

American Journal of Mathematical and Computer Modelling
2017; 2(2): 60-75
http://www.sciencepublishinggroup.com/j/ajmcm
doi: 10.11648/j.ajmcm.20170202.13

Dynamic Load Balancing Using Periodically Load
Collection with Past Experience Policy on Linux Cluster
System

Sharada Santosh Patil, Arpita Nirbhay Gopal

MCA, Dept. Sinhgad Institute of Business Administration and Research, Kondhwa, Pune, Maharashtra, India

Email address:

sharada_jadhao@yahoo.com (S. S. Patil), arpit.gopl.@gmail.com (A. N. Gopal)

To cite this article:
Sharada Santosh Patil, Arpita Nirbhay Gopal. Dynamic Load Balancing Using Periodically Load Collection with Past Experience Policy on
Linux Cluster System. American Journal of Mathematical and Computer Modelling. Vol. 2, No. 2, 2017, pp. 60-75.
doi: 10.11648/j.ajmcm.20170202.13

Received: October 21, 2016; Accepted: January 9, 2017; Published: March 9, 2017

Abstract: Fast execution of the applications achieved through parallel execution of the processes. This is very easily
achieved by high performance cluster (HPC) through concurrent processing with the help of its compute nodes. The HPC
cluster provides super computing power using execution of dynamic load balancing algorithm on compute nodes of the clusters.
The main objective of dynamic load balancing algorithm is to distribute even workload among the compute nodes for
increasing overall efficiency of the clustered system. The logic of dynamic load balancing algorithm needs parallel
programming. The parallel programming on the HPC cluster can achieve through massage passing interface in C programming.
The MPI library plays very important role to build new load balancing algorithm. The workload on a HPC cluster system can
be highly variable, increasing the difficulty of balancing the load across its compute nodes. This paper proposes new idea of
existing dynamic load balancing algorithm, by mixing centralized and decentralized approach which is implemented on Rock
cluster and maximum time it gives the better performance. This paper also gives comparison between previous dynamic load
balancing algorithm and new dynamic load balancing algorithm.

Keywords: MPI, Parallel Programming, HPC Clusters, DLBA ARPLCLB, ARPLCPELB

1. Introduction

High-performance clusters are implemented primarily to
provide increased performance by splitting a computational
task across many different nodes in the cluster, and are most
commonly used in scientific computing. Such clusters
commonly run custom programs which have been designed
to exploit the parallelism available on HPC clusters. Many
such programs use libraries such as MPI which are specially
designed for writing scientific applications for HPC
computers. (Michel Daydé, Jack Dongarra [2005]) [21] (G.
Bums and R. Daoud, MPI Cubix - [1994]) [22].

Most of the HPC clusters consist of server and nodes. The
server is responsible for distribution of the internet services
to all other nodes. Other nodes are not directly connected
with the internet. Hence this HPC cluster system is more
secure. (Michel Daydé, Jack Dongarra – [2005]) [21].

The research is more challenging because of the various
factors involved in implementing a load balancing algorithm

in clustered system. Some of these influencing factors are the
parallel workload, presence of any sequential and/or
interactive jobs, native operating system, node hardware,
network interface, network, and communication software.
The main objective of load balancing algorithm is to speed
up the system and enhance super computing power within the
clustered system. There are two main types of performing
load balancing – static load balancing and dynamic load
balancing. (Paul Werstein, Hailing Situ and Zhiyi Huang
[2006]) [9].

1.1. Static Load Balancing

Static load balancing algorithm uses two renowned static
policies are mentioned below.

(1). Load-dependent static policy.
(2). Speed–weighted random splitting policy

(ParimahMohammadpour, Mohsen Sharifi, Ali Paikan-2008)
[8].

The simulator designed in C language re sult is given

 American Journal of Mathematical and Computer Modelling 2017; 2(2): 60-75 61

below;
The overall output of algorithms is collected together, and

comparative bar chart is drawn which is given in following

Figure 1. These algorithms are local coscheduling algorithm,
demand coschedulingalgorithmand dynamic load balancing
algorithm The related comparison bar chart is given below:

Figure 1. Comparison of coscheduling algorithm with DLBA using parameters.

In above algorithms, it is proved that the overall
performance of the dynamic load balancing algorithm is very
good as compare to static coscheduling algorithms.

1.2. Dynamic Load Balancing Policies

The dynamic load balancer distributes workload among
the processors at run time. They have following policies
(ParimahMohammadpour, Mohsen Sharifi, Ali Paikan-2008)
[8].

(1). Periodic policies
(2). Demand-driven policies

(3). State-change-driven policies
The simulator designed in C language re sult is given

below;
The overall output of algorithms is collected together, and

comparison bar chart is drawn which is given in following
Figure 2. Theses algorithms are local coscheduling algorithm
(discussed in section 4.2.1), demand coscheduling algorithm
(discussed in section 4.2.2) and dynamic load balancing
algorithm (discussed in section 4.2.3). The related
comparison bar chart is given below:

Figure 2. Comparison of CLBA, STLBA, WVLBA, DLBA using Parameters.

In above algorithms, it is proved that the overall
performance of the dynamic load balancing algorithm is very
good as compare to other dynamic load balancing algorithms.

The above diagram shows that STLBA has better
performance bit as it follows a non pre-emptive centralized
approach. However, DLBA gives poor result for the total
migration time because it is fully dynamic pre-emptive
scheduling algorithm, but gives good result for the average

waiting time and average turnaround time of each process
which is reduced.

2. The Message Passing Interface (MPI)

Message Passing Interface (MPI) is a standardized and
portable message-passing system designed by a group of
researchers from academia and industry to function on a wide

62 Sharada Santosh Patil and Arpita Nirbhay Gopal: Dynamic Load Balancing Using Periodically Load
Collection with Past Experience Policy on Linux Cluster System

variety of parallel computers. The standard defines the syntax
and semantics of a core of library routines useful to a
maximum size of users writing portable message-passing
programs in Fortran 77 or the C programming language.
According to R. Butler and E. Lusk P4 [2] is a third-
generation parallel programming library, including both
message passing and shared-memory components, portable
to a great many parallel computing environments, including
heterogeneous networks. Chameleon Written by W. D.
Gropp and B. Smith [3] (Erik D. Demaine, Ian Foster,
CarlKesselman, and Marc Snir [2001]) [4] (Hau Yee Sit Kei
Shiu Ho Hong Va Leong Robert W. P. Luk Lai Kuen Ho
[2004]) [18] (William Gropp, Rusty Lusk, Rob Ross, and
Rajiv Thakur [2005]).

3. Authority Ring Periodically Load

Collection for Load Balancing

Algorithm (ARPLCLB)

The dynamic load balancing algorithm mainly removes the
bottle necks presented by the static co-scheduling approach
thus making the cluster co-scheduling scalable. But it
presents a larger communication overhead as compared to
static load balancing algorithm because dynamic load
balancing algorithm performs process migration. In a
centralized load balancing algorithm, load is distributed
uniformly among the processors. The only disadvantage is
maximum time of the central processor is wasted in load
balancing rather than process execution. Hence performance
of the server decreases. A decentralized load balancing
algorithm decision of load distribution is taken by all the
node hence, each node has load of other nodes and
communication overhead increases tremendously. (Janhavi B,
Sunil Surve, Sapna Prabhu-2010) [5].

In order to balance the load uniformly over a cluster
system, one has to choose a mix of centralized and
decentralized approach. (Janhavi B, Sunil Surve, Sapna
Prabhu-2010) [5].

As said in above discussion, this algorithms mix two
approaches - centralized and decentralized. The authority
packet is circulated among the compute nodes. Whenever
system is completely imbalanced, any lowly loaded processor
can pick up this authority packet and get authority to become
master node. Master node is responsible to balance the
system. Every compute node can broadcast load to others at
certain period such that they can evaluate their current state
to find whether the system is balanced or imbalanced. Hence
the name of this algorithm is Authority Ring Periodically
Load Collection for Load Balancing Algorithm in short it is
(ARPLCLB).

This section explains overall procedure, different policies
used in the algorithm, Data structure used to build algorithm,
and parallel algorithm.(Sharada Santosh Patil, ArpitaN.
Gopal. [23].

Overall Procedure
The Overall Procedure of this algorithm is given below;

Step 1: After completion of every ring period, every
processor passes or broadcasts information packet to all
processor which consists of;

1. Current status of the node
2. Current load of the node with load factor
Step 2: Every processor can store the current information

as well as past information of all the processors.
Step 3: Every processor collects authority packet from

previous processor and circulate it to next processor.
Step 4: When any Idle node or Low load node get

authority packet then immediately it take the charge of
master node and performs following activities;

1. Create workload Distribution table using following
process criteria;

a. It chooses newly arrived processes. (That means new
born Processes)

b. It chooses processes which needs 80 % time for
execution.

2. Create Order packets according to Workload
Distribution table

3. Send order packet of all node to that appropriate node.
4. After load distribution send authority packet to next

node.
Step 5: As soon as any node gets order packet they should

follow the order of order packet to perform process migration.
Step 6: Master node again starts authority ring means

authority packet is circulated to each node of the LAN one by
one again.

Step 7: Repeats Steps 1 to 7 till cluster is not shut down
(Sharada Santosh Patil, Arpita N. Gopal. -2013)[23].

4. The Idea of New Research

As it has been said before, The Authority Ring
Periodically Load Collection for load balancing algorithm
(ARPLCLB) uses centralized approach as well as
decentralized approach. But it many a times it shows poor
result. (SharadaSantoshPatil, Arpita N. Gopal.-2013)[23].

The advantages and disadvantages of the algorithm are
given below;

Advantages of Algorithm 1 (ARPLC):

1. It dynamically distributes load and migrate processes
from heavily loaded processes to idle or low loaded or
normal loaded CPU successfully.

2. Mix centralized with decentralized approach for process
migration.

Disadvantages of Algorithm 1 (ARPLC):

1. Too much communication overhead due to load
collection at each iterations of the ring.

2. Master node always gives order and other has to follow
it without any decentralized logic.

3. Process migration is very high.
The major disadvantages of Authority Ring Periodically

Load Collection Algorithm (ARPLC).
1. Past Experience is not considered.
2. Nature of process means type of instructions are not

considered.

 American Journal of Mathematical and Computer Modelling 2017; 2(2): 60-75 63

3. CPU could not find self state.
4. Reselection Policy is not used means All nodes blindly

follow the order of master node.
5. Load collection can be used all to all load passing

policies, means, each node can pass their load to all other
nodes.

6. Too much communication overhead.
Above disadvantages are very serious, hence there is

urgent need to improve above algorithm. So that new
dynamic load balancing algorithm need to use past
experience of all process executed on the cluster. The most
suitable name of this algorithm is Authority Ring
Periodically Load Collection with Past experience for load
balancing Algorithm which discussed in next section.

5. (ARPLCPELB)

This algorithm is again similar to ARPLCLB [23] but it
increases period of load collection from other compute nodes.
This algorithm considers past experience of process hence it
reduces communication overhead and improves performance.

Overall Procedure of Algorithm 2

The overall procedure of the algorithm is given below;
Step 1: After some period every processors are passes or

broadcast information packet to all processor which consists
of;

1. Current status of the node
2. Current load of the node with load factor
3. Past experience of the processes.
Step 2: Every processor can store the current information

as well as past information of all the processor.
Step 3: Every processor collect authority packet from

previous processor and circulate it to next processor.
Step 4: When any idle node or Low load node get

authority packet then immediately it takes the charge of
master node and performs following activities;

1. Create workload Distribution table using following
process criteria;

a. It chooses newly arrived processes. (That means new
born Processes)

b. It chooses processes which needs 80 % time for
execution with their past experience.

2. Create Order packets according to Workload
Distribution table

3. Send order packet of all node to that appropriate node.
4. After load distribution send authority packet to next

node.
Step 5: As soon as any node gets order packet they should

follow the order of order packet to perform process migration.
Step 6: Master node again starts authority ring means

authority packet is circulated to each node of the LAN one by
one again.

Step 7: Repeats Steps 1 to 7 till cluster is not shut down

6. Policies Used in ARPLCLB Algorithm

Following Policies used in proposed dynamic load

balancing algorithm.

6.1. Load Information Policy

Load information serves as one of the most fundamental
elements in the load balancing process. Every dynamic load
balancing algorithm is based on some type of load
information. According to this algorithm, each load of cluster
system has some current state. These CPU states can be idle,
lowly loaded, normal or heavily loaded CPU.

1. The CPU state can be idle state, if ready queue is empty
and it is not executing any process and hence 100 % memory
is available.

2. The CPU state can be lowly loaded, if total number of
processes < (less than)
LOW_LOAD_THRESHOLD_VALUE (i.e. L) * size of
queue (Qs) and more than 75 % memory is available and 10%
of total current processes are past processes.

0 0 0

* & 75% & *0.1
Qtotal Qtotal Qtotal

i i i

Pi L Qs MEMfree Pi Ppei
= = =

≤ ≤ ≤∑ ∑ ∑

3. The CPU state can be normal loaded if Total Number of
processes < (less than)
NORMAL_LOAD_THRESHOLD_VALUE * Size of Queue
and 25 % to 75% memory is available and 30% of total
current processes are past processes.

0 0 0

* & 25% 75%& *0.3
Qtotal Qtotal Qtotal

i i i

Pi N Qs MEMfree Pi Ppei
= = =

≤ ≤ ≤ ≤∑ ∑ ∑

4. The CPU state can be heavily loaded if Total Number of
processes > (greater than)
NORMAL_LOAD_THRESHOLD_VALUE * Size of Queue
and less than 25% memory is available and 70% of total
current processes are past processes.

0 0 0

* & 25% & * 0.7
Qtotal Qtotal Qtotal

i i i

Pi N Qs MEMfree Pi Ppei
= = =

≤ > ≤∑ ∑ ∑

5. The system balance depends on following criteria;
� When all nodes are heavily loaded then system can be

called as heavily balanced system.
� When heavily loaded nodes are 1% to 85% and

remaining are lowly loaded or idle or normal
processors then system is imbalanced and need
process migration

� When no node is heavily loaded and may be idle or
lowly loaded or normal loaded then system is called
slightly balanced or slightly imbalanced system, and it
does not require any process migration.

6.2. Information Exchange Policies of ARPLCPELB

This information exchange policy depends on how node

64 Sharada Santosh Patil and Arpita Nirbhay Gopal: Dynamic Load Balancing Using Periodically Load
Collection with Past Experience Policy on Linux Cluster System

can be exchange load information with others. This algorithm
uses periodic policy means it exchanges this load information
after every certain number of time slot. This information
policy is executed by all nodes.

6.3. Process Transfer Policies of ARPLCPELB

Process can be transfer from heavily loaded processor to
idle or lowly loaded or normally loaded processor. This
policy is executed on master node. This policy can be
mentioned as follows;

1. System is heavily balanced if all CPU in the clusters are
heavily loaded then it execute delay of 1000 mille second
such that all CPU can execute their load to get relief from
authority token ring.

2. When system is slightly balanced or slightly imbalanced,
then system is in normal condition

3. When system is completely imbalanced then this
algorithm decides decision of process migration.

4. For process transfer activity, it calculates the ideal load
of each processor as follows;

_ _
_

_ _

Total System load
Ideal load

Total Computenode cluster
=

5. It transfers total ideal load processes from heavily
loaded processor to lightly loaded processor

6.4. Selection Policies of ARPLCPELB

A selection policy decides which process is selected for
transfer that means process migration. The chosen process
could be a new process which has not started, that means,
new born process or an old process which is already starting
its execution. If it is old process then it should satisfy
following condition.

If (rbt/bt*100>=80) Process is selected for migration.

Remaining_Burst_Time/Burst_Time*100>=90?:Process _Migration

This selection policy is executed by master node.

6.5. Location Policies of ARPLCPELB

Location policy decides selected processes for migration is

migrated to which CPU For this activity, it select ideal CPU
to migrate processes from heavily loaded CPU to lightly
loaded CPU using following steps.

1. Select heavy loaded CPU
2. Select first idle CPU
a. If found go to 3 else b
b. Select first low loaded CPU
i. If found go to step 3 else ii
ii. Select first normal loaded CPU
3. Select process for migration to selected CPU
4. Update load of that CPU
5. Repeat 3 and 4 till Load of CPU < ideal load of the

system
This location policy is executed by master node.

7. Parallel Sub Algorithms of

(ARPLCPELB)

This algorithm ARPLCLB is divided in to three parallel
sub algorithms, that are;

1. Authority token ring with Periodically Load collection
with Past Experience algorithm(ARPLCPE)

2. Load Distribution With Order Packet with Past
Experience Algorithm(LDOP)

3. Process Migration with state logic Algorithm(PMSL)

7.1. Authority Token Ring with Periodically Load

Collection Algorithm (ARPLC)

This algorithm authority packet is moved around the logical
ring of the compute nodes of the cluster. This algorithm
circulates authority tokens between the processors such that
they can choose their new master node when cluster system is
imbalanced. This algorithm collects load information
periodically, where at the time of load collection it also collect
past experience of each process. The master node CPU can be
responsible to start authorityring, in this it passes authority
packet to next nearby neighbor. When system is imbalanced
then any lowly loaded or idle node picks up this authority
packet to become new master node. This node conveys this
information to all using new master indication packet. This is
explained in following algorithm 2.1.

Algorithm 6.4: Authority token Ring With Periodically Load collection Algorithm With Past Experience(ARPLCPE)

Input : total_cpu,cupid,next,prev,maser_node.

Types of Packets : AuthorityPacket, LoadPacket, MasterLoadPacket.

Variables During Processing:

 i, slot=0,flag=0; idel=0,low=0, normal=0,heavy=0.

Output :New_master_node_ID

Constant in the algorithm:

Qsize, LOW_LOAD_THREASHOLD_VALUE, NORMAL_LOAD_THREASHOLD_VALUE, PERIOD_OF_LOAD

_COLLECTION

 American Journal of Mathematical and Computer Modelling 2017; 2(2): 60-75 65

Procedure:

Step 1: Initiallize all required variables

 Initiallize Parallel programming With MPI

 If start==0 Then
 Initialize authority Packet;
 End if
 prev = cpuid-1; next = cpuid+1;
 if cpuid == 0 Then
 prev = total_cpu - 1;
 End if
 if cpuid == (total_cpu - 1) Then
 next = 0;
 End if
Step 2: Repeate following steps 3 to step 5
Step 3: if cpuid==master_node AND flag==0
 Then
 Initialize authority Packet;
 Send athority_pkt to next cpu node with message tag tag1

 flag=1;
 Go to step 2

 Else
 Go to Step 4
 End if
Step 4:if cpuid!=master_node AND flag==0
 Then
 Receive pkt from prev cpu node with message tag1

 If pkt==new master indication packet?
Then
 flag=2;

 If next!=pkt[1]means master node id
 Send athority_pkt to next cpu node with message tag1

 Go to step 2
 Else
 Go to step 4.1
 End if
 Else
 Go to step 5
 End if
Step 4.1:if pkt == periodically_load_collection_packet?
 Then
 Send periodically_load_collection_packet to next node

Initiallize load Packet and masternode packet
Broadcast load_pkt to all and collects other load_pkt in master_load_pkt

Go to step 2

 else
 Go to Step 4.2
 End if
Step 4.2:If athority_pkt completes one round ? Then
 idel=0;low=0;normal=0;heavy=0;
 for(i=0;i<total_cpu;i++)
 begin
 if load(CPUi)=0? Then
 idel++;
 Else
 If load(CPUi) < LOW_LOAD_THREASHOLD_VALUE*Qsize Then
 low++;
 Else

66 Sharada Santosh Patil and Arpita Nirbhay Gopal: Dynamic Load Balancing Using Periodically Load
Collection with Past Experience Policy on Linux Cluster System

 If load(CPUi) < NORMAL_LOAD_THREASHOLD_VALUE*QsizeThen
 normal++;
 Else
 heavy++;
 End for
 Go to Step 4.3
Step 4.3: if heavy==total_cpu
 Then
 Execute delay(1000);
 Else
 If(((idel>0)||(low>0)||(normal>0))&&(heavy>0)) Then
 if load(cupid)<= LOW_LOAD_THREASHOLD_VALUE*Qsize Then
 flag=2;
 Else
 Go to step 4.4
 End if
 Else
 flag=0;
 Go to step 4.4
 End if
Step 4.4:If flag ==0 Then
 Send athority_pkt to next cpu node with message tag tag1
 Go to step 2
 Else
 If flag ==2
 Then
 athority_pkt[0]=-1;athority_pkt[1]=cpuid;
 Send master_indication_pkt to next cpu node with tag1
 Go to step 2
 End if
 End if
Step 5:if((cpuid==master_node)&&(flag==1)) Then
 Receive pkt from prev cpu node with message tag1
 /*Prepare periodically load all gather*/
 If(athority_pkt[athority_pkt_size-1]==-1) Then
 If(slot== PERIOD_OF_LOAD _COLLECTION) Then
 athority_pkt[0]==-2;
 athority_pkt[athority_pkt_size-1]=-2;
 Send periodically_load_collection_packet to next node

 Go to step 2
 Else
 slot++;
 Else
 If pkt==new master indication packet? Then

 flag=2;
 If next!=pkt[1]means master node id
 Send master_indication_pkt to next cpu node with tag1

 Go to step 2
 else
 Go to step 5.1
 End if
 End if
 Else
 Go to step 5.5
 End if
Step 5.1:if pkt == periodically_load_collection_packet? Then

Initiallize load Packet and masternode packet
Broadcast load_pkt to all and collects other load_pkt in master_load_pkt

 athority_pkt[0]=master_node;slot=0;

 American Journal of Mathematical and Computer Modelling 2017; 2(2): 60-75 67

 Send athority_pkt to next cpu node with message tag1
 Go to step 2

 Else
 flag=1; athority_pkt[1]++;
 athority_pkt[athority_pkt_size-1]=-1;
 Goto Step 5.2
 End if
Step 5.2:If athority_pkt completes one round Then
 idel=0;low=0;normal=0;heavy=0;
 for(i=0;i<total_cpu;i++)
 begin
 if load(CPUi)=0? Then
 idel++;
 else end if
 if load(CPUi) < LOW_LOAD_THREASHOLD_VALUE*Qsize? Then
 low++;
 else end if
 if load(CPUi) < NORMAL_LOAD_THREASHOLD_VALUE*Qsize ?
 Then
 normal++;
 else
 heavy++;
 end if
 End for
 Go to Step 5.3
Step 5.3:If heavy==total_cpu
 Then
 Execute delay(1000);
 Else
 If ((idel>0)||(low>0)||(normal>0)) AND (heavy>0) ? Then
 If load(cupid)<= LOW_LOAD_THREASHOLD_VALUE*Qsize
 Then flag=2;
 Else
 Go to step 5.4
 End if
 Else
 flag=1;
 Go to step 5.4
 End if
 End if
Step 5.4:If flag ==1 Then
 Send athority_pkt to next cpu node with message tag tag1
 Go to step 2
 Else
 If flag ==2
 Then
 athority_pkt[0]=-1;athority_pkt[1]=cpuid;
 Send master_indication_pkt to next cpu node with tag1
 Go to step 2
 End if
 End if
Step 5.5 : if flag==2 Then
 Store master_node in history;
 master_node=athority_pkt[1];

 Go to Step 6

 End if
Step 6 : Call Load Distribution Algorithm With Periodically Load collection Algorithm With Past Experience

68 Sharada Santosh Patil and Arpita Nirbhay Gopal: Dynamic Load Balancing Using Periodically Load
Collection with Past Experience Policy on Linux Cluster System

7.2. Load Distribution with Order Packetusing Past

Experience Algorithm (LDOPPE)

When cluster system is imbalanced and new master node
is decided by ARPLCPE parallel sub algorithm, then this
new master node has load information of each node. Hence it
decides load distribution using load information as well as
past experience of the compute node of cluster. During

decision it uses distribution policy, process selection and
location policy, accordingly creates order packets, and
distributes or broadcasts this order packet to each node, and
calls process migration algorithm which follows order of
master node blindly. Maximum part of this LDOPPE
algorithm is executed on master node and very minimum part
of algorithm is executed on other compute node. This is
explained in following algorithm.

Algorithm 6.8: Load Distribution With Periodically Load Collection Algorithm With Past Experience (LDPLCPE)

Input : Load master Packet.

Types of Packets :OrderPacket

Types of Array :actual_load, cpu_status, vcpu_status, virtual_load

Variables During Processing:

 i,j,k,op,total_load,flag=0; idel=0,low=0,

 normal=0,heavy=0,balance_factor,dest,transfer_flag,src_ldm_addr, src,

 src_ord_addr,CPU_state.;

Output :Order Packet

Constant in the algorithm:

Qsize, LOW_LOAD_THREASHOLD_VALUE, NORMAL_LOAD_THREASHOLD_VALUE,

Procedure:

Step 1: Initiallize all required variables

 i=0;j=0;k=-1;op=0;total_load=0;
 Opl=QSize*total_cpu
 Allocate opl memory to order_pkt Initialize it

Step 2://All cpu calculate self state
 If load(CPUid)=0? Then
 CPU_state=0;
 Else
 If load(CPUid) < LOW_LOAD_THREASHOLD_VALUE*Qsize Then
 CPU_state=1;
 Else
 If load(CPUid) < NORMAL_LOAD_THREASHOLD_VALUE*QsizeThen
 CPU_state=2;
 Else
 CPU_state=3;
 End if
Step 3: if cpuid==master_node
 Then
 Allocate total_cpu memory to actual_load,cpu_status,vcpu_status,virtual_load
 //Master CPU Calculate actual load of the cpu

 for(i=0,k=-1;i<lplm;i++)
 begin
 If (i%(QSize*7(i.e. recordsize))==0) Then
 k++;actual_load[k]=0;j=0;virtual_load[k]=0;
 End if
 If (load_pkt_master[i]!=-1) Then
 actual_load[k]++;total_load++;i+=9;
 Else
 i=(k+1)*(7*QSize)-1;
 End if

 American Journal of Mathematical and Computer Modelling 2017; 2(2): 60-75 69

 End for
 // Master CPU Calculate total status of the cpu

 for(i=0;i<total_cpu;i++)
 Begin
 If(actual_load[i]==0)Then
 cpu_status[i]=0;
 Else
 if(actual_load[i]<LOW_LOAD_THREASHOLD_VALUE *QSize)
 Then
 cpu_status[i]=1;
 Else
 If(actual_load[i]<NORMAL_LOAD_THREASHOLD_VALUE*QSize)
 Then
 cpu_status[i]=2;
 Else
 cpu_status[i]=3;

 End If
 vcpu_status[i]=cpu_status[i];
 End for

 Balance_Factor=total_load/total_cpu;
 Go To step 3.1

 Else
 Go to Step 4

 End if
Step 3.1: Repeat Steps 3.2 to 3.

Step 3.2: i=0;heavy=-1;
 /*Select heavy loaded node */
 for(i=0;i<total_cpu;i++)
 Begin
 if((cpu_status[i]==3)&&(vcpu_status[i]==3))
 Then
 heavy=i;
 Go to Step 3.3;
 End if
 End for
 If(heavy==-1)
 Then
 Go to Step 4;

 End if
Step 3.2: /*Select idle or low loaded or normal loaded node */
 idle=-1;/*Select Idel Node */
 for(i=0;i<total_cpu;i++)
 Begin
 if(vcpu_status[i]==0)
 Then
 idle=i;
 Go to Step 3.3;
 End if
 End for
 if(idle==-1)
 Then
 low=-1;/*Select low Node */
 for(i=0;i<total_cpu;i++)
 Begin
 If(vcpu_status[i]==1)
 Then
 low=i;
 Go to Step 3.3;
 End if

70 Sharada Santosh Patil and Arpita Nirbhay Gopal: Dynamic Load Balancing Using Periodically Load
Collection with Past Experience Policy on Linux Cluster System

 End for
 If(low==-1)
 Then
 normal=-1;/*Select low Node */
 for(i=0;i<total_cpu;i++)
 Begin
 if(vcpu_status[i]==2)
 Then normal=i;
 Go to Step 3.3;
 End If
 End for
 End if
 End if
 Go to Step 3.3
Step 3.3: if(((idle==-1)&&(low==-1))&&(normal==-1))
 Then
 Go to Step 4;
 Else
 src=heavy;
 If(idle!=-1)
 Then
 dest=idle;
 Else
 If(low!=-1)
 Then
 dest=low;
 Else
 dest=normal;
 End if
 End if
 Go to Step 3.4;
Step 3.4:lbf=(actual_load[src]+actual_load[dest])/2;
 /* Load Distribution Logic */

 src_ldm_addr=src*7*QSize;
 src_ord_addr=src* QSize;
 for(i=src_ldm_addr;i<(src_ldm_addr+7* QSize);i+=7)
 Begin
 if(((load_pkt_master[i+2]/load_pkt_master[i+1])*100) > 90)
 Then
 order_pkt[src_ord_addr]=dest;
 src_ord_addr++;
 virtual_load[dest]++;virtual_load[src]--;
 transfer_flag++;
 Else
 If((((load_pkt_master[i+2]/load_pkt_master[i+1])*100)>80)
 &&((load_pkt_master[i+6]-load_pkt_master[i+3])
 >load_pkt_master[i+1]))
 Then
 order_pkt[src_ord_addr]=dest;
 src_ord_addr++;
 virtual_load[dest]++;virtual_load[src]--;
 transfer_flag++;
 Else
 if((((load_pkt_master[i+2]/load_pkt_master[i+1])*100)>60)
 &&((load_pkt_master[i+5]-load_pkt_master[i+3])
 >load_pkt_master[i+1]))
 Then
 order_pkt[src_ord_addr]=dest;
 src_ord_addr++; transfer_flag++;

 American Journal of Mathematical and Computer Modelling 2017; 2(2): 60-75 71

 virtual_load[dest]++;virtual_load[src]--;
 src_ord_addr++;
 Else
 order_pkt[src_ord_addr]=-1;
 src_ord_addr++;
 End if
 if((actual_load[dest]+virtual_load[dest])>=lbf)
 Then
 Go to Step 3.5;
 End if
 if((virtual_load[src]+actual_load[src])>=(virtual_load[dest]+actual_load[dest]))
 Then
 Go to Step 3.5;
 End if
 End for
 Go to Step 3.5
Step 3.5: /*change the status of each cpu according to its virtual load*/
 for(i=0;i<total_cpu;i++)
 Begin
 if((actual_load[i]+virtual_load)==0)
 Then
 vcpu_status[i]=0;
 Else
 if((actual_load[i]+virtual_load[i])<LOW_LOAD_THREASHOLD_VALUE *
 QSize)
 Then
 vcpu_status[i]=1;
 Else
 if((actual_load[i]+virtual_load[i]) <NORMAL_LOAD_THREASHOLD_VALUE *QSize)
 Then
 vcpu_status[i]=2;
 Else
 vcpu_status[i]=3;
 End if
 End for
 Go to Step 3.6;

Step 3.6: old_dest=dest;
 If((((idle==-1)&&(low==-1)) && (normal==-1))&&(transfer_flag>0))
 Then
 Go to Step 4;

 End if
 Go to Step 3;
Step 4: /* Broad cast order packet to each node*/
 Wait until all cpu come to this point through Barrier(MPI_COMM_WORLD);

 Broad cast all order packet to all cpus in the cluster

Step 5: Call Process Migration with CPU State logic Algorithm

Note: 1 Step 1, Step 2, Step 4 and Step 5 are executed by all CPU node

 2 Step 3 and its sub states are only executed by the Master node

7.3. Process Migration Using State Logic of Algorithm (PM)

Once order packet is distributed by the new master node
among all other compute nodes of the cluster then other
compute nodes are automatically divided in to heavy load
CPU group and idle or low load CPU group. And heavy
loaded CPU transfers their own load to lightly loaded CPU
according to state logic. This is explained in figure 3. The

load is transferred using two types of the packets, that means
process control block packet whose size is fixed and then it
transfers actual process to destination CPU such that it can be
easily start its remaining execution on new processor.

State logic means when any CPU has order to migrate
process and its current state is not heavily loaded it is normal
or lowly loaded then this CPU not migrates any process.

When process migration is over it again execute the

72 Sharada Santosh Patil and Arpita Nirbhay Gopal: Dynamic Load Balancing Using Periodically Load
Collection with Past Experience Policy on Linux Cluster System

ARPLC parallel sub algorithm to monitor system imbalance and distribute authority packet among the compute nodes

Algorithm 6.9: Process migration with CPU State Logic (PMSL)

Input : OrderPacket.

Types of Packets : PCBPacket, ProcessPacket

Variables During Processing:

 pcbl,pl,mpl,i,r;

Output :Process Migration from old CPU to new CPU

Algorithms Used:

Process_Migration(ProcessId,src_cpu,dest_cpu)

Aadnya_Palan()

Procedure: Process_Migration (pid,src_cpu,dest_cpu)

Step 1: Initiallize all required variables

 Allocate memory ot pcb

 Initiallize pcb according to pid
Step 2://Check with source cpu
 If(cpuid==src_cpu)
 Then
 pl=allot process_contrl_blokof(pid);
 Allocate Memory to process
 Load process
 Send pcb_pkt to dest_cpu with pcb_msg_tag

 Send process_pkt to dest_cpu with process_msg_tag
 Else
 If(cpuid==dest_cpu)
 Then
 Receive pkt from prev cpu node with pcb_msg_tag
 pl=lenth mentioned in pcb i.e. pcb_pkt[1];
 Allocate memory to process;
 Receive pkt from prev cpu node with process_msg_tag
 Load process
 Execute process
 End if
Step 3:Return

Procedure: Aadnya_Palan()

Step 1:If(CPU_State==3)/*Heavy Loaded Processor
 Then
 Go to Step 2
 Else
 Go to Step 3
 End If
Step 2://Check Order Packet
 for(i=0;i<QSize;i++)
 Begin
 if(order_pkt[cpuid*QSize+i]<0)
 Then
 Continue with for loop;
 End if
 //Call Process Migration Algorithm

 Process_Migration(i,cpuid,order_pkt[cpuid*QSize+i]);
 End for
Step 4:// Idel Low or Normal Loaded Processor*/

 American Journal of Mathematical and Computer Modelling 2017; 2(2): 60-75 73

 for(r=0;r<total_cpu;r++)
 Begin
 if(r==cupid)
 Then
 Continue with for loop;
 End if
 for(i=0;i<QSize;i++)
 Begin
 If(order_pkt[r*QSize+i]<0)
 Then
 Continue with for loop;
 End if
 If(order_pkt[r*QSize+i]==cpuid)
 Then
 //Call Process Migration Algorithm
 Process_Migration(i,r,rank);
 End if
 End for
 End For/* Destination Loop*/

State 5: Return back to run Authority Ring Periodically load collection algorithm PE

Note: 1 Step 1, Step 2, Step 4 and Step 5 are executed by all CPU node

 2 Step 3 and its sub states are only executed by the Master node

Table 1. Performance of Algorithm1 (ARPLCLB).

Iteration of

Outer Loop

Total Process

Migration

Total Number

of Rings

New

Master

Old

master

1 9 2 2 0

2 9 1 2 2

3 8 6 2 2

4 8 2 0 2

5 8 1 0 0

6 8 4 3 0

7 9 4 0 3

8 8 4 3 0

9 8 1 0 3

10 8 4 3 0

8. Performance of the Authority Ring

with Periodically Load Collection

Algorithm

For evaluating the performance of the above algorithm we
implement algorithm run it on Rock cluster on centos
operating system then it produces some output in data file.
These data files are too lengthy hence only some result are
given, following figure shows screen shot of the same during
the execution. following figure shows screen shot of the same
during the execution.

The authority rings continues, means system is currently in
balanced state. When system is in imbalanced stage, then it
performs process migration. The graph of outer loop iteration
against process migration is given in figure 6;

Figure 3. Performance of ARPLCPELB using Process migration.

As result shows, this algorithm migrates maximum number
of processes in each number of iterations of the loop. Hence
Maximum time of the CPU is wasting to perform process
migration rather than process execution. Hence it is
degradation of the system.

The graph shows total authority rings verses iteration of
outer loop. When total authority rings are more means system
is currently in balanced state.

The graph shows total authority rings verses iteration of
outer loop. When total authority rings are more means system
is currently in balanced state.

Figure 4. Performance of Algorithm 1 Using Total Rings (ARPLCPELB).

74 Sharada Santosh Patil and Arpita Nirbhay Gopal: Dynamic Load Balancing Using Periodically Load
Collection with Past Experience Policy on Linux Cluster System

The result of above graph states that every iteration of the
ring migrates to too much processes. And this algorithm uses
periodically load collection policy, hence, it uses too much
communication overhead. The advantages and disadvantages
of the algorithm are given below;

Advantages of Algorithm 2 (ARPLCPELB):

1. It dynamically distributes load and migrate processes
from heavily loaded processes to idle or low loaded or
normal loaded CPU successfully.

2. It gives better performance than ARPLCLB
3. Process selection policy uses past experience for process

migration.
4. Its communication overhead is less as compare to

ARPLCLB
Disadvantages of Algorithm 2 (ARPLCPELB):

1. Too much communication overhead due to periodically
load collection policy.

2. Master node always gives order and other has to follow
it without any logic on process level.

3. Process migration is very high.

9. Comparison of ARPLCLB and

ARPLCPELB based on Algorithmic

Logic

The nature of software always depends on logic of the
software. Hence the detailed comparison is based on logic
used in algorithm. The similarities of these algorithms are
given below;

9.1. Similarities of Algorithm Based on Logic

1 All proposed Algorithms mix centralize and decentralize
logic together

2 All Algorithms have three main modules
3 All Algorithm works in similar manner such that

each node passes authority token when system is
imbalanced any low loaded or idle compute node can pick
up this authority token and inform all other nodes that
new master node is changed with the help of master
indication packet

4. Master node distributes load among the nodes using
Load distribution algorithm

5 Process migration activity follows the order of order
packet

6All compute nodes has 4types of states that are idle or
lowly loaded, normal loaded or highly loaded CPU

9.2. Dissimilarities of Algorithm Based on Logic

The differences of these algorithms are given below;

Table 2. Comparison of Algorithm Based on Logic.

Sr. No ARPLCLB ARPLCPELB

1
Past Experience is not
considered

Past Experience is considered. that
means Actual execution time
required for the process with
turnaround time and wait time used

Sr. No ARPLCLB ARPLCPELB

for process selection for the
migration. Hence logic of process
selection is improved.

2
Nature of process means
type of instructions are
not considered

Nature of process means type of
instructions are not considered

3
CPU could not find self
state

CPU can finds self state
Hence logic of order followers in
process migration are improved

4

Reselection Policy is not
used means All nodes
blindly follow the order
of master node

State logic is not used means All
nodes blindly follow the order of
master node

10. Comparison of ARPLCLB and

ARPLCPELB Based on Policies

The policies used in the algorithms always play very
significant role in point of view of performance of the
algorithm. The similarities of both algorithm based on
policies used within algorithms are given below;

10.1. Similarities of Algorithm Based on Policies

1. Both Algorithms information exchange policy is same
that is periodically load collection policy.

2. Both algorithms process transfer policy is same. i.e.
When system is completely imbalanced then it decides
decision of process migration.

3. Both algorithms location policy is same. i.e. When
system is completely imbalanced then it decides about
process migration from heavy loaded CPU to low loaded idle
or normal CPU. This policy is implemented in all the
algorithms.

10.2. Dissimilarities of Algorithm Based on Policies

Hence detailed comparison based on policies used in the
algorithm are explained in the following table 3

Table 3. Comparison of Algorithm Based on Policies.

Policy ARPLCLB ARPLCPELB

Load
Estimation
Policy

Memory utilization and
total number of
processes in ready
queues are considered
but Past Experience is
not considered

Memory utilization and total
number of processes in ready
queues are considered with
Past Experience like turn-
around time, actual time etc.

Selection
Policy

For Process selection,
only memory and
remaining burst time is
considered.

For Process selection, only
memory and remaining burst
time is considered with past
experience.

11. Conclusion and Future Enhancement

This algorithm balance the load uniformly over a HPC
cluster system, The performance of this algorithm gives
better result many a time but due to heavy communication
overhead and heavy process migration, affect the
performance. Hence this previous algorithm is redesigned

 American Journal of Mathematical and Computer Modelling 2017; 2(2): 60-75 75

such that it considers past experience during the load
distribution decision but at the time of process migration
current state of the CPU is considered for migration decision.
Hence proposed algorithm gives better result than previous
result. The future work is extended to reduce communication
overhead between the compute nodes.

This work is extended to remove all disadvantages of
this proposed algorithm so as to improve its performance.
As well as policies used in this algorithm is also improved.
In future, this work can be extended to develop new
dynamic load balancing algorithm to modify dynamic
decentralized approach so as to reduce the communication
overhead as well as to reduce migration time and also
make it scalable.

References

[1] Bernd F reisleben Dieter Hartmann ThiloKielmann [1997]
“Parallel Raytracing A Case Study on Partitioning and
Scheduling on Workstation Clusters” 1997 Thirtieth Annual
Hawwaii International Conference on System Sciences.

[2] Blaise Barney, (1994) Livermore Computing, MPI Web pages
at Argonne National Laboratory http://www-
unix.mcs.anl.gov/mpi "Using MPI", Gropp, Lusk and
Skjellum. MIT Press

[3] Erik D. Demaine, Ian Foster, CarlKesselman, and Marc Snir
[2001] “Generalized Communicators in the Message Passing
Interface” 2001 IEEE transactions on parallel and distributed
systems pages from 610 to 616.

[4] Hau Yee Sit Kei Shiu Ho Hong Va Leong Robert W. P. Luk
Lai Kuen Ho [2004] “An Adaptive Clustering Approach to
Dynamic Load balancing” 2004 IEEE 7th International
Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN’04).

[5] JanhaviB, SunilSurve, Sapna Prabhu-2010 “Comparison of
load balancing algorithms in a Grid” 2010 International
Conference on Data Storage and Data Engineering Pages from
20 to 23.

[6] M. Snir, SW. Otto, S. Huss-Lederman, D. W. Walker and J.
Dongarra,(1996) MPI: The Complete Reference (MIT Press,
Cambridge, MA, 1995). 828 W. Gropp et al./Parallel
Computing 22 (1996) 789-828.

[7] Marta Beltr´an and Antonio Guzm´an [2008] “Designing load
balancing algorithms capable of dealing with workload
variability” 2008 International Symposium on Parallel and
Distributed Computing Pages from 107 to 114.

[8] ParimahMohammadpour, Mohsen Sharifi, Ali Paikan,[2008]
“A Self-Training Algorithm for Load Balancing in Cluster
Computing”, 2008 IEEE Fourth International Conference on
Networked Computing and Advanced Information
Management, Pages from 104 to 110.

[9] Paul Werstein, Hailing Situ and Zhiyi Huang [2006] “Load
Balancing in a Cluster Computer” Proceedings of the Seventh
International Conference on Parallel and Distributed
Computing, Applications and Technologies.

[10] SharadaPatil, DrArpita Gopal,[2012], MsPratibhaMandave
“Parallel programming through Message Passing Interface to

improving performance of clusters” – International Docteral
Conference (ISSN 0974-0597) SIOM, WadgoanBudruk in Feb
2013.

[11] SharadaPatil, Arpita Gopal “Comparison of Cluster
Scheduling Mechanism using Workload and System
Parameters” 2011 ISSN 0974-0767 International journal of
Computer Science and Application.

[12] SharadaPatil, Arpita Gopal “STUDY OF DYNAMIC LOAD
BALANCING ALGORITHMS FOR LINUX CLUSTERED
SYSTEM USING SIMULATOR” 2011 ISSN 0974-3588
International journal of Computer Applications in Engineering
Technology and Sciences.

[13] SharadaPatil, DrArpita Gopal, [2011] “Study of Load
Balancing ALgorithms” – National Conference on biztech
2011, Selected as a best paper in the conference, got first rank
to the paper, DICER, Narhe, Pune in year March 2011.

[14] SharadaPatil, DrArpita Gopal, [2013] “Cluster Performance
Evaluation using Load Balancing Algorithm” –
INTERNATIONAL CONFERENCE ON INFORMATION
COMMUNICATION AND EMBEDDED SYSTEMS ICICES
2013,978-1-4673-5788-3/13/$31.00©2013IEEE (ISBN 978-1-
4673-5786-9) Chennai, India in year Feb 2013.

[15] SharadaPatil, DrArpita Gopal,[2012] “Need Of New Load
Balancing Algorithms For Linux Clustered System” –
International Conference on Computational techniques And
Artificial intelligence (ICCTAI’2012) (ISBN 978-81-922428-
5-9) Penang Maleshia in year Jan 2012.

[16] SharadaPatil, DrArpita Gopal,[2013] “Enhancing Performance
of Business By Using Exctracted Supercomputing Power
From Linux Cluster’s ” – International Conference on FDI
2013 (ISSN 0974-0597) SIOM, WadgoanBudruk in Jan 2013.

[17] Sun Nian, Liang Guangmin [2010] “Dynamic Load Balancing
Algorithm for MPI Parallel Computing” 2010 Pages 95 to 99.

[18] William Gropp, Rusty Lusk, Rob Ross, and Rajiv Thakur
[2005] “MPI Tutorials “ Retrieved from
www.mcs.anl.gov/research/projects/mpi/tutorial Livermore
Computing specific information:

[19] Yanyong Zhang, AnandSivasubramaniam, JoseÂ Moreira,
and Hubertus Franke [2001] “Impact of Workload and System
Parameters on Next Generation Cluster Scheduling
Mechanisms” 2001 IEEE transactions on parallel and
distributed systems Pages from 967 to 985.

[20] Yongzhi Zhu Jing GuoYanling Wang [2009] “Study on
Dynamic Load Balancing Algorithm Based on MPICH” 2009
MPI_COMM_RANK: World Congress on Software
Engineering. Pages from 103 to 107.

[21] Michel Daydé, Jack Dongarra (2005) “High Performance
Computing for Computational Science - VECPAR 2004”
ISBN 3-540-25424-2 pages 120-121.

[22] G. Bums and R. Daoud, MPI Cubix (1994) Collective POSIX
I/O operations for MPI, Tech. Rept. OSC-TR- 1995- 10, Ohio
Supercomputer Center, 1995.

[23] Sharada Santosh Patil, Arpita N. Gopal. Authority Ring
Periodically Load Collection for Load Balancing of Cluster
System. American Journal of Networks and Communications.
Vol. 2, No. 5, 2013, pp. 133-139. doi: 10.11648/j.a
jnc.20130205.13.

