1

2

∂u2(x, t)

∂x
− u2(x, t)

)
+ L (u(x, t)) (16)

Then the equation (16) can be written:

sLu(x, t)− Lu(x, t) = u(x, 0) + L
(
−1

2

∂u2(x, t)

∂x
− u2(x, t)

)
(17)

We obtain :

Lu(x, t)(s− 1) = u(x, 0) + L
(
−1

2

∂u2(x, t)

∂x
− u2(x, t)

)
(18)

The equation (18) gives:

Lu(x, t) = 1

s− 1
u(x, 0) +

1

s− 1
L
(
−1

2

∂u2(x, t)

∂x
− u2(x, t)

)
(19)

The inverse Laplace transform of (19)

L−1Lu(x, t) = L−1
(

1

s− 1
u(x, 0)

)
+ L−1

(
1

s− 1
L
(
−1

2

∂u2(x, t)

∂x
− u2(x, t)

))
(20)

The equation (20) gives:

u(x, t) = etu(x, 0) + L−1
(

1

s− 1
L
(
−1

2

∂u2(x, t)

∂x
− u2(x, t)

))
(21)

Differentiating (21) with respect to t, we have

∂u(x, t)

∂t
= etu(x, 0) +

∂

∂t
L−1

(
1

s− 1
L
(
−1

2

∂u2(x, t)

∂x
− u2(x, t)

))
(22)

The correction functional of equation (22) is writlen

un+1(x, t) = un(x, t) +
∫ t
0
λ(t, τ)

[
∂un(x, τ)

∂τ
− esu(x, 0)− ∂

∂τ
L−1

(
1

s− 1
L
(
−1

2

∂ũn
2

∂x
− ũn2

))]
dτ (23)

Like λ(t, τ) = −1, the equation (23) gives:

un+1(x, t) = un(x, t)−
∫ t
0

[
∂un(x, τ)

∂τ
− esu(x, 0)− ∂

∂τ
L−1

(
1

s− 1
L
(
−1

2

∂u2n(x, τ)

∂x
− u2n(x, τ)

))]
dτ (24)

We know that:
u0(x, t) = u(x, 0) = e−x (25)

Let us calculate u1(x, t) for n = 0, one has

u1(x, t) = u0(x, t)−
∫ t
0

[
∂u0(x, s)

∂τ
− esu(x, 0)− ∂

∂τ
L−1

(
1

s− 1
L
(
−1

2

∂u20(x, τ)

∂x
− u20(x, τ)

))]
dτ (26)

We obtain:

u1(x, t) = u0(x, t)−
∫ t

0

[
−es−x − ∂

∂τ
L−1

(
1

s− 1
L(0)

)]
dτ (27)

The equation (27) gives:
u1(x, t) = et−x (28)

By using the same procedure one obtains:

u2(x, t) = u3(x, t) = ... = et−x (29)
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Finally one has: 

u0(x, t) = e−x

u1(x, t) = et−x

u2(x, t) = et−x

...
un(x, t) = et−x

(30)

So the desired solution is:
u(x, t) = lim

n−→∞
un(x, t); ∀n ≥ 0 (31)

u(x, t) = et−x (32)

3.2. Problem 2: The Nonlinear Non-Homogenous Gas Dynamic Equation [2,3,4,16]


∂u(x, t)

∂t
= −1

2

∂u2(x, t)

∂x
+ u(x, t)− u2(x, t)− et−x, 0 6 x 6 1, t > 0

u(x, 0) = 1− e−x
(33)

Consider the following non-homogenous, nonlinear gas dynamic equation:

∂u(x, t)

∂t
= −1

2

∂u2(x, t)

∂x
+ u(x, t)− u2(x, t)− et−x, 0 6 x 6 1, t > 0 (34)

Taking Laplace transfom on equation (34), we obtain

sLu(x, t) = u(x, 0) + L
(
−1

2

∂u2(x, t)

∂x
+ u(x, t)− u2(x, t)

)
− L(−et−x) (35)

The equation (35) gives:

Lu(x, t) = 1

s
(1− e−x) + 1

s
L
(
−1

2

∂u2(x, t)

∂x
+ u(x, t)− u2(x, t)

)
− 1

s
L(−et−x) (36)

Taking inverse Laplace to equation (36) gives:

u(x, t) = 1− et−x + L−1
[
1

s
L
(
−1

2

∂u2(x, t)

∂x
+ u(x, t)− u2(x, t)

)]
(37)

By deriving equation (37) with respect to t, we have:

∂u(x, t)

∂t
= −et−x + ∂

∂t
L−1

[
1

s
L
(
−1

2

∂u2(x, t)

∂x
+ u(x, t)− u2(x, t)

)]
(38)

The equation (38) is reduced as follows:

∂u(x, t)

∂t
+ et−x − ∂

∂t
L−1

[
1

s
L
(
−1

2

∂u2(x, t)

∂x
+ u(x, t)− u2(x, t)

)]
= 0 (39)

The correction functional of equation (39) is writlen

un+1(x, t) = un(x, t)−
∫ t
0

(
∂un(x, τ)

∂τ
+ eτ−x − ∂

∂τ
L−1

[
1

s
L
(
−1

2

∂u2n(x, τ)

∂x
+ un(x, τ)− u2n(x, τ)

)])
dτ (40)

We know that:
u0(x, t) = u(x, 0) = 1− e−x (41)
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Let us calculate u1(x, t) for n = 0, one has

u1(x, t) = u0(x, t)−
∫ t
0

(
∂u0(x, τ)

∂τ
+ eτ−x − ∂

∂τ
L−1

[
1

s
L
(
−1

2

∂u20(x, τ)

∂x
+ u0(x, τ)− u20(x, τ)

)])
dτ (42)

From (42), we get:
u1(x, t) = 1− et−x (43)

By using the same procedure one obtains:

u2(x, t) = u3(x, t) = ... = 1− et−x (44)

Finally one has: 

u0(x, t) = 1− e−x

u1(x, t) = 1− et−x

u2(x, t) = 1− et−x
...
un(x, t) = 1− et−x

(45)

Thus, the solution is:
u(x, t) = lim

n−→∞
un(x, t); ∀n ≥ 0 (46)

u(x, t) = 1− et−x (47)

3.3. Problem 3: The Nonlinear Non-Homogenous Gas Dynamic Equation [2, 3, 17]


∂u(x, t)

∂t
= −1

2

∂u2(x, t)

∂x
+ u(x, t) (1− u(x, t)) ln a, 0 6 x 6 1, t > 0, a > 0

u(x, 0) = a−x

(48)

Consider the following non-homogenous, nonlinear gas dynamic equation:

∂u(x, t)

∂t
= −1

2

∂u2(x, t)

∂x
+ u(x, t) (1− u(x, t)) ln a (49)

⇐⇒
∂u(x, t)

∂t
= −u(x, t)∂u(x, t)

∂x
+ u(x, t) (1− u(x, t)) ln a (50)

Taking Laplace transfom on equation (50), we obtain:

sL (u(x, t)− u(x, 0) = −L
(
u(x, t)

∂u(x, t)

∂x

)
+ L (u(x, t)) ln a− L

(
u2(x, t) ln a

)
(51)

The equation (51) gives:

L (u(x, t)) = a−x

s− ln a
− 1

s− ln a
L
(
u(x, t)

∂u(x, t)

∂x

)
− ln a

s− ln a
L
(
u2(x, t)

)
(52)

Taking the inverse Laplace transform ,we obtain:

u(x, t) = a−x+t − L−1
(

1

s− ln a
L
(
u(x, t)

∂u(x, t)

∂x

))
− L−1

(
ln a

s− ln a
L
(
u2(x, t)

))
(53)

By deriving equation (53) with respect to t, we have:

∂u(x, t)

∂t
= ln a (a−x+t)− ∂

∂t

(
L−1

(
1

s−ln aL
(
u(x, t)

∂u(x, t)

∂x

)))
− ∂

∂t

(
L−1

(
ln a
s−ln aL

(
u2(x, t)

)))
(54)



132 Joseph Bonazebi Yindoula et al.: Application of Laplace Variation Iteration Method to
Solvingthe Nonlinear Gas Dynamics Equation

The correction functional of equation (54) is written:

un+1(x, t) = un(x, t) +

∫ t

0

λ(t, τ)(
∂u(x, τ)

∂τ
− ln a

(
a−x+τ

)
+

∂

∂τ

(
L−1

(
1

s− ln a
L
(
u(x, τ)

∂u(x, τ)

∂x

)))
+

∂

∂τ

(
L−1

(
log a

s− ln a
L
(
u2(x, τ)

)))
)dτ

(55)

Making correction functional stationary, approximate Lagrange multiplier can be identified as λ(t, τ) = −1, so

un+1(x, t) = un(x, t)−
∫ t

0

(
∂u(x, τ)

∂τ
− ln a

(
a−x+τ

)
+

∂

∂τ

(
L−1

(
1

s− ln a
L
(
u(x, τ)

∂u(x, τ)

∂x

)))
+

∂

∂τ

(
L−1

(
ln a

s− ln a
L
(
u2(x, τ)

)))
)dτ

(56)

Therefore,

u0(x, t) = a−x+t

u1(x, t) = u0(x, t) = a−x+t

u2(x, t) = u1(x, t) = a−x+t

...
un(x, t) = un−1(x, t) = a−x+t

(57)

Thus, the solution is:

u(x, t) = lim
n−→∞

un(x, t) = a−x+t (58)

4. Conclusion

Through these examples, we have shown again the utility
of Laplace’s variational iteration method, in the search for
an approximate solution of the nonlinear equation of gas
dynamics. This method gives the exact solution with great
precision, using the initial conditions and can be considered
as a reliable refinement of existing techniques.
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