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Abstract: This research work is to represent an advance exp(-Φ(ξ))-expansion method with nonlinear ordinary differential 

equation for constructing interacting analytical solutions of nonlinear coupled physical models arising in science and 

engineering. It is capable of determining all branches of interacting analytical solutions simultaneously and this difficult to 

discriminate with numerical technique. To verify its computational potentiality, the coupled Schrodinger-KdV equation is 

considered. The obtained solutions in this work reveal that the method is a very effective and easily applicable of formulating 

the scattered exact traveling wave solutions of many nonlinear coupled wave equations. It is investigated the scattered wave 

solutions may be useful in understanding the behavior of physical structures in any varied instances, where the coupled 

Schrodinger-KdV equation is occurred. 
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1. Introduction 

In this article, the advance exp(- ( ))ξΦ -expansion method 

are mainly highlighted for finding more valuable explicit 

solutions of NLEEs. The valuable explicit form solution 

provides a means to determine the salient features in various 

science, technology and engineering applications. It can be 

serve as a basis for perfecting and testing computer algebraic 

software, such as Maple, Mathematica, MatLab etc for 

solving NLEEs. It is noted that several types of nonlinear 

partial differential equations (NPDEs) of physics, chemistry 

and biology hold unknown parameters and unknown 

functions. Analytical solutions allow researchers to design 

and perform experiments, by creating suitable natural 

situations, to determine these functions and parameters. 

There are several types of well-established methods that have 

been devoted to evaluate analytical solutions of NPDEs, such 

as the modified simple equation method [1, 2], the ( / )G G′ -

expansion method [3, 4], the tanh method [5, 6], the 

Homotopy perturbation technique [7], the homogeneous 

balance method [8, 9], the Hirota method [10], the Exp-

function method [11, 12], the exp ( ( ))ϕ ξ− -expansion method 

[13-18], the modified Kudryashov method [19], the 

generalized exp ( ( ))ϕ ξ− -expansion method [20, 21], and so 

on. Due to the effectiveness of mathematical approaches, the 

advance exp(- ( ))ξΦ -expansion method may be easily 

applicable with the aid of symbolic computational software 

to find more general solitary and periodic wave solutions of 

NPDEs in mathematical physics and engineering. The main 

idea of this technique is to express the exact traveling wave 

solutions of NLEEs that satisfy the nonlinear ordinary 

differential equation (ODE) 

( ) exp( ( )) exp( ( )) 0ξ λ ξ µ ξ′Φ + Φ + −Φ = , where λ  and µ  

real parameters. The advantage of this method over the other 

existing methods is that it provides some simple form exact 

traveling wave solutions to the nonlinear PDEs. Algebraic 

manipulations of this method is also much easier rather than 

the others existing methods. 

However, many types of coupled NLEEs that appeared as 

model equations for describing the interacting wave 
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phenomena in mathematical physics, chemistry and biology. 

For instance, the coupled Schrodinger-KdV equation are 

appeared as model equation to describe the interacting wave 

dynamics in Langmuir wave, dust-acoustic wave and 

electromagnetic wave in plasma physics, also appeared as a 

model equation to describe various types of wave phenomena 

in mathematical physics and so on. The existence and 

appearance of solitary waves in intricate physical issues apart 

from the model equations of mathematical physics must be 

analyzed with sufficient accuracy. Therefore, the work is to 

explore a study linking to the advance exp(- ( ))ξΦ -

expansion method for solving the coupled Schrodinger-KdV 

equation to demonstrate the effectiveness and truthfulness of 

this method. 

2. Analytical Solutions of Coupled 

Schrodinger–KdV Equation via the 

Advance -exp( ( ))ξΦ -Expansion 

Method 

Let us consider the following coupled Schrodinger –KdV 

equation as 

( )2
6

t xx

t x xxx
x

iu u u v

v v v v u

= + 

+ + = 

                   (1) 

Here ( ),u x t present the complex function while ( ),v x t

present the real-valued function. The coupled Schrodinger –

KdV equation [22-24] appeared as model equation for 

describing various types of wave propagation such as 

Langmuir wave, dust-acoustic wave and electromagnetic 

waves in plasma physics. From the article [22-24], it is 

observed that some of the traveling wave solutions have been 

analyzed using different methods. In this article, the advance 

exp(- ( ))ξΦ -expansion method is employed for finding more 

contented explicit from solutions to the coupled Schrodinger 

–KdV equation. 

Besides, it is well known that the exp (-Φ (ξ))-expansion 

method [13-17] has been employed to look into exact 

solutions of the nonlinear evolution equations, wherein the 

nonlinear ODE ( ) exp( ( )) exp( ( ))ξ ξ µ ξ λ′Φ = −Φ + Φ + ;

,λ µ ∈ℜ  provides only a few traveling wave solutions to the 

nonlinear NLEEs. Therefore, in order to get more traveling 

wave solutions and to understand the inner structure 

apparently of the nonlinear physical phenomena, in this 

article we choose the following ODE as auxiliary equation: 

( ) exp( ( )) exp( ( )) 0, , .ξ λ ξ µ ξ λ µ′Φ + Φ + −Φ = ∈ℜ       (2) 

It is notable that eq. (4) has the following six kinds of 

general solutions as follows [18]: 
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where 0ξ  is the integrating constant and 0λµ > or 0λµ <  

depends on sign of λ . 

Now, one can consider following travelling wave 

transform: 

( , ) ( ), ( , ) ( ), ,iu x t e U v x t v x t x V tω ξ ξ ω α β ξ= = = + = + , (4) 

where α , β  and V are constants. By substituting eq. (4) 

into eq. (1), one obtains that 2V α= and ,U v  satisfy the 

following coupled nonlinear ordinary differential equations: 

2

2

( ) 0

2 6 ( ) 0

U U Uv

v vv v U

β α
α

′′ + − + = 


′ ′ ′′′ ′+ + − = 
.                     (5) 

where primes denotes the differentiation with regards to ξ . 

The pole of the coupled Eq. (5) are 2N = , 2M = . 

Therefore, the advance exp( ( ))ϕ ξ− -expansion method 

allows us to use the solution in the following form: 

( )
( )

2

0 1 2 2

2

0 1 2 2

( ) exp( ( )) exp( ( )) , 0

( ) exp( ( )) exp( ( )) , 0

U a a a a

v b b b b

ξ ϕ ξ ϕ ξ

ξ ϕ ξ ϕ ξ
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
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  (6) 

where 0 1 2, , ,a a a  0 1,b b  and 2b are unknowns constants to be 

determined. By substituting eq. (6) in the eq. (5) and 

collecting all terms with same power of the coefficient of 
( )e ϕ ξ−  together, we obtain a system of algebraic equations. 

The system of algebraic equations is ignored for 

convenience. Solving the obtaining system of algebraic 

equations, we obtain the following set of solutions: 

Set 1: 
{

}
2 2 2

0 0 0 0

2 2
0 1 2 0 0 1 2

3 8 , 9 48 64 6 ,

4 , 0, 12 , , 0, 6

b b b b

a a a b b b b

α λµ β µλ λ µ λµ

λµ µ µ

= − − = − + + + −

= − = = − = = = −
                                  (7) 
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Set 2: 
{

}
2 2 2

0 0 0 0

2 2
0 1 2 0 0 1 2

3 16 , 9 96 256 2 ,

12 , 0, 12 , , 0, 6

b b b b

a a a b b b b

α λµ β µλ λ µ λµ

λµ µ µ

= − − = − + + + −

= − = = − = = = −
                                     (8) 

According to set 1 and set 2 and general solution of (3), the travelling wave solutions of the coupled Schrodinger-KdV 

equation (1) are obtained in the following form: 
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From the solutions (9) to (17), it is observed that the 

method according to subsidiary equation (2) is also given 

more valuable explicit form solutions to the coupled 

Schrodinger-KdV equation. These solutions would be more 

helpful to describe the interacting wave propagation of 

various physical phenomena in any varied natural instances. 

The obtaining solutions are also gives various types of 

solitary and periodic wave solutions according to the 

variation of the free parameters. Some of the important 

solitary and periodic wave solutions are presented in 

graphically. Since ( , )u x t  is a complex function, the wave 

propagation in any natural varied instances are characterized 

by | ( , ) |u x t . Solution 11( , )u x t present the periodic wave 

solutions in positive direction while solution 11( , )v x t  present 

the periodic wave solutions in negative direction 

corresponding to the values 0.5λ = , 0.5µ = , 0 0ξ = and 
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0 5 / 6b = − , which are shown in Figure 1. Solution 12 ( , )u x t

present the singular soliton type periodic wave solutions in 

positive direction while solution 12 ( , )v x t  present the singular 

soliton periodic wave solutions in negative direction 

corresponding to the values 0.5λ = , 0.5µ = , 0 0ξ = and 

0 0.5b = − , which are shown in Figure 2. Solution 13( , )u x t

present the solitary wave solution of topological singular 

kink type while solution 13 ( , )v x t  present the solitary wave 

solution of non-topological bell type corresponds to the fixed 

values 0.5λ = − , 0.5µ = , 0 0ξ = and 0 5 / 6b = , which are 

shown in Figure 3. Solution 14 ( , )u x t  present the singular 

soliton type solitary wave in positive direction while 

14 ( , )v x t  present the singular soliton type solitary wave in 

negative direction. The figures of the singular soliton type 

solitary waves are ignored for convenience. Solutions 

23( , )u x t  and 23( , )u x t  are both presented the solitary wave 

solutions of non-topological bell type corresponds to the 

fixed values 0.5λ = − , 0.5µ = , 0 0ξ = and 0 5 / 6b = , which 

are shown in Figure 4. The others solutions are also 

presented various type of traveling wave solutions according 

to the variation of the parameters, which are ignored for 

convenience. 

 

Figure 1. Shape of exact periodic traveling wave solutions of (a) ( )11| , |u x t  and (b) ( )11 ,v x t  with 5 , 5x t− ≤ ≤ . 

 

Figure 2. Shape of exact singular soliton type periodic traveling wave solutions of (a) ( )12| , |u x t  and (b) ( )12 ,v x t  with 3 , 3x t− ≤ ≤ . 

 

Figure 3. Shape of exact solitary wave solutions of (a) topological singular kink type for ( )13| , |u x t  and (b) non-topological bell type for ( )13 ,v x t  with 
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5 , 5x t− ≤ ≤ . 

 

Figure 4. Shape of exact solitary wave solutions non-topological bell type of (a) ( )23| , |u x t  and (b) ( )23 ,v x t  with 5 , 5x t− ≤ ≤ . 

3. Result and Discussions 

In this article, the ODE as in Eq. (2) has been considered 

as auxiliary equation and their solutions have been used. The 

main advantage of the introduced method is that it offers 

more simple form general exact traveling wave solutions 

with some free parameters. The exact solutions have its 

extensive importance to interpret the inner structures of the 

natural phenomena in mathematical physics, chemistry and 

biology. The explicit solutions represented various types of 

solitary wave solutions according to the variation of the 

physical parameters. In this article, some of types of solitary 

and periodic wave solutions are displayed graphically in 

Figures 1 to 4. The advantage of this method is that 

sometimes gives solutions in disguised versions of known 

solutions that may be found by other methods. It is worth 

noted that the (G'/G)-expansion method is special case of the 

extended G'/G)-expansion method. N. A. Kudryashov [25] 

have been shown that the ( / )G G′ -expansion method is 

equivalent to the well known tanh-method. Besides, the 

solutions are achieved via the advance exp (-Φ (ξ))-

expansion method with the auxiliary ODE 

( ) exp( ( )) exp( ( )) 0ξ λ ξ µ ξ′Φ + Φ + −Φ =  while the (G'/G)-

expansion method and the extended (G'/G)-expansion 

method performed with others. It is concluded that some of 

our solutions may be coincided with already published 

results, if the parameters taken particular values which 

authenticate our solutions. Therefore, it can be decided that 

the method is powerful mathematical tool for easily solving 

nonlinear evolutions equations and all kinds of NLEEs may 

be solved through this method. It is also predicted form this 

investigations that the obtained results may be useful for 

better understanding interacting wave phenomena in any 

varied instance, where the considered coupled equations are 

applicable. 

4. Conclusions 

The advance exp(- ( ))ξΦ -expansion method has been 

successfully employed to obtain generalized traveling wave 

solutions for describing the interacting wave phenomena in 

the vicinity of the coupled Schrodinger-KdV equation. The 

obtained solutions in this article are defined in the simple 

forms involving of hyperbolic functions, trigonometric 

functions and rational functions. It is found that the advance 

exp(- ( ))ξΦ -expansion method changes the given difficult 

problems into simple problems which may be solved easily. 

Hence, this method may be more easily used to many others 

NLEEs arising in mathematical physics and engineering. 
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