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Abstract: Logic of correlated knowledge is one of the latest development in logical systems, allowing to handle information
about quantum systems. Quantum system may consist of one or more elementary particles. Associating agent to each particle,
we get multi-agent system, where agents can perform observations and get results. Allowing communication between agents,
correlations such as quantum entanglement can be extracted. This can not be done by traditional epistemic logic or logic of
distributed knowledge. Our main scientific result is proof search system GS-LCK-PROC for logic of correlated knowledge,
which lets to reason about knowledge automatically. The core of the system is the sequent calculus GS-LCK with the properties
of soundness, completeness, admissibility of cut and structural rules, and invertibility of all rules. The ideas of semantic
internalization are used to get such properties for the calculus. The calculus provides convenient means for backward proof
search and decision procedure for logic of correlated knowledge. The procedure generates a finite model for each sequent. As a
result we get termination of the proof search and decidability of logic of correlated knowledge.
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1. Introduction

Information about quantum systems can be handled using
logical calculi. From historical point of view the research
of the area went in two main directions [20]. The first
was originated by J. von Neumann and G. Birkhoff [7],
introducing the ideas of quantum logic. However some
important impossibility results were obtained [1, 19]. D.
Aerts, C. Randall and D. Foulis showed that quantum logic
rises problems when trying to describe compound systems
consisting of more than one elementary particle that can
exhibit quantum entanglement. The other direction was the
Mackey-Piron way [13, 14, 18] - the research on an axiomatic
system that can be represented as the logic of projection
operators on a generalized Hilbert space. One of the latest
development in this way is quantum modal logics. The
research have been done by A. Baltag and S. Smets [4, 5],
F. Boge [8], V. Vilasini [22] and N. Nurgalieva [17]. Our

study covers field of logic of correlated knowledge which is
part of quantum modal logics. More approaches on logic and
quantum mechanics you can find in [2, 6, 9].

Logic of correlated knowledge (LCK) has been introduced
by A. Baltag and S. Smets in [3]. LCK is an epistemic logic
enriched by observational capabilities of agents. Applications
of the epistemic logic cover fields such as distributed
systems, merging of knowledge bases, robotics or network
security in computer science and artificial intelligence. By
adding observational capabilities to agents, logic of correlated
knowledge can be applied to reason about systems where
knowledge correlate between spatially distributed parts of the
system. This includes any social system, quantum system,
distributed information system, traffic light system or any other
system where knowledge is correlated.

Quantum system may consist of one or more elementary
particles. Associating agent to each particle, we get multi-
agent system, where agents can perform observations and get



30 Haroldas Giedra and Romas Alonderis: Automated Proof Search System for Logic of Correlated Knowledge

results. Allowing communication between agents, correlations
such as quantum entanglement can be extracted. This can not
be done by traditional epistemic logic or logic of distributed
knowledge.

Our main scientific result is proof search system GS-LCK-
PROC for logic of correlated knowledge, which lets to reason
about knowledge automatically. The core of the system is the
sequent calculus GS-LCK with the properties of soundness,
completeness, admissibility of cut and structural rules, and
invertibility of all rules. The ideas of semantic internalization,
suggested by Sara Negri in [15], are used to get such properties
for the calculus. The calculus provides convenient means for
backward proof search and decision procedure for logic of
correlated knowledge. The procedure generates a finite model
for each sequent. As a result we get termination of the proof
search and decidability of logic of correlated knowledge.

We start by defining syntax, semantics, and the Hilbert
style proof system for logic of correlated knowledge in section
2. In section 3 we present Gentzen style sequent calculus
GS-LCK and the properties of the proof system. Soundness
and completeness of the GS-LCK and the properties of
admissibility of weakening, contraction and cut are proved in
sections 4, 5 and 6 . Automated proof search system GS-LCK-
PROC and decidability of logic of correlated knowledge are

presented in the final section 7.

2. Logic of Correlated Knowledge

2.1. Syntax

Consider a set N = {a1, a2, ..., an} of agents. Each agent
can perform its local observations. Given sets Oa1 , ..., Oan of
possible observations for each agent, a joint observation is a
tuple of observations o = (oa)a∈N ∈ Oa1

× ... × Oan
or

o = (oa)a∈I ∈ OI , where OI := ×a∈IOa and I ⊆ N . Joint
observations together with results r ∈ R make new atomic
formulas or.

Each agent can know some information, and it is written as
Ka1

A or K{a1}A, which means that the agent a1 knows A.
A group of agents can also know some information and this is
denoted by K{a1,a2,a3}A or KIA, where I = {a1, a2, a3}. A
more detailed description about the knowledge operator K is
given in [10, 21].

Syntax of logic of correlated knowledge is defined as
follows: Definition 1(Syntax of logic of correlated knowledge)
The language of logic of correlated knowledge has the
following syntax:

A := p | or | ¬A | A ∨B | A ∧B | A→ B | KIA

Where p is any atomic proposition, o = (oa)a∈I ∈ OI , r ∈
R, and I ⊆ N .

2.2. Semantics

Consider a system, composed of N components or
locations. Agents can be associated to locations, where they
will perform observations. States (configurations) of the
system are functions s : Oa1

×...×Oan
→ R or sI : OI → R,

where I ⊆ N and a set of results R is in the structure
(R,Σ) together with an abstract operation Σ : P(R) → R
of composing results. The operation Σ maybe partial (defined
only for some subsets A ⊆ R), but it is required to satisfy
the condition: Σ{ΣAk : k ∈ K} = Σ(∪k∈KAk) whenever
{Ak : k ∈ K} are pairwise disjoint. P(R) is a power set of R.
For every joint observation e ∈ OI , the local state sI is defined
as: sI((ea)a∈I) := Σ{s(o) : o ∈ Oa1×...×Oan such thatoa =
ea for all a ∈ I}.

If s and t are two possible states of the system and a group of
agents I can make exactly the same observations in these two
states, then these states are observationally equivalent to I , and
it is written as s I∼ t. Observational equivalence is defined as
follows: Definition 2(Observational equivalence) Two states s
and t are observationally equivalent s I∼ t iff sI = tI .

A model of logic of correlated knowledge is a multi-modal
Kripke model [12], where the relations between states mean
observational equivalence. It is defined as: Definition 3Model
of logic of correlated knowledge For a set of states S, a family
of binary relations { I∼}I⊆N ⊆ S × S and a function of

interpretations V : S → (P → {true, false}), where P is
a set of atomic propositions, a model of logic of correlated
knowledge is a multi-modal Kripke model (S, { I∼}I⊆N , V )
that satisfies the following conditions:

1. For each I ⊆ N , I∼ is a multi-modal equivalence
relation;

2. Information is monotonic: if I ⊆ J , then J∼⊆ I∼;
3. Observability principle: if s N∼ s′, then s = s′;

4. Vacuous information: s ∅∼ s′ for all s, s′ ∈ S.
The satisfaction relation |= for model M , state s and

formulas or and KIA is defined as follows:
1) M, s |= KIA iff M, t |= A for all states t I∼ s.
2) M, s |= or iff sI(o) = r.

The formula KIA means that the group of agents I carries the
information that A is the case, and or means that r is the result
of the joint observation o.

If formula A is true in any state of any model, then it is
named as a valid formula.

2.3. Hilbert Style Salculus HS-LCK

Alexandru Baltag and Sonja Smets defined the Hilbert style
calculus for logic of correlated knowledge in [3]. Fixing a
finite set N = {a1, ..., an} of agents, a finite result structure
(R,Σ) and a tuple of finite sets ~O = (Oa1

, ..., Oan
) of

observations, for every set I, J ⊆ N , every joint observation
o ∈ OI , OI = ×a∈IOa, and results r, p ∈ R, the Hilbert style
calculus for logic of correlated knowledge over (R,Σ, ~O) is as
follows:
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1. Axioms:

H1. A→ (B → A)

H2. (A→ (B → C))→ ((A→ B)→ (A→ C))

H3. (¬A→ ¬B)→ (B → A)

H4. KI(A→ B)→ (KIA→ KIB) (Kripke’s axiom)

H5. KIA→ A (Truthfulness)

H6. KIA→ KIKIA (Positive introspection)

H7. ¬KIA→ KI¬KIA (Negative introspection)

H8. KIA→ KJA, where I ⊆ J (Monotonicity of group knowledge)

H9. A→ KNA (Observability)

H10. ∧
o∈OI

∨
r∈R

or (Observations always yield results)

H11. or → ¬op, where r 6= p (Observations have unique results)

H12. orI → KIo
r
I (Groups know the results of their joint observations)

H13. ( ∧
o∈OI

oro ∧ KIA) → K∅( ∧
o∈OI

oro → A) (Group knowledge is correlated knowledge (i.e. is based on joint

observations))

H14. ∧
o∈ē

oro → eΣ{ro:o∈ē}, where e ∈ OI , ē := {o = (oi)i∈N ∈ Oi1 × ... × Oin : oi = ei for all i ∈ I}. (Result

composition axiom)

2. Rules:
A,A→ B

B
(Modus ponens)

A

KIA
(KI − necessitation)

Sets I, J may be empty in axioms H4 - H8 and in rule
(KI − necessitation).

The Hilbert style calculus HS-LCK for logic of correlated
knowledge is sound and complete with respect to correlation
models over (R,Σ, ~O) [3].

3. Gentzen Style Sequent Calculus
GS-LCK

Gerhard Gentzen introduced sequent calculus in 1934 [11].
Sequents in the system GS-LCK are statements of the form
Γ ⇒ ∆, where Γ and ∆ are finite, possibly empty multisets
of relational atoms s

I∼ t and labelled formulas s : A, where
s, t ∈ S, I ⊆ N and A is any formula in the language of logic

of correlated knowledge. The formula s : A means s |= A,
and s

I∼ t is an observational equivalence or relation between
the states in the model of logic of correlated knowledge.

The sequent calculus consists of axioms and rules. Applying
rules to the sequents, a proof-search tree for the root sequent is
constructed. If axioms are in all the leaves of the proof-search
tree, then the root sequent is called as a provable sequent and
∆ follows from Γ of the root sequent.

Fixing a finite set N = {a1, ..., an} of agents, a finite
result structure (R,Σ) and a tuple of finite sets ~O =
(Oa1 , ..., Oan) of observations, for every set I, J ⊆ N , every
joint observation o ∈ OI , OI = ×a∈IOa, and results r, p ∈
R, the Gentzen style sequent calculus GS-LCK for logic of
correlated knowledge over (R,Σ, ~O) is as follows:

1. Axioms:

1) s : p,Γ⇒ ∆, s : p.

2) s : or,Γ⇒ ∆, s : or.

3) s : or1 , s : or2 ,Γ⇒ ∆, where r1 6= r2.
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2. Propositional rules:

Γ⇒ ∆, s : A

s : ¬A,Γ⇒ ∆
(¬ ⇒)

s : A,Γ⇒ ∆

Γ⇒ ∆, s : ¬A
(⇒ ¬)

s : A,Γ⇒ ∆ s : B,Γ⇒ ∆

s : A ∨B,Γ⇒ ∆
(∨ ⇒)

Γ⇒ ∆, s : A, s : B

Γ⇒ ∆, s : A ∨B
(⇒ ∨)

s : A, s : B,Γ⇒ ∆

s : A ∧B,Γ⇒ ∆
(∧ ⇒)

Γ⇒ ∆, s : A Γ⇒ ∆, s : B

Γ⇒ ∆, s : A ∧B
(⇒ ∧)

Γ⇒ ∆, s : A s : B,Γ⇒ ∆

s : A→ B,Γ⇒ ∆
(→⇒)

s : A,Γ⇒ ∆, s : B

Γ⇒ ∆, s : A→ B
(⇒→)

3. Knowledge rules:

t : A, s : KIA, s
I∼ t,Γ⇒ ∆

s : KIA, s
I∼ t,Γ⇒ ∆

( KI ⇒)
s

I∼ t,Γ⇒ ∆, t : A

Γ⇒ ∆, s : KIA
(⇒ KI)

The rule (KI ⇒) requires that I 6= N and t : A be not in Γ. The rule (⇒ KI) requires that I 6= N and t be not in the
conclusion. Set I maybe an empty set in both rules.

s : A, s : KNA, s
N∼ s,Γ⇒ ∆

s : KNA, s
N∼ s,Γ⇒ ∆

( KN ⇒)
s

N∼ s,Γ⇒ ∆, s : A

Γ⇒ ∆, s : KNA
(⇒ KN )

The rule (KN ⇒) requires that s : A be not in Γ. The rule (⇒ KN ) requires that s : A be not in ∆.

4. Observational rules:
s

I∼ t, {s : oro}o∈OI
, {t : oro}o∈OI

,Γ⇒ ∆

{s : oro}o∈OI
, {t : oro}o∈OI

,Γ⇒ ∆
(OE)

The rule (OE) requires that I 6= ∅ and formulas s I∼ t, s : oro and t : oro be not in Γ, where o ∈ OI .

{s : orI ,Γ⇒ ∆}r∈R
Γ⇒ ∆

(OY R)

The rule (OY R) requires:
(a) s : orI be not in Γ for all r ∈ R and s : or1I be in ∆ for some r1 ∈ R.
(b) I 6= ∅.

s : e
Σ{roN :oN∈ē}
I , {s : o

roN
N }oN∈ē,Γ⇒ ∆

{s : o
roN
N }oN∈ē,Γ⇒ ∆

(CR)

The rule (CR) requires that s : e
Σ{roN :oN∈ē}
I be not in Γ.

5. Substitution rules:

s : p, t : p, s
N∼ t,Γ⇒ ∆

t : p, s
N∼ t,Γ⇒ ∆

( Sub(p)⇒)
s : or, t : or, s

I∼ t,Γ⇒ ∆

t : or, s
I∼ t,Γ⇒ ∆

( Sub(or)⇒)

The rules (Sub(p)⇒) and (Sub(or)⇒) require that s : p and s : or be not in Γ, accordingly.

6. Relational rules:
s

I∼ s,Γ⇒ ∆

Γ⇒ ∆
(Ref)

s
I∼ t, s

I∼ s′, s′
I∼ t,Γ⇒ ∆

s
I∼ s′, s′

I∼ t,Γ⇒ ∆
(Trans)

The rule (Ref) requires that s be in the conclusion and s
I∼ s be not in Γ. The rule (Trans) requires that s I∼ t be not in

Γ.
s′

I∼ t, s
I∼ s′, s

I∼ t,Γ⇒ ∆

s
I∼ s′, s

I∼ t,Γ⇒ ∆
(Eucl)

s
I∼ t, s

J∼ t,Γ⇒ ∆

s
J∼ t,Γ⇒ ∆

(Mon)
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The rule (Mon) stands for monotonicity and requires that I ⊆ J . Sets I, J may be empty. The rules (Eucl) and (Mon)

require that s′ I∼ t and s
I∼ t be not in Γ, accordingly.

The sequent calculus GS-LCK is sound and complete with
respect to correlation models over (R,Σ, ~O). It also has the
beautiful properties of rule invertibility and admissibility of the
cut and structural rules. It is crucial in making the automated
proof system in the present paper. Theorem 1(Properties of
GS-LCK) The sequent calculus GS-LCK has the following
properties:

1) Invertibility of rules.

2) Admissibility of weakening.

3) Admissibility of contraction.

4) Admissibility of cut.

5) Termination.

Proofs of soundness, completeness, and the properties of
GS-LCK are given in the next sections.

4. Proof of Soundness of GS-LCK
Definition 4(Extended syntax) Extended syntax of LCK is

as follows:

A : = s : A1 | s
I∼ t | s : A1 ∨A | s : A1 ∧A | s : A1 → A

A1 : = p | or | ⊥ | > | ¬A1 | A1 ∨A2 | A1 ∧A2 | A1 → A2 | KIA1

where p is any atomic proposition, o ∈ OI , I ⊆ N, r ∈ R and
s, t ∈ S.

Definition 5(Extended semantics) If s, t, v ∈ S and M ∈M,
then the truthfulness of the formula in the state v of the model
M is defined as follows:

1) v |= s : A iff s |= A.

2) v |= s
I∼ t iff s

I∼ t ∈ R.

Commas ”,” in Γ of the sequent Γ ⇒ ∆ mean conjunction
”∧”, commas ”,” in ∆ - disjunction ”∨”. The arrow ”⇒” stands
for implication ”→”. Definition 6(Formula of the sequent) If
Seq is a sequent Γ ⇒ ∆, then the formula of the sequent
F (Seq) is obtained by:

1) putting Γ and ∆ in parentheses;
2) replacing empty Γ by s : >;
3) replacing empty ∆ by s : ⊥;
4) replacing commas ”,” by conjunction ”∧” in Γ;
5) replacing commas ”,” by disjunction ”∨” in ∆;
6) replacing ”⇒” by implication ”→”.
Example 1 F (Seq) := (t : A1 ∧ s : KIA1 ∧ s

I∼ t ∧ t :
A2) → (s : B1 ∨ t : B2) is the formula of the sequent
Seq := t : A1, s : KIA1, s

I∼ t, t : A2 ⇒ s : B1, t : B2.
Definition 7 (Sequent without labels and relational atoms)
If Seq is a sequent, then the sequent without labels and

relational atoms of Seq is obtained removing all labels near
formulas and all relational atoms from Seq.

Lemma 1 (Validity of the formula of the sequent)
If the formula of the sequent Seq is valid, then the formula

of the sequent Seq without labels and relational atoms is valid,
as well.

proof
Suppose we have a set of states S of a model M . For

each formula of the sequent we have a tuple of its labels
(s1, ..., sl) ∈ S×...×S. If the formula with labels (s1, ..., sl) is
valid, then it is valid with substituted labels (s′, ..., s′), because
{(s′, ..., s′) : s′ ∈ S} ⊆ {(s1, ..., sl) : s1, ..., sl ∈ S}. Having
s |= s′ : A, iff s′ |= A, we can remove the label s′.

All relational atoms become s′
I∼ s′, I ⊆ N . They are valid

because of reflexivity in models. Applying the rules of GS-
LCK they appear only in the first argument of implication of
the formula of the sequent. We can remove relational atoms,
because having a valid formula (A1∧...∧Al)→ (B1∨...∨Bk)
and removing valid formula Ai from the first argument of
implication, the validity is maintained.

Theorem 2 (Soundness of GS-LCK)
If sequent S is provable in GS-LCK, then the formula of

the sequent S without labels and relational atoms is valid with
respect to correlation models over (R,Σ, ~O).

proof
We prove the validity of all axioms and soundness of all the

rules of GS-LCK:
1. Axioms:

1) Formula of the axiom s : p,Γ ⇒ s : p,∆ is valid,
because it is true in any state of any model. The same
is for the axiom s : or,Γ⇒ s : or,∆.

2) Validity of the formula of the axiom s : or1 , s :
or2 ,Γ⇒ ∆, where r1 6= r2, follows from the axiom
”H11. or → ¬op,wherer 6= p”.

2. Propositional rules as in [16].
3. Knowledge rules:

1) Rule (KI ⇒):

t : A, s : KIA, s
I∼ t,Γ⇒ ∆

s : KIA, s
I∼ t,Γ⇒ ∆

( KI ⇒), I 6= N.

We prove by contraposition that, if the formula of the
premise (t : A, s : KIA, s

I∼ t,Γ ⇒ ∆) of the rule
(KI ⇒) is valid, then the formula of the conclusion
(s : KIA, s

I∼ t,Γ⇒ ∆) is valid, too.

The formula of the conclusion (s : KIA, s
I∼ t,Γ⇒

∆) is false, when s : KIA, s I∼ t and all formulas
in Γ are true, and all formulas in ∆ are false. By
semantic definition of the knowledge operator KI ,
formula A is true in all the states accessible from
the state s by relation I . States t are accessible
from the state s, because s

I∼ t is true, therefore
the formula t : A is true. If t : A, s : KIA,
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s
I∼ t and all formulas in Γ are true and all formulas

in ∆ are false, then the formula of the premise
(t : A, s : KIA, s

I∼ t,Γ⇒ ∆) is false.

2) Rule (⇒ KI):

s
I∼ t,Γ⇒ ∆, t : A

Γ⇒ ∆, s : KIA
(⇒ KI), I 6= N

and t is not in the conclusion.
The formula of conclusion (Γ ⇒ ∆, s : KIA) is
false, when all formulas in Γ are true and all formulas
in ∆ and s : KIA are false. If the formula s : KIA
is false, then there exists a state t accessible from
state s by relation I , where A is false. If s

I∼ t
and all formulas in Γ are true and all formulas in ∆
and t : A are false, then the formula of the premise
(s

I∼ t,Γ⇒ ∆, t : A) is false.
The label t cannot be in the conclusion, because we
can get situations, where the formula of the premise
(s

I∼ t,Γ⇒ ∆, t : A) is valid and the formula of the
conclusion (Γ⇒ ∆, s : KIA) is not. An example:

s
I∼ t, t : A⇒ t : A

t : A⇒ s : KIA
(⇒ KI)

3) The validity of the rules (KN ⇒) and (⇒ KN ) is
proved in the same way.

4. Observational rules:

1) Rule (OY R):

{s : or,Γ⇒ ∆}r∈R
Γ⇒ ∆

(OY R)

If R is a set of results, and o is a joint observation,
then there exists a result r ∈ R that or is true. If
there exists r that or is true and all formulas in Γ are
true and all formulas in ∆ are false, then one formula
of premises ({s : or,Γ⇒ ∆}r∈R) is false.

2) Rule (CR):

s : eΣ{ro:o∈ē}, {s : oro}o∈ē,Γ⇒ ∆

{s : oro}o∈ē,Γ⇒ ∆
(CR)

The contraposition is proved by the axiom ”H14.
∧
o∈ē

oro → eΣ{ro:o∈ē}”.

3) The soundness of rules (OE), ( Sub(p) ⇒) and
( Sub(or)⇒) is proved in the same way.

5. Relational rules:

1) Rule (Mon):

s
I∼ t, s

J∼ t,Γ⇒ ∆

s
J∼ t,Γ⇒ ∆

(Mon)

The contraposition follows from condition to models
of LCK: 2. If I ⊆ J then J∼⊆ I∼.

2) The validity of rules (Ref), (Trans) and (Eucl) is
proved in the same way.

We have proved the validity of all axioms and soundness of
all the rules of GS-LCK. The statement of the theorem follows
from lemma 4.

5. Proof of the Properties of GS-LCK

lemma2 (Admissibility of contraction with atomic formulas)
If a sequent (Πatomic,Πatomic,Γ ⇒ ∆,Λatomic,Λatomic)

is provable in GS-LCK, then the sequent (Πatomic,Γ ⇒
∆,Λatomic) is also provable with the same bound of the height
of the proof in GS-LCK. Γ,∆ are any multisets of formulas.
Πatomic,Λatomic are any multisets of atomic formulas s :

p, s : or, s
I∼ t.

Proof
Lemma 5 is proved by induction on the height <

h > of the proof of the sequent (Πatomic,Πatomic,Γ ⇒
∆,Λatomic,Λatomic).

< h = 1 >
If the sequent (Πatomic,Πatomic,Γ ⇒ ∆,Λatomic,Λatomic) is an axiom, then the sequent (Πatomic,Γ ⇒ ∆,Λatomic) is an

axiom too.
< h > 1 >
1. The rule (KI ⇒) was applied in the last step of the proof of the sequent.

1) One or two formulas of the principal pair is in Πatomic.

t : A, s : KIA, s
I∼ t, s

I∼ t,Π′atomic,Π
′
atomic,Γ

′ ⇒ ∆,Λatomic,Λatomic

s : KIA, s
I∼ t, s

I∼ t,Π′atomic,Π
′
atomic,Γ

′ ⇒ ∆,Λatomic,Λatomic

( KI ⇒)

The height of the proof of the premise of application of the rule (KI ⇒) reduced to < h − 1 >. By the induction
hypothesis the sequent (t : A, s : KIA, s

I∼ t,Π′atomic,Γ
′ ⇒ ∆,Λatomic) is provable with the height h′, where

h′ ≤ h− 1. The sequent of the lemma is proved by applying the rule (KI ⇒):

t : A, s : KIA, s
I∼ t,Π′atomic,Γ

′ ⇒ ∆,Λatomic

s : KIA, s
I∼ t,Π′atomic,Γ

′ ⇒ ∆,Λatomic

( KI ⇒)
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Other cases are prooved in a similar way.

2) Any formula of the principal pair is not in Πatomic.

t : A, s : KIA, s
I∼ t,Πatomic,Πatomic,Γ

′ ⇒ ∆,Λatomic,Λatomic

s : KIA, s
I∼ t,Πatomic,Πatomic,Γ′ ⇒ ∆,Λatomic,Λatomic

( KI ⇒)

By the induction hypothesis the sequent (t : A, s : KIA, s
I∼ t,Πatomic,Γ

′ ⇒ ∆,Λatomic) is provable with the
height h′, where h′ ≤ h− 1. The sequent of the lemma is proved by applying the rule (KI ⇒):

t : A, s : KIA, s
I∼ t,Πatomic,Γ

′ ⇒ ∆,Λatomic

s : KIA, s
I∼ t,Πatomic,Γ′ ⇒ ∆,Λatomic

( KI ⇒)

2. The cases of the remaining rules are considered similarly.

Lemma 3 (Substitution)
If a sequent (Γ ⇒ ∆) is provable in GS-LCK, then the

sequent (Γ(t/s) ⇒ ∆(t/s)) is also provable with the same
bound of the height of the proof in GS-LCK.

proof
Lemma is proved by induction on the height < h > of the

proof of the sequent (Γ⇒ ∆).
< h = 1 >
If the sequent (Γ ⇒ ∆) is an axiom, then the sequent

(Γ(t/s)⇒ ∆(t/s)) is an axiom as well.
< h > 1 >
1. The rule (⇒ KI) was applied in the last step of the proof

of the sequent.

s
I∼ t,Γ⇒ ∆, t : A

Γ⇒ ∆, s : KIA
(⇒ KI)

1) Substitution (l/z).

By the induction hypothesis the sequent (s
I∼

t,Γ(l/z) ⇒ ∆(l/z), t : A) is provable with the
height h′, where h′ ≤ h − 1. The sequent of the
lemma is proved by applying the rule (⇒ KI):

s
I∼ t,Γ(l/z)⇒ ∆(l/z), t : A

Γ(l/z)⇒ ∆(l/z), s : KIA
(⇒ KI)

2) Substitution (l/t).
There is no label t in the sequent Γ⇒ ∆, s : KIA
because of the requirement of the application of the
rule (⇒ KI) that t is a new label.

3) Substitution (l/s) and l 6= t.

By the induction hypothesis the sequent (l
I∼

t,Γ(l/s) ⇒ ∆(l/s), t : A) is provable with the
height h′, where h′ ≤ h − 1. The sequent of the
lemma is proved by applying the rule (⇒ KI):

l
I∼ t,Γ(l/s)⇒ ∆(l/s), t : A

Γ(l/s)⇒ ∆(l/s), l : KIA
(⇒ KI)

4) Substitution (l/s) and l = t.

By the induction hypothesis with substitution
(w/t), the sequent (s

I∼ w,Γ ⇒ ∆, w : A) is
provable with the height h′, where h′ ≤ h − 1.
The label w is a new label absent in the sequent.
By the inducion hypothesis with substitution (l/s),
the sequent (l

I∼ w,Γ(l/s) ⇒ ∆(l/s), w : A) is
provable with the height h′′, where h′′ ≤ h − 1.
The sequent of the lemma is proved by applying
the rule (⇒ KI):

l
I∼ w,Γ(l/s)⇒ ∆(l/s), w : A

Γ(l/s)⇒ ∆(l/s), l : KIA
(⇒ KI)

2. The rule (Ref) was applied in the last step of the proof
of the sequent.

s
I∼ s,Γ⇒ ∆

Γ⇒ ∆
(Ref)

1) Substitution (s/t), and relational atom s
I∼ t is in

Γ.
By the induction hypothesis, the sequent (s

I∼
s, s

I∼ s,Γ(s/t) ⇒ ∆(s/t)) is provable with the
height h′, where h′ ≤ h − 1. The sequent of the
lemma is proved by applying Lemma 5.

2) Other substitutions are considered in a similar way.

3. The cases of the remaining rules are considered
similarly.

Theorem 3 (Admissibility of weakening)
If a sequent (Γ⇒ ∆) is provable in GS-LCK, then a sequent

(Π,Γ ⇒ ∆,Λ) is provable with the same bound of the height
of the proof in GS-LCK, too. Π,Γ,∆,Λ are any multisets of
formulas.

proof
Theorem is proved by induction on the height < h > of the

proof of the sequent (Γ⇒ ∆).
< h = 1 >
If the sequent (Γ ⇒ ∆) is an axiom, then the sequent

(Π,Γ⇒ ∆,Λ) is an axiom, as well.
< h > 1 >
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1) The rule (⇒ KI) was applied in the last step of the proof
of the sequent.

s
I∼ t,Γ⇒ ∆, t : A

Γ⇒ ∆, s : KIA
(⇒ KI)

a. A new label t for the application of the rule (⇒
KI) is in Π or Λ.
By Lemma , the sequent (s

I∼ t,Γ ⇒ ∆, t :
A) with substitution (l/t) is provable. By the
induction hypothesis, the sequent (s

I∼ l,Π,Γ ⇒
∆,Λ, l : A) is provable with the height h′, where
h′ ≤ h−1. Here l is a new label, absent in Π,Γ,∆
and Λ. The sequent of the theorem is proved by
applying the rule (⇒ KI):

s
I∼ l,Π,Γ⇒ ∆,Λ, l : A

Π,Γ⇒ ∆,Λ, s : KIA
(⇒ KI)

b. The new label t for application of the rule (⇒ KI)
is absent in Π or Λ.
By the induction hypothesis, the sequent (s

I∼
t,Π,Γ ⇒ ∆,Λ, t : A) is provable with the height

h′, where h′ ≤ h− 1. The sequent of the theorem
is proved by applying the rule (⇒ KI):

s
I∼ t,Π,Γ⇒ ∆,Λ, t : A

Π,Γ⇒ ∆,Λ, s : KIA
(⇒ KI)

2) The cases of the remaining rules are considered
similarly.

Theorem 4 (Invertibility of rules)
All the rules of GS-LCK are invertible with the same bound

of the height of the proof.
proof
Theorem is proved for each rule separately.
The rule (KI ⇒)

t : A, s : KIA, s
I∼ t,Γ⇒ ∆

s : KIA, s
I∼ t,Γ⇒ ∆

( KI ⇒)

Invertibility is proved by induction on the height < h > of
the proof of the sequent of the conclusion of the rule (KI ⇒).
< h = 1 >
If the sequent (s : KIA, s

I∼ t,Γ ⇒ ∆) is an axiom, then
the sequent (t : A, s : KIA, s

I∼ t,Γ⇒ ∆) is an axiom, too.
< h > 1 >

1) The formula s
I∼ t is the principal formula.

a. The rule ( Sub(or)⇒) was applied in the last step of the proof of the sequent.

s : or, s : KIA, s
I∼ t, t : or,Γ′ ⇒ ∆

s : KIA, s
I∼ t, t : or,Γ′ ⇒ ∆

( Sub(or)⇒)

By the induction hypothesis, the sequent (t : A, s : or, s : KIA, s
I∼ t, t : or,Γ′ ⇒ ∆) is provable with the height

h′, where h′ ≤ h− 1. The sequent of the premise of the rule (KI ⇒) is proved by applying the rule ( Sub(or)⇒):

t : A, s : or, s : KIA, s
I∼ t, t : or,Γ′ ⇒ ∆

t : A, s : KIA, s
I∼ t, t : or,Γ′ ⇒ ∆

( Sub(or)⇒)

b. For rules (KI ⇒), (Trans), (Eucl), (Mon) in a similar way.

2) The case where the formula s : KIA is the principal formula and the case where formulas s I∼ t and s : KIA both are not
principal formulas are considered similarly.

Invertibility of the remaining rules is proved in a similar
way.

Theorem 5 (Admissibility of contraction)
If a sequent (Π,Π,Γ ⇒ ∆,Λ,Λ) is provable in GS-LCK,

then sequent (Π,Γ ⇒ ∆,Λ) is provable with the same bound
of the height of the proof in GS-LCK, too. Π,Γ,∆,Λ are any
multisets of formulas.

proof
Theorem is proved by induction on the ordered tuple pair

< c, h >, where c is the sum of complexity of all the formulas
in Π and Λ, and h is the height of the proof of the sequent
(Π,Π,Γ⇒ ∆,Λ,Λ).

< c ≥ 1, h = 1 >
If the sequent (Π,Π,Γ ⇒ ∆,Λ,Λ) is an axiom, then the

sequent (Π,Γ⇒ ∆,Λ) is an axiom, too.
< c ≥ 1, h > 1 >

1) The rule (¬ ⇒) was applied in the last step of the proof
of the sequent.

a.) The principal formula is in Π.

s : ¬A,Π′,Π′,Γ⇒ ∆,Λ,Λ, s : A

s : ¬A, s : ¬A,Π′,Π′,Γ⇒ ∆,Λ,Λ
(¬ ⇒)

By invertibility of the rule (¬ ⇒), the sequent
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(Π′,Π′,Γ ⇒ ∆,Λ,Λ, s : A, s : A) is provable.
The value of the ordered tuple pair has reduced to
< c − 1, h >. By the induction hypothesis, the
sequent (Π′,Γ ⇒ ∆,Λ, s : A) is provable with
the height h′, where h′ ≤ h − 1. The sequent of
the theorem is proved by applying the rule (¬ ⇒):

Π′,Γ⇒ ∆,Λ, s : A

s : ¬A,Π′,Γ⇒ ∆,Λ
(¬ ⇒)

b. The principal formula is absent in Π.

Π,Π,Γ⇒ ∆,Λ,Λ, s : A

s : ¬A,Π,Π,Γ⇒ ∆,Λ,Λ
(¬ ⇒)

By the induction hypothesis, the sequent (Π,Γ ⇒
∆,Λ, s : A) is provable with the height h′, where
h′ ≤ h − 1. The sequent of the theorem is proved
by applying the rule (¬ ⇒):

Π,Γ⇒ ∆,Λ, s : A

s : ¬A,Π,Γ⇒ ∆,Λ
(¬ ⇒)

2) The cases of the remaining rules are considered
similarly.

Theorem 4 (Admissibility of cut)
If sequents (Γ ⇒ ∆, F ) and (F,Π ⇒ Λ) are provable in

GS-LCK, then sequent (Π,Γ ⇒ ∆,Λ) is provable in GS-
LCK too. F is any formula and Π,Γ,∆,Λ are any multisets
of formulas.

proof
Theorem is proved by induction on the ordered tuple pair

< c, h >, where c is the complexity of formula F , and h is the
sum of heights of the proof of the sequents (Γ ⇒ ∆, F ) and
(F,Π⇒ Λ).
< c ≥ 1, h = 2 >
The sequents (Γ⇒ ∆, F ) and (F,Π⇒ Λ) are the axioms.

If formula F is not principal in one at least of the sequents,
then (Π,Γ ⇒ ∆,Λ) is an axiom. If formula F is principal
in both sequents, then F should be in Γ and ∆ or only in Γ
(the case where the axiom is of type s : or1 , s : or2 ,Γ ⇒ ∆).
Therefore the sequent (Π,Γ⇒ ∆,Λ) is also an axiom.

< c ≥ 1, h > 2 >

1) Formula F is not principal in the sequent (Γ⇒ ∆, F ).

a. The rule (Sub(or)⇒) was applied in the last step of the proof of the sequent (Γ⇒ ∆, F ).

s : or, t : or, s
N∼ t,Γ⇒ ∆, F

t : or, s
N∼ t,Γ⇒ ∆, F

( Sub(or)⇒)

By the induction hypothesis, the sequent (s : or, t : or, s
N∼ t,Π,Γ⇒ ∆,Λ) is provable. The sequent of the theorem

is proved by applying the rule (Sub(or)⇒):

s : or, t : or, s
N∼ t,Π,Γ⇒ ∆,Λ

t : or, s
N∼ t,Π,Γ⇒ ∆,Λ

( Sub(or)⇒)

b. For applications of other rules in a similar way.

2) Formula F is not principal in the sequent (F,Π⇒ Λ). The case is considered in a similar way.

3) Formula F is principal in both sequents (Γ⇒ ∆, F ) and (F,Π⇒ Λ).

a. The sequent (Γ ⇒ ∆, F ) is an axiom and the rule (OE) was applied in the last step of the proof of the sequent
(F,Π⇒ Λ).

s : o
ro1
1 ,Γ⇒ ∆, s : o

ro1
1

s
I∼ t, s : o

ro1
1 , {s : oro}o∈{OI\o1}, {t : oro}o∈OI

,Π⇒ Λ

s : o
ro1
1 , {s : oro}o∈{OI\o1}, {t : oro}o∈OI

,Π⇒ Λ
(OE)

By the induction hypothesis, the sequent (s : o
ro1
1 , s

I∼ t, {s : oro}o∈{OI\o1}, {t : oro}o∈OI
,Π,Γ ⇒ ∆,Λ) is

provable. The sequent of the theorem is proved by applying the rule (OE):

s : o
ro1
1 , s

I∼ t, {s : oro}o∈{OI\o1}, {t : oro}o∈OI
,Π,Γ⇒ ∆,Λ

s : o
ro1
1 , {s : oro}o∈{OI\o1}, {t : oro}o∈OI

,Π,Γ⇒ ∆,Λ
(OE)

b. The cases of the remaining rules are considered similarly.
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6. Proof of Completeness of GS-LCK
Theorem 7 (Completeness of GS-LCK)
If formula A is valid with respect to correlation models over (R,Σ, ~O), then sequent (⇒ s : A) is provable in GS-LCK.
proof
The Hilbert style proof system HS-LCK for logic of correlated knowledge is complete. Showing the provability of all valid

formulas of HS-LCK in GS-LCK, the completeness of GS-LCK is proved. Theorem 6 is proved by induction on the number of
steps < NSteps >, used to prove formula A in HS-LCK.
< NSteps = 1 >
Formula A is an axiom of calculus HS-LCK.

1) The axiom ”H4. KI(A→ B)→ (KIA→ KIB)”, was used.

t : A, ...⇒ t : B, t : A t : B, t : A, ...⇒ t : B
(→⇒)

t : A→ B, t : A, s
I∼ t, s : KI(A→ B), s : KIA⇒ t : B

(KI ⇒)
t : A, s

I∼ t, s : KI(A→ B), s : KIA⇒ t : B
(KI ⇒)

s
I∼ t, s : KI(A→ B), s : KIA⇒ t : B

(⇒ KI)
s : KI(A→ B), s : KIA⇒ s : KIB

(⇒→)
s : KI(A→ B)⇒ s : KIA→ KIB

(⇒→)
⇒ s : KI(A→ B)→ (KIA→ KIB)

2) The axiom ”H8. KIA→ KJA, when I ⊆ J”, was used.

t : A, s
I∼ t, s

J∼ t, s : KIA⇒ t : A
(KI ⇒)

s
I∼ t, s

J∼ t, s : KIA⇒ t : A
(Mon)

s
J∼ t, s : KIA⇒ t : A

(⇒ KJ)
s : KIA⇒ s : KJA (⇒→)⇒ s : KIA→ KJA

3) The axiom ”H12. orI → KIo
r
I”, was used.

t : orI , s
I∼ t, s : orI ⇒ t : orI ( Sub(or)⇒)

s
I∼ t, s : orI ⇒ t : orI (⇒ KI)
s : orI ⇒ s : KIo

r
I (⇒→)⇒ s : orI → KIo
r
I

4) The axiom ”H13. ( ∧
o∈OI

oro ∧KIA)→ K∅( ∧
o∈OI

oro → A), when I ⊂ N”, was used.

t : A, s
I∼ t, t : ∧

o∈OI

oro , s
∅∼ t, s : ∧

o∈OI

oro , s : KIA⇒ t : A

(KI ⇒)
s

I∼ t, t : ∧
o∈OI

oro , s
∅∼ t, s : ∧

o∈OI

oro , s : KIA⇒ t : A

(OE)
t : ∧

o∈OI

oro , s
∅∼ t, s : ∧

o∈OI

oro , s : KIA⇒ t : A

(⇒→)
s
∅∼ t, s : ∧

o∈OI

oro , s : KIA⇒ t : ∧
o∈OI

oro → A

(∧ ⇒)
s
∅∼ t, s : ∧

o∈OI

oro ∧KIA⇒ t : ∧
o∈OI

oro → A

(⇒ K∅)
s : ∧

o∈OI

oro ∧KIA⇒ s : K∅( ∧
o∈OI

oro → A)

(⇒→)
⇒ s : ( ∧

o∈OI

oro ∧KIA)→ K∅( ∧
o∈OI

oro → A)
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5) The remaining axioms are considered in a similar way.

< NSteps > 1 >
One of the rules (Modus ponens) or (KI − necessitation) of calculus HS-LCK was applied in the last step of the proof of

the formula.

6) The rule (Modus ponens) was applied.
A,A→ B

B
(Modus ponens)

By the induction hypothesis, sequents (⇒ s : A) and (⇒ s : A→ B) are provable in GS-LCK. By invertibility of the rule
(⇒→), the sequent (s : A ⇒ s : B) is provable. The sequent (⇒ s : B) of the theorem is proved by applying Theorem
”Admissibility of cut”.

7) The rule (KI − necessitation) was applied.

A

KIA
(KI − necessitation)

By the induction hypothesis, the sequent (⇒ s : A) is provable in GS-LCK. By Lemma ”Substition”, the sequent
(⇒ t : A) is provable. By Theorem ”Admissibility of weakening”, the sequent (s

I∼ t⇒ t : A) is provable. The sequent
of the theorem is proved by applying the rule (⇒ KI):

s
I∼ t⇒ t : A

⇒ s : KIA
(⇒ KI)

7. Automated Proof Search System
GS-LCK-PROC

Having sound and complete sequent calculus GS-LCK
for logic of correlated knowledge we can model automated

proof search system for LCK. GS-LCK-PROC is defined as
procedure, which uses rules and axioms of sequent calculus
GS-LCK. Principal formulas of the applications of the rules
(KI ⇒), (KN ⇒) and (⇒ KI), and the chains of new
appeared relational atoms of applications of the rule (⇒ KI)
are saved in tables TableLK and TableRK.

Definition 8 (Table TableLK) Table TableLK of the principal pairs of the applications of the rules (KI ⇒) and (KN ⇒):

TableLK
Main formula Relational atom

Example 2 Example of TableLK:

TableLK
Main formula Relational atom

s : KIA s
I∼ t

l : KIB l
I∼ z

Definition 9(Table TableRK) Table TableRK of the principal formulas and chains of new appeared relational atoms of the
applications of the rule (⇒ KI):

TableRK
Main formula Chain of the relational atoms Length of chain Max
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where Max is the maximum length of the chain, defined by n(KI) + 1. Formula n(KI) denotes the number of negative
occurences of knowledge operator KI in a sequent.

Example 2 Example of TableRK:

TableRK
Main formula Chain of the relational atoms Length of chain Max

s, s1, s2, w1 : KIA s
I∼ s1, s1

I∼ s2, s2
I∼ s3 3 5

s
I∼ t1 1 5

s
I∼ w1, w1

I∼ w2 2 5

z, z1 : KJB z
J∼ z1, z1

J∼ z2 2 7

Definition 10(Procedure of the proof search) Procedure GS-
LCK-PROC of the proof search in the sequent calculus GS-
LCK:

Initialisation:

1) Define set N of agents, tuple of sets ~O = (Oa1 , ..., Oan)
of possible observations and result structure (R,Σ).

2) Initialise the tables TableLK and TableRK by setting
Max values to (n(KI) + 1), the length of the chain to 0
and the other cells leaving empty.

3) Set Output = False.

PROCEDURE GS-LCK-PROC (Sequent, TableLK,
TableRK, Output)

BEGIN
1. Check if the sequent is the axiom. If the sequent is the

axiom, set Output = True and go to step Finish.
2. If possible, apply any of the rules (¬ ⇒), (⇒ ¬), (⇒
∨), (∧ ⇒), (⇒→) and go to step 1.

3. If possible, apply any of the rules (∨ ⇒), (⇒ ∧)
or (→⇒) and call procedure GS-LCK-PROC() for the
premises of the application:
Output1 = False;
Output2 = False;
GS-LCK-PROC(Premise1, TableLK, TableRK,
Output1);
GS-LCK-PROC(Premise2, TableLK, TableRK,
Output2);
IF (Output1 == True) AND (Output2 == True)
THEN Set Output = True and go to Finish;
ELSE Set Output = False and go to Finish;

4. If possible to apply any of the rules (KI ⇒) or (KN ⇒
), check if the principal pair is absent in the table
TableLK. If it is absent, apply rule (KI ⇒) or (KN ⇒),
add principal pair to TableLK and go to step 1.

5. If possible to apply rule (⇒ KI), check if the principal
formula is absent in the table TableRK and the length of
the chain is lower than Max. If the principal formula is
absent and the length of the chain is lower than Max,
apply rule (⇒ KI), add principal formula and new
relational atom to TableRK, increment the length of the
chain by 1, and go to step 1.

6. If possible, apply rule (OY R) and call procedure GS-
LCK-PROC() for the premises of the application:

For each k set Output(k) = False and call GS-LCK-
PROC(Premise(k), TableLK, TableRK, Output(k)),
where k is the index of the premise;
IF (for each k Output(k) == True)
THEN Set Output = True and go to Finish;
ELSE Set Output = False and go to Finish;

7. If possible, apply any of the rules (⇒
KN ), (OE), (CR), (Sub(p) ⇒), (Sub(or) ⇒
), (Ref), (Trans), (Eucl) or (Mon) and go to step
1.

8. Finish.
END
Procedure GS-LCK-PROC gets the sequent, TableLK,

TableRK, starting Output and returns ”True”, if the sequent
is provable. Otherwise - ”False”, if it is not provable.
Procedure is constructed in such a way, that it produces
proofs, where number of applications of the knowledge rules
of sequent calculus GS-LCK is finite. Also number of
applications of other rules are bounded by requirements to
rules and finite initial sets of agents, observations and results,
which allows procedure to perform terminating proof search.

Lemma 4 (Permutation of the rule (KI ⇒))
Rule (KI ⇒) permutes down with respect to all rules of GS-

LCK, except rules (⇒ KI) and (OE). Rule (KI ⇒) permutes
down with rules (⇒ KI) and (OE) in case the principal atom
of (KI ⇒) is not active in it.

proof
The Lemma 6 is proved in the same way as the Lemma 6.3.

in [15].
Lemma 5 (Number of applications of the rule (KI ⇒))
If a sequent S is provable in GS-LCK, then there exists the

proof of S such that rule (KI ⇒) is applied no more than once
on the same pair of principal formulas on any branch.

proof
The Lemma 6 is proved by induction on the number N of

pairs of applications of rule (KI ⇒) on the same branch with
the same principal pair.
< N = 0 > The proof of the lemma is obtained.
< N > 0 >
We diminish the inductive paramater in the same way as in

the proof of Corollary 6.5. in [15], using Lemma 4. QED
Lemma 6 (Number of applications of the rule (⇒ KI))
If a sequent S is provable in GS-LCK, then there exists the

proof of S such that for each formula s : KIA in its positive
part there are at most n(KI) applications of (⇒ KI) iterated



International Journal of Statistical Distributions and Applications 2020; 5(2): 29-42 41

on a chain of accessible worlds s
I∼ s1, s1

I∼ s2, ..., with
principal formula si : KIA. The latter proof is called regular.

proof
The Lemma 6 is proved by induction on the number N of

series of applications of rule (⇒ KI), which make the initial
proof non-regular.
< N = 0 > The proof of the lemma is obtained.
< N > 0 >
We diminish the inductive paramater in the same way as in

the proof of Proposition 6.9. in [15]. QED
Theorem 8(Termination of GS-LCK-PROC)
The procedure GS-LCK-PROC performs terminating proof

search for each formula over (R,Σ, ~O).
proof
From construction of the procedure GS-LCK-PROC follows

that the number of applications of the rules (KI ⇒) and
(⇒ KI) is finite.

All the propositional rules reduce the complexity of
the root sequent. Since the sets N, (R,Σ), ~O and the
number of applications of the rules (KI ⇒), (⇒ KI)
are finite, and the requirements are imposed on the
rules, the number of applications of the rules (KN ⇒
), (⇒ KN ), (OE), (OY R), (CR), (Sub(p) ⇒), (Sub(or) ⇒
), (Ref), (Trans), (Eucl) and (Mon) is also finite.

According to finite number of applications of all rules,
the procedure GS-LCK-PROC performs the terminating proof
search for any sequent. QED

Theorem 9 (Soundness and completeness of GS-LCK-
PROC)

The procedure GS-LCK-PROC is sound and complete over
(R,Σ, ~O).

proof
From construction of the procedure GS-LCK-PROC follows

that if procedure returns ”True” for a sequent S, then S
is provable in GS-LCK. If procedure returns ”False”, then
sequent S is not provable in GS-LCK, according to Lemma
6 and Lemma 6. QED

Theorem 10 (Decidibility of LCK)
Logic LCK is decidable.
proof
From Theorem 6 and Theorem 6 follows that GS-LCK-

PROC is a decision procedure for logic LCK. QED

8. Conclusions

Sequent calculus GS-LCK has properties of soundness,
completeness, admissibility of cut and structural rules,
and invertibility of all rules. Procedure GS-LCK-PROC
performs automated terminating proof search for logic of
correlated knowledge and also has properties of soundness and
completeness.

Using GS-LCK-PROC, the validity of the formula of any
sequent can be determined and inferences can be checked
if they follow from some knowledge base. Modelling the
knowledge of distributed systems in the logic of correlated
knowledge, questions about the systems can be answered

automatically. Also soundness, completeness and termination
of GS-LCK-PROC show that GS-LCK-PROC is a desicion
procedure for logic of correlated knowledge and LCK is
decidable logic, which means asking questions about the
system we will always get the answer.

Logic of correlated knowledge expands the range of the
applications of family of epistemic logics and captures deeper
knowledge of the group of agents in the distributed systems.
GS-LCK-PROC allows to reason about correlated knowledge
automatically, without human interaction in the reasoning
process.
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