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Abstract: In this paper, reference point based neural network (NN) algorithm is proposed for solving fuzzy multiobjective 

environmental/economic dispatch problem (FM-EEDP). There are instabilities in the global market, implications of global 

financial crisis and the rapid fluctuations of prices, for this reasons a fuzzy representation of environmental/economic dispatch 

problem (EEDP) has been investigated. Our approach has two characteristic features. Firstly, FM-EEDP has been defuzzified. 

Secondly reference point based NN algorithm is implemented in such a way that the decision-maker (DM) participate early in 

the optimization process instead of leaving him/her alone with the final choice. The target is to identify the Pareto-optimal 

region closest to the DM preference so as to achieve the pollution limitations which controlled using environmental protection 

rules and to carry out the maximum cost limitation. Moreover to help the DM to identify the best compromise solution from a 

finite set of alternatives, TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) method is implemented. 

On the basis of the application of the standard IEEE 30-bus 6-genrator test system, we can conclude that the proposed method 

can provide a sound optimal power flow by considering the multiobjective problem. Also, with a number of trade-off solutions 

in the region of interests, we proved that the DM able to make a better and more reliable decision. 

Keywords: Environmental/Economic Dispatch Problem, Neural Network, Reference Point, Fuzzy Numbers,  

TOPSIS Method 

 

1. Introduction 

EEDP is one of the most important optimization problems 

from the view point of power system to derive optimal 

Environmental/Economic. Traditional economic dispatch to 

minimize the fuel cost is inadequate when environmental 

emissions are also to be included in the operation of power 

plants. With the increase in the environmental awareness and 

the passage of environmental regulations, the environmental 

constraints are having a significant impact on the operation 

of power systems. The purpose of EEDP is to figure out the 

optimal amount of the generated power for the fossil-based 

generating units in the system by minimizing the fuel cost 

and emission level simultaneously, subject to various equality 

and inequality constraints including the security measures of 

the power transmission/distribution.  

The instabilities in the global market, implications of 

global financial crisis and the rapid fluctuations of prices [1] 

are the main reasons to fuzzy representation of the 

multiobjective EEDP; where the input data involve many 

parameters whose possible values may be assigned by the 

experts. In practice, it is natural to consider that the possible 

values of these parameters as fuzzy numerical data which can 

be represented by means of fuzzy subsets of the real line 

known as fuzzy numbers. 

In this paper, an attempt is made to identify a satisfactory 

operation point for FM-EEDP. Based on Alpha concept, FM-

EEDP is defuzzified at certain degree of α (α-cut level) [2-4]. 

Also, a combination between one of the preference based 

strategy and NN methodology to obtain a set of solutions 

near the reference points. Moreover, to help the DM to 

identify the best compromise solution from a finite set of 

alternatives, TOPSIS method is implemented. It is based 

upon simultaneous minimization of distance from an ideal 

point (IP) and maximization of distance from a nadir point 

(NP). Such procedures will provide the DM with a best 

compromise solution to achieve his/her requirements, so that 
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a better and a more reliable decision can be made. Simulation 

results are presented for the standard IEEE 30-bus system-6 

generator which shows the effectiveness and potential of the 

proposed approach to solve EEDP. 

2. Literature Review 

Various optimization techniques, which pertaining the 

EEDP, have been proposed by many researchers [5-11]. 

Instead of simplifying the multiobjective problem to a single 

objective problem; there is a direction is to handle both 

objectives simultaneously as competing objectives [12-16].  

There has been much research using the deterministic 

approach to solve the EEDP such as: An interactive search 

method, based on the golden section search technique [9], 

Newton-Raphson convergence technique [17], an improved 

Box complex method [18] and epsilon-constraint method 

[19]. More recently, multiobjective evolutionary techniques 

have been applied to solve the EEDP. Abido has pioneered 

this research by applying NSGA [12], NPGA [20] and SPEA 

[13] to the standard IEEE 30-bus system. In fact, it has been 

shown that NSGA-II can obtain minimum solutions 

comparable to tabu search [21].  

The introduction of the environmental consideration in the 

economic dispatch problem is led to develop the heuristics-

based multiobjective optimization techniques and use them to 

solve EEDP. Heuristics-based techniques use a population in 

their search and multiple Pareto-optimal solutions can be 

found in one single run. These techniques can be efficiently 

used to eliminate the most of difficulties in classical methods 

[22-30]. For instance, Xie et al. [24] adopted the fuzzy theory 

to convert the multiobjective EEDP into single-objective 

problem, and tackled it through dynamic programming 

algorithm. In [25] the authors use Simulated Annealing (SA) 

algorithm where it is an optimization technique inspired from 

the process of annealing in thermodynamics. On the other 

hand, by applying the weighted sum method (WSM) and the 

conic scalarization method (CSM), multiobjective EEDP is 

transformed into a single-objective EEDP. Then, the pseudo 

spot price of electricity algorithm (PSPA) is used to solve the 

transformed problem [26]. In [27] the EEDP has been 

addressed using Artificial Bee Colony (ABC) and Particle 

Swarm Optimization (PSO); which are two efficient 

optimization methods. Furthermore, Mousa and Kotb [29] 

presented a hybrid approach; which is a combination between 

two optimization techniques, genetic algorithm (GA) and 

local search. Additionally, Gargeya 1 et al. [30] presented a 

hybrid algorithm, GA and pattern search methods and the 

equality constraint is satisfied by penalty approach method. 

Newly, many approaches are introduced to solve EEDP 

such as: modified PSO technique [31], reference point based 

multiobjective optimization using a combination between 

trust region algorithm and PSO [32], Grey wolf optimization 

[33], flower pollination algorithm [34], Kinetic gas molecule 

optimization [35], Colonial competitive differential evolution 

[36], chaotic teaching–learning-based optimization with Lévy 

flight (CTLBO) [37], one rank cuckoo search algorithm [38], 

Hybrid Ant Colony Optimization (ACO), ABC and 

Harmonic Search (HS) algorithms [39], and differential 

evolution particle swarm optimizer [40].  

Neural networks (NNs) are massively paralleled distributed 

computation, fast convergence and can be considered as an 

efficient method to solve real-time optimization problems. Due 

to the parallel mechanism and massive computing unit-neurons 

of NNs, the large-scale optimization problem can be solved 

efficiently [41, 42]. NNs have become widely used tools in 

many fields such as decision support tool, pattern recognition 

and secure communication [43-46]. 

The EEDP: 

(1) Have complex, non-smooth, nonlinear, non-convex 

characteristics, large number of equality and inequality 

constraints [23].  

(2) Very complex to solve by conventional methods 

because of non-linear objective function [18]. 

(3) Evolutionary techniques suffer from the large number 

of solutions in the Pareto set; where the DM must be 

identifying one solution of the problem [13]. 

(4) Fuzzy representation of EEDP makes it more realistic; 

where there are instabilities in the global market, and 

the rapid fluctuations of prices [14].  

To overcome these reasons, this paper intends to present a 

novel methodology to solve the EEDP. In the new 

methodology, a reference point based NN with fuzziness is 

presented. In such a way, the DM participate early in the 

process of optimization instead of leaving him/her alone in the 

final choice. The aim is to identify the Pareto-optimal region 

nearest to the preference of DM to achieve the pollution 

restrictions which controlled using environmental preservation 

rules and to carry out the maximum cost limitation. 

3. Description of the EEDP 

EEDP aims to find a solution; which minimize two competing 

objective functions and satisfy several equality and inequality 

constraints. In general the EEDP is described as follows: 

3.1. Objective Functions 

� Fuel Cost Objective: 

2

1

1

   ( ) ( ) $ / ;
N

i i Gi i Gi

i

Min f x a b P c P hr
=

= + +∑              (1) 

where 
, ,

i i i
a b c : Fuel cost coefficients of generator i, 

Gi
P : Power generated (p.u) by generator i, 

N: Number of generators. 

� Emission Objective: 

2 2

2

1

  ( ) [10 ( ) exp( )] /
N

i i Gi i Gi i i Gi

i

Min f P P P ton hrα β γ ξ λ−

=

⋅ = + + +∑   (2) 

where 
 ,  ,  , ,  

i i i i i
α β γ ξ λ : Coefficients of the ith generator’s 

emission characteristic. 
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3.2. Constraints 

� Limits Of Power Generation: 

min max ,             1, ......, ;
Gi Gi Gi

P P P i N≤ ≤ =            (3) 

where 

minGi
P : Minimum power generated 

maxGi
P : Maximum power generated. 

� Power balance constraint 

1

 0
n

Gi D Loss

i

P P P
=

− − =∑                         (4)  

where 

D
P : Total load demand (p.u.),  

loss
P : Transmission losses (p.u.) [47]. 

� Security Constraints:  

max , 1, ...., ;S S n≤ =
ℓ ℓ ℓ

ℓ                       (5) 

where 
n
ℓ : The number of transmission lines. 

The system is considered as losses and the security 

constraint is released.  

4. Fuzzy Multiobjective Optimization 

Problem 

Fuzzy multiobjective optimization problem (F-MOP) with 

fuzzy parameters in the objective functions and constraints 

takes the following form: 

{ }1 2Minimize :      ( , ), ( , ),....., ( , )

subject to:       ( , ) 0,  1, 2,.....,

M

i

f X a f X a f X a

g X a i r≤ =

ɶ ɶ ɶ

ɶ
     (6) 

where 
X: Vector of decision variable, 

( , )
M

f X aɶ : The mth objective function, 

( , ), 1, 2, .....,
i

g X a i r=ɶ : The rth constraint vector, 

1 2( , , .... )
n

a a a a=ɶ ɶ ɶ ɶ : Vector of fuzzy parameters. 

Fuzzy parameters are described by real fuzzy numbers. The 

real fuzzy numbers aɶ form a convex continuous fuzzy subset of 

the real line whose membership function ( )
a

aµ
ɶ is defined by: 

1) a continuous mapping from 1R  to the closed interval 

[0, 1]; 

2) ( ) 0
a

aµ =
ɶ  for all 1( , ];a a∈ −∞  

3) strictly increasing on 1 2[ , ]a a ; 

4) ( ) 1
a

aµ =
ɶ for all 2 3[ , ]a a a∈ ; 

5) strictly decreasing on 3 4[ , ]a a ; 

6) ( ) 0
a

aµ =
ɶ  for all 4[ , ).a a∈ +∞  

Definition 1. (α-level set). The α-level set (α-cut) of the 

fuzzy numbers aɶ is defined as the ordinary set ( )L aα ɶ for 

which the degree of their membership functions exceeds the 

level [ ]0,1α ∈ : 

( ) { | ( ) }.
a

L a a aα µ α= ≥
ɶ

ɶ                       (7) 

For a certain degree α, the (F-MOP) can be represented as 

a non-fuzzy as follows:  

{ }1 2

1 2

1 2

Minimize :      ( , ), ( , ),....., ( , )

subject to:      ( , ) 0,   1, 2,.....,

                      ( , ,..., ),  

                      ( , ,...., )

;                         

M

i

n

n

i i i

f X a f X a f X a

g X a i r

X x x x

a a a a

L a Uα α

≤ =
=

=

≤≤

    (8) 

where constraint iLα  and iUα are the lower and upper bound 

for the parameters .ia  

Definition 2. (α–Pareto optimal solution). *
x X∈ is said to 

be an α–Pareto optimal solution to the (α-VMP), if and only if 

there exist no other solution x X∈  and ( )a L aα∈ ɶ  such that 
* *( , ) ( , ),    1, 2,.., ,m mf x a f x a m M≥ ∀ =  with strictly 

inequality holding for at least one i; where the corresponding 

values of parameters 
*

ia  are called α-level optimal parameters. 

5. Solution Methodology 

In this section, a framework for the proposed approach that 

involves three phases was presented. The first one 

defuzzified the F-MOP to the crisp multiobjective 

optimization problem (C-MOP) by using Alpha-cut, while 

the second phase employs a reference point based on NNs 

algorithm to solve the crisp optimization problem. Finally, 

identifies the best compromise solution from a finite set of 

alternatives using TOPSIS Technique in the phase three.  

Phase 1: Defuzzified the F-MOP 

Step 0: Formulate F-MOP 

{ }1 2Minimize :      ( , ), ( , ),....., ( , )

subject to:       ( , ) 0,  1, 2,.....,

M

i

f X a f X a f X a

g X a i r≤ =

ɶ ɶ ɶ

ɶ
;    (9) 

Step 1: Defuzzified F-MOP into C-MOP using Alpha-

Level cut as follows: 

{ }1 2

1 2

1 2

Minimize :       ( , ),  ( , ),...,  ( , )

subject to:       ( , ) 0,  1, 2,.....,

                      ( , ,..., )

                      ( , ,...., )

                    

M

i

n

n

i i i

f X a f X a f X a

g X a i r

X x x x

a a a a

L a Uα α

≤ =
=

=

≤≤

   (10) 

Phase 2: Reference point based on NNs algorithm 

Step 2: Creating an achievement scalarizing problem using 

preferred reference point, where the DM plays an important 

role in the problem domain. 

� Minimize and maximize the objective functions 

individually in the feasible region. This information 

must be given to the DM. 

� The DM suggest preferred reference point z , the 

reference point is a feasible or infeasible point in the 
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objective space. The suggested reference point is used 

to derive achievement scalarizing functions as follows: 

( )
1/

1

1 2

1 2

Minimize :       ( )

subject to:       ( , ) 0,  1,2,.....,

                       ( , ,..., ),  

                       ( , ,...., )

;                         

p
m

p

i i i

i

i

n

n

i i i

w f X z

g X a i r

X x x x

a a a a

L a Uα α

=

 − 
 

≤ =
=

=

≤≤

∑

               (11) 

To make the procedure interactive and useful in practice, 
Wierzbicki [48] suggested a procedure in which the obtained 
solution z′  is used to create m  new reference points, as follows: 

( ) ( )( ). ;j j
z z z z e′= + −                            (12)  

where ( )j
e is the j-th coordinate direction vector.  

Step 3: NN method is implemented for solving convex 

nonlinear programming problem (CNPP), which formulated 

in the previous step. The distinguishing features of the 

proposed network are that the primal and dual problems can 

be solved simultaneously [49].  

I- Let the following be a general convex Nonlinear 

Programming (CNPP) problem: 

Minimize :      ( ) ,  

subject to:       ( ) 0,  1, 2,.....,

                     ,  1, 2,....,  ( );

n

i

T

i j j

f X X R

g X i r

h a X b j p p n

∈
≥ =

= − = <
    (13) 

where ( )f X  and ( )
i

g X  are convex functions. 

II- The dual problem of CNPP is formulated as follows 

[50]:  

, ,
max  ( , , ) ,  

subject to:     ( , , ) 0

                    0;

n

X

X

L X X R

L X

λ µ
λ µ

λ µ
λ

> ∈

∇ =
≥

                     (14) 

where 1 2( , ,..., )T

rλ λ λ λ= , 1 2( , ,..., )T

pµ µ µ µ= ,  

1 1

( , , ) ( ) ( ) ( ) ( )
pr

i i j j

i j

L X f X g X h X L zλ µ λ µ
= =

= − − ≡∑ ∑       (15) 

and 

 
1 1

( , , ) ( ) ( ) ( )
pr

X i i j j

i j

L X f X g X h Xλ µ λ µ
= =

∇ = ∇ − ∇ − ∇∑ ∑ .  (16) 

III- Parameter Initialization, Let t=0. Arbitrary choose 

initial vector
n( ) Rx t ∈ ,

r(t) Rλ ∈ ,
p(t) Rµ ∈ , 0t∆ >

( )0.0001t∆ =  and error 910ε −= . 

IV- Computation of gradient: 

2( ) ( ) ( ). ( ) ( ) [ ( ) ( ) ] ( ) ( ) ( )

( ) ( ) ( ). ( ) ( ) ( ) [ ]

( ) ( ) ( )

T T T T

X XX X

T

X

X

u t E z g X g X g X g X g X L z L z A AX b

v t E z g X g X g X L z

w t E z A L z

λ

µ

λ λ

λ λ λ

= ∇ = + ∇ − + ∇ ∇ + −

= ∇ = − ∇ ∇ + −
= ∇ = − ∇

                      (17) 

V- States Updating: 

( ) ( ) . ( ),  ( ) ( ) . ( ),

                  ( ) ( ) . ( ).

X t t X t t u t t t t t v t

t t t t w t

λ λ
µ µ

+ ∆ = − ∆ + ∆ = − ∆
+ ∆ = − ∆

   (18) 

VI- Calculation:  

2 2 2

1 2 3

1 1 1

( ),   s ( ),    s ( ).
pn r

i j j

i j j

s u t v t w t
= = =

= = =∑ ∑ ∑          (19) 

VII- Stopping criteria: if 1 2,  s sε ε< <  and 3s ε<  then 

output ( ), ( ), ( )X t t t t t tλ µ+ ∆ + ∆ + ∆  otherwise t t t= + ∆  

and go to step IV. 
New Pareto optimal solutions are then found by forming 

new achievement scalarizing problems. If the DM is not 
satisfied with any of these Pareto-optimal solutions, a new 
reference point is suggested and the above procedure is 
repeated.  

Phase III: Identifying a Satisfactory operation point 

 

Fig. 1. The pseudo code of TOPSIS. 
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Optimization of the above-formulated problem using 

reference point based NN method yields a set of Pareto optimal 

solutions closed to the preferred reference point. To determine 

one operating points or identify satisfactory operation point (best 

compromise solution) that satisfies different goals of the DM, 

TOPSIS method given by Hwang and Yoon [51, 52] is used. 

The Pseudo code of TOPSIS can be expressed in figure 1, while 

Figure 2 shows the flow chart of the proposed algorithm. 

 

 

Fig. 2. The flow chart of the proposed algorithm. 
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6. Implementation of the Proposed Approach 

The proposed approach has been applied to the standard IEEE 30-bus 6-generator test system. The single-line diagram of 

this system is shown in Figure 3 while the detailed data are given in Table 1 [53-55]. 

 

Fig. 3. Single line diagram of IEEE 30-bus 6-generator test system. 

Table 1. Generator cost and emission coefficients. 

  G1 G2 G3 G4 G5 G6 

Cost a 10 10 20 10 20 10 
 b 200 150 180 100 180 150 
 c 100 120 40 60 40 100 
Emission α  4.091 2.543 4.258 5.426 4.258 6.131 

 β  -5.554 -6.047 -5.094 -3.550 -5.094 -5.555 

 γ  6.490 4.638 4.586 3.380 4.586 5.151 

 ζ  2.0E-4 5.0E-4 1.0E-6 2.0E-3 1.0E-6 1.0E-5 

 λ  2.857 3.333 8.000 2.000 8.000 6.667 

These data (cost and emission coefficients) have many 

controlled parameters, that values are vague and uncertain. 

So, each numerical value can be assigned by a specific grade 

of membership; where 0 represents the smallest possible 

grade of membership, and 1 is the largest one. Figure 4 show 

the fuzzy numbers that have been obtained from observing 

the instabilities in the global market and rate of prices 

fluctuations or from interviewing DMs. 

 

Fig. 4. Fuzzy numbers of the effectiveness of resource. 

To transform a problem with these fuzzy parameters to a 

crisp version α-cut level is used with the following 
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membership function: 

1,

20
19 0.95

( )
20

21 1.05

0        0.95   1.05

ij

jk ij

ij

ij

ij ij

ij

ij ij

a a

a
a a a

a
a

a
a a a

a

a a or a a

µ

=

 − ≤ ≤
= 
 − ≤ ≤



< >

   (20) 

By this way, the fuzzy parameters can be transformed to a 

crisp one having upper and lower bounds ,L U

ij ija a   , which 

declared in figure 4. Consequently, each α-cut level can be 
represented by the two end points of the Alpha level. 

7. Validation and Evaluation of Results 

In order to study the influence of fuzzy parameters on the 
obtained Pareto optimal solutions, all the range of the 

parameter fluctuation (cost and emission coefficients) were 
scanned, two bounds of Alpha value have been considered

0, 1α α= =  with some values between these bounds 

0.2,0.4,0.6,0.8α = . 

The DM plays an important role; where he/she expected to 
be an expert in the problem domain and provide us with 
different preferred reference point for each case as in figures 
(5-10). Figures (5-10) declare partial set of nondominated 
solutions which obtained by exploring the optimal Pareto 
frontier using different α-cut level and certain preferred 
reference point. For every reference point, partial set of the 
Pareto frontier were found closely to the preferred reference 
point. Graphical presentations of the experimental results are 
presented in figures (5-10) for six instances 

( )0,  0.2,  0.4,  0.6,  0.8,  1α =  with different three preferred 

reference point. Also, it is obvious from figures (5-10), that 
the results maintain the diversity and convergence for all α-
cut level. 

 

Fig. 5. Pareto optimal set for α  cut level =0. 

 

Fig. 6. Pareto optimal set for α  cut level =0.2. 

560 580 600 620 640
0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

Cost($/h)

E
m

is
s
io

n
(t

o
n
/h

)

Reference Point

 

 

580 600 620 640
0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

Cost($/h)

E
m

is
s
io

n
(t

o
n
/h

)

Reference Point

570 580 590 600 610 620 630 640
0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

Cost($/h)

E
m

is
s
io

n
(t

o
n
/h

)

Reference Point

580 590 600 610 620 630 640
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Cost($/h)

E
m

is
s
io

n
 (

to
n
/h

)

Reference Point

580 590 600 610 620 630 640
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Cost($/h)

E
m

is
s
io

n
 (

to
n
/h

)

Reference Point

580 590 600 610 620 630 640
0.17

0.18

0.19

0.2

0.21

0.22

0.23

Cost($/h)

E
m

is
s
io

n
 (

to
n
/h

)

Reference Point



8 A. A. Mousa and M. A. El-Shorbagy:  Identifying a Satisfactory Operation Point for Fuzzy Multiobjective  
Environmental/Economic Dispatch Problem 

 

Fig. 7. Pareto optimal set for α  cut level =0.4. 

 

Fig. 8. Pareto optimal set for α  cut level =0.6. 

 

Fig. 9. Pareto optimal set for α  cut level =0.8. 
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Fig. 10. Pareto optimal set for α  cut level =1.0. 

We can say that, such procedure will provide the DM with 

a set of Pareto solutions near her/his preference; which 

allows the DM to concentrate only to those regions on the 

Pareto optimal frontier which are of interest to her/him 

preference. However the proposed procedure is able to find 

solutions near the supplied reference points, it can’t find one 

operation point on the entire Pareto-optimal front 

corresponding to the preferred reference point. A technique 

to identify best compromise solution is implemented, which 

mean that the task of choosing a single preferred Pareto 

optimal solution from the resulting partial set is also an 

important task which has discussed below. 

7.1. Identifying a Satisfactory Solution 

For this practical application (EEDP), we need to select 

one solution, which will satisfy the different goals, such a 

solution is called best compromise solution. These goals are 

to avoid breaching environmental protection rules, or the 

generating cost must not exceed allowable limitation. To 

select the best compromise solution, TOPSIS method is used. 
TOPSIS method has the ability to identify the best 

alternative from a finite set of alternatives quickly, where it 
can incorporate relative weights of criterion importance 

according DM preference and environmental protection 
rules. Here, the human DM plays an important role; where 
he/she expected to be an expert in the problem domain. The 
effect of changing the weights on the fuel cost and emission 
was studied. In each case one weight is changed linearly, and 

the other weight are generated in such a way that 1 2 1w w+ = . 

In contrast, we observed the weights and the corresponding 

values of 1 2( ), ( )f f⋅ ⋅  to conclude best compromise operating 

point. In each case, one weight is changed linearly taking six 
values. Consequently, six solutions of the objective functions 
is obtained corresponding to the six weights are drawn vs. 
weights for the three cases as shown in Figures (11-16). From 
Figures (11-16) the following points may be concluded: 

(1) One operation point has been selected, depending on 

the user defined weights. 

(2) From a finite set of alternatives, the proposed algorithm 

has the ability to identify the best operating point quickly. 

(3) The best compromise solution which is identified by 

the proposed scheme satisfies all the different goals 

given by the DM. 

(4) From the computational results, this scheme saved the time 

taken by the DM to select best comprise solution, and this 

due to reducing the Pareto set to a manageable size. 

 

Fig. 11. Best compromise solution for different weights for α cut level =0. 
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Fig. 12. Best compromise solution for different weights for α  cut level =0.2. 

 

Fig. 13. Best compromise solution for different weights for α  cut level=0.4. 

 

Fig. 14. Best compromise solution for different weights for α  cut level=0.6. 
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Fig. 15. Best compromise solution for different weights for α  cut level=0.8. 

 

Fig. 16. Best compromise solution for different weights for α cut level=1. 

7.2. Comparative Study 

In this subsection, a comparative study has been carried 

out to assess the proposed approach. Firstly, our approach 

uses only the objective function information, not derivatives 

or other auxiliary knowledge. Therefore it can deal with the 

non-smooth, non-continues and non-differentiable functions 

which are actually existed in practical optimization problems. 

Furthermore, most of the conventional techniques give single 

point (at each iteration) of problem solving by converting the 

multiobjective problem to a single objective problem by 

linear combination of different objectives as a weighted sum. 

On the other hand, the proposed approach generates a set of a 

manageable size accordingly to DM preference. 

Additionally, evolutionary techniques suffer from the large 

size of the Pareto set, where the DM must identify one 

alternative solution. Therefore, the proposed approach has 

been used to reduce the Pareto set to a manageable size 

closed to the DM preference. Moreover, our approach goal is 

not only to prune a given set, but also to generate a 

representative subset, which maintains the characteristics of 

the general Pareto set and take the DM preference into 

consideration.  

In addition, the proposed algorithm by using TOPSIS 

technique has the ability to identify the best operating 

compromise point from a finite set of alternatives quickly, 

which will satisfy the different goals, given by the DM. So 

we can say that this scheme saved the time taken by the DM 

to select the best compromise solution. 

Finally, our approach has many major advantages which 

can be mentioned in the following points: 
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� Suitable to handle EEDP 

� Simple concepts. 

� Easy implementation. 

� Less execution efforts. 

� More flexible and adaptive to a wide variety of 

problems and robust than the conventional methods. 

� Can handle implications of global financial crisis, 

instabilities in the global market, and the rapid 

fluctuations of prices. 

� Able to reduce the Pareto set to a manageable size 

closed to the DM preference. 

� Able to identify the best operating point from a set of 

alternatives quickly. 

� Satisfy the different goals, such as environmental 

protection rules, and allowable limitation of the 

generating cost. 

� Its limitation that it have time consuming for solving 

EEDP, but this not represent any problem to us; where 

the EEDP is solved off-line before operating the system. 

8. Conclusions 

In this paper, reference point based NN algorithm is 

proposed for solving FM-EEDP. The fuzzy representation of 

the EEDP introduced because there are instabilities in the 

global market, implications of global financial crisis and the 

rapid fluctuations of prices. Firstly, FM-EEDP has been 

converted to C-MOP using α-cut level. Secondly reference 

point based NN algorithm is implemented in such a way that 

the DM participates early in the optimization process instead 

of leaving him/her alone with the final choice. Moreover to 

help the DM to identify the best compromise solution from a 

finite set of alternatives, TOPSIS method is implemented. 

Such procedure gives the DM a better and more reliable 

decision. Simulation results are presented for the standard 

IEEE 30-bus system-6 generator which shows the 

effectiveness and potential of the proposed approach to solve 

EEDP. The main features of the proposed algorithm could be 

summarized as follows: 

(i) Our approach can deal with the non-smooth, non-

continues and non-differentiable functions which are 

actually existed in practical optimization problems. 

(ii) Our approach suitable to handle EEDP, simple 

concepts, easy implementation, less execution efforts, 

more flexible and adaptive to a wide variety of 

problems and robust than the conventional methods. 

(iii) Fuzzy representation of the EEDP make our approach 

can deal with instabilities in the global market, 

implications of global financial crisis and the rapid 

fluctuations of prices. 

(iv) From the computational results, our approach saved 

the time taken by the DM to select best comprise 

solution, and this due to reducing the Pareto set to a 

manageable size. 

(v) Using TOPSIS technique has the ability to identify 

the best operating compromise point from a finite set 

of alternatives quickly, which will satisfy the different 

goals, given by the DM. 

(vi) The proposed approach can identify the best operating 

point without applying the method again and again. 

In future works, more complex real-world applications is 

tested by the proposed algorithm. In addition, conduct 

research on the parallel mechanism of multi-reference point 

algorithms and multi-criteria decision group problems to 

improve the efficiency of such approaches; which are very 

relevant for real- world scenarios. 

 

References 

[1] L. Alcorta, F. Nixson, The Global Financial Crisis and the 
Developing World : Impact on and Implications for the 
Manufacturing Sector, United nations: Industrial development 
organization, Vienna (2011) 1-51. 

[2] A. A. Mousa, I. M. El_Desoky, Stability of Pareto optimal 
allocation of land reclamation by multistage decision-based 
multipheromone ant colony optimization, Swarm and 
Evolutionary Computation 13 (2013) 13–21. 

[3] R. Bellman, L. Zadeh, Decision Making in a fuzzy 
environment, Management Science 17 (1970) 141-164. 

[4] M. Sakwa, Fuzzy sets and Interactive Multiobjective 
Optimization, Plenum Press, New York (1993). 

[5] S. F. Brodesky, R. W. Hahn, Assessing the influence of power 
pools on emission constrained economic dispatch, IEEE 
Trans. Power Syst. 1 (1) (1986) 57–62. 

[6] A. Farag, S. Al-Baiyat, T. C. Cheng, Economic load dispatch 
multiobjective optimization procedures using linear 
programming techniques, IEEE Trans. Power Syst. 10 (2) 
(1995) 731–738. 

[7] C. S. Chang, K. P. Wong, B. Fan, Security-constrained 
multiobjective generation dispatch using bicriterion global 
optimization, IEE Proc. Gen. Transm. Distrib. 142 (4) (1995) 
406–414. 

[8] J. X. Xu, C. S. Chang, X. W. Wang, Constrained 
multiobjective global optimization of longitudinal 
interconnected power system by genetic algorithm, IEE Proc. 
Gen. Transm. Distrib. 143 (5) (1996) 435–446. 

[9] J. Zahavi, L. Eisenberg, Economic–environmental power 
dispatch, IEEE Trans. Syst. Man Cybern. SMC 5 (5) (1985) 
485–489. 

[10] Y. T. Hsiao, H. D. Chiang, C. C. Liu, Y. L. Chen, A computer 
package for optimal multiobjective VAR planning in large 
scale power systems, IEEE Trans. Power Syst. 9 (2) (1994) 
668–676. 

[11] B. S. Kermanshahi, Y. Wu, K. Yasuda, R. Yokoyama, 
Environmental marginal cost evaluation by non-inferiority 
surface, IEEE Trans. Power Syst. 5 (4) (1990) 1151–1159. 

[12] M. A. Abido, A novel multiobjective evolutionary algorithm 
for environmental/economic power dispatch, Electr. Power 
Syst. Res. 65 (2003) 71–81. 

[13] M. A. Abido, Environmental/economic power dispatch using 
multiobjective evolutionary algorithms, IEEE Trans. Power 
Syst. 18 (4) (2003) 1529–1537. 



 American Journal of Mathematical and Computer Modelling 2016; 1(1): 1-14 13 
 

[14] A. A. Galal, A. A. Mousa, B. N. Al-Matrafi, Ant Colony 
Optimization Approach Based Genetic Algorithms for 
Multiobjective Optimal Power Flow Problem under Fuzziness, 
Applied Mathematics 4 (2013) 595-603, doi: 
10.4236/am.2013.44084. 

[15] M. Azzam and A. A. Mousa, Using genetic algorithm and 
topsis technique for multiobjective reactive power 
compensation, Electric Power Systems Research 80 (2010) 
675–681. 

[16] M. S. Osman, M. A. Abo-Sinna, and A. A. Mousa, IT-
CEMOP: An Iterative Co-evolutionary Algorithm for 
Multiobjective Optimization Problem with Nonlinear 
Constraints, Journal of Applied Mathematics & Computation 
(AMC) 183 (2006) 373-389. 

[17] M. R. Gent, J. W. Lamont, Minimum-Emission Dispatch, 
IEEE Transactions on Power Apparatus and Systems PAS-90 
(6) (1971) 2650-2660. 

[18] J. Nanda, D. P. Kothari, K. S. Lingamurthy, Economic-
Emission Load Dispatch through Goal Programming 
Techniques, IEEE Transactions on Energy Conversion 3 (1) 
(1988) 26-32. 

[19] J. S. Dhillon, S. C. Parti, D. P. Kothari, Multiobjective 
Optimal Thermal Power Dispatch. Electrical Power and 
Energy Systems, 16 (6) (1994) 383-389. 

[20] M. A. Abido, A Niched Pareto Genetic Algorithm for 
Multiobjective Environmental/Economic Dispatch, Electrical 
Power and Energy Systems 25 (2) (2003) 97-105. 

[21] R. T. F. Ah King, H. C. S. Rughooputh, Elitist Multiobjective 
Evolutionary Algorithm for Environmental/Economic 
Dispatch, IEEE Congress on Evolutionary Computation, 
Canberra, Australia 2 (2003) 1108-1114. 

[22] M. A. El-Shorbagy, A. A. Mousa, S. M. Nasr, A chaos-based 
evolutionary algorithm for general nonlinear programming 
problems, Chaos, Solitons and Fractals 85 (2016) 8-21. 

[23] X.-S. Yang, S. S. S. Hosseini, A. H. Gandomi, Firefly 
Algorithm for solving non-convex economic dispatch 
problems with valve loading effect, Applied Soft Computing 
12 (2012) 1180–1186. 

[24] L. Xie, S. Wang, Z. Wu, Study on Economic, Rapid and 
Environmental Power Dispatch Based on Fuzzy Multi-objective 
Optimization, Modern Applied Science 3 (6) (2009) 38-44. 

[25] K. K. Vishwakarma, H. M. Dubey, M. Pandit and B. K. 
Panigrahi, Simulated Annealing Approach For Solving 
Economic Load Dispatch Problems With Valve Point Loading 
Effects, International Journal of Engineering, Science and 
Technology 4 (4) (2012) 60-72. 

[26] C. Yaser, A pseudo spot price of electricity algorithm applied 
to environmental economic active power dispatch problem, 
Turk J Elec Eng & Comp Sci 20 (6) (2012) 990-1005. 

[27] E. D. Manteaw, N. A. Odero, Multi-objective 
environmental/economic dispatch solution using ABC_PSO 
hybrid algoithm, International Journal of Scientific and 
Research Publications 2 (12) (2012) 1-7. 

[28] A. A. Mousa, M. A. El-Shorbagy, W. F. Abd El-Wahed, Local 
search based hybrid particle swarm optimization for 
multiobjective optimization, International journal of Swarm 
and evolutionary computation 3 (2012) 1-14. 

[29] A. A. Mousa, K. A. Kotb, Hybrid multiobjective evolutionary 
algorithm based technique for economic emission load 
dispatch optimization problem, Scientific Research and Essays 
7 (25) (2012) 2242-2250. 

[30] M. A. Gargeya, S. P. Pabba, Economic Load Dispatch Using 
Genetic Algorithm And Pattern Search Methods International 
Journal Of Advanced Research In Electrical, Electronics And 
Instrumentation Engineering 2 (4) (2013) 1203-1212. 

[31] Hardiansyah, A Modified Particle Swarm Optimization 
Technique for Economic Load Dispatch with Valve-Point 
Effect, I. J. Intelligent Systems and Applications 7 (2013) 32-
41. 

[32] A. A. El-Sawy, Z. M. Hendawy, M. A. El-Shorbagy, 
Reference Point Based TR-PSO for Multi-Objective 
Environmental/Economic Dispatch, Applied Mathematics 4 
(2013) 803-813. 

[33] M. Pradhan, P. K. Roy b, T. Pal, Grey wolf optimization 
applied to economic load dispatch problems, Electrical Power 
and Energy Systems 83 (2016) 325–334. 

[34] A. Y. Abdelaziz, E. S. Ali, S. M. Abd Elazim, Implementation 
of flower pollination algorithm for solving economic load 
dispatch and combined economic emission dispatch problems 
in power systems, Energy 101 (2016) 506e518. 

[35] M. Basu, Kinetic gas molecule optimization for nonconvex 
economic dispatch problem, Electrical Power and Energy 
Systems 80 (2016) 325–332. 

[36] M. Ghasemi, M. Taghizadeh, S. Ghavidel, A. Abbasian, 
Colonial competitive differential evolution: An experimental 
study for optimal economic load dispatch, Applied Soft 
Computing 40 (2016) 342–363. 

[37] X. He, Y. Rao, J. Huang, A novel algorithm for economic load 
dispatch of power systems, Neurocomputing 171 (2016) 
1454–1461. 

[38] T. T. Nguyen, D. N. Vo, The application of one rank cuckoo 
search algorithm for solving economic load dispatch 
problems, Applied Soft Computing 37 (2015) 763–773. 

[39] T. Sen, H. D. Mathur, A new approach to solve Economic 
Dispatch problem using a Hybrid ACO–ABC–HS 
optimization algorithm, Electrical Power and Energy Systems 
78 (2016) 735–744. 

[40] M. Ghasemi, J. Aghaei, E. Akbari, S. Ghavidel, L. Li, A 
differential evolution particle swarm optimizer for various 
types of multi-area economic dispatch problems, Energy 107 
(2016) 182-195. 

[41] Q. Liu, J. Wang, A one-layer recurrent neural network with a 
discontinuous hard-limiting activation function for quadratic 
programming, IEEE Transactions on Neural Networks 19 
(2008) 558–570. 

[42] Q. Liu, J. Wang, Finite-time convergent recurrent neural 
network with a hard-limiting activation function for 
constrained optimization with piecewise linear objective 
functions, IEEE Transactions on Neural Networks 22 (2011) 
601–613 

[43] Y. Yang, J. Cao, X. Xu, J. Liu, A generalized neural network 
for solving a class of minimax optimization problems with 
linear constraints, Applied Mathematics and Computation 218 
(2012) 7528–7537. 



14 A. A. Mousa and M. A. El-Shorbagy:  Identifying a Satisfactory Operation Point for Fuzzy Multiobjective  
Environmental/Economic Dispatch Problem 

[44] R. Furtuna, S. Curteanu, and F. Leon, An elitist non-
dominated sorting genetic algorithm enhanced with a neural 
network applied to the multi-objective optimization of a 
polysiloxane synthesis process, Engineering Applications of 
Artificial Intelligence 24 (2011) 772–785. 

[45] E. N. Dragoi, S. Curteanu, A. Galaction, D. Cascaval, 
Optimization methodology based on neural networks and self-
adaptive differential evolution algorithm applied to an aerobic 
fermentation process, Appl. Soft Comput. J. 13 (1) (2013) 
222–238. 

[46] X. Hu, Applications of the general projection neural network 
in solving extended linear-quadratic programming problems 
with linear constraints, Neuro computing 72 (2009) 1131–
1137. 

[47] B. S. Kermanshahi, Y. Wu, K. Yasuda, R. Yokoyama, 
Environmental marginal cost evaluation by non-inferiority 
surface, IEEE Trans. Power Syst. 5 (4) (1990) 1151-1159. 

[48] A. P. Wierzbicki, The use of reference objectives in 
multiobjective optimization, Multiple Criteria Decision 
Making Theory and Applications, Berlin: Springer-Verlag 177 
(1980) 468-486. 

[49] K.-z. Chen, Y. Leung, K. S. Leung, X.-b. Gao, A Neural 
Network for Solving Nonlinear Programming Problem, Neural 
Computing & Applications 11 (2) (2002) 103-111. 

[50] O. L. Mangasarian, nonlinear programming, McGraw-Hill 
Book Company, New York (1994). 

[51] C. L. Hwang, K. Yoon, Multiple Attribute Decision Making: 
Methods and Applications, Springer-Verlag, New York, 1981. 

[52] D. L. Olson, Comparison of weights in TOPSIS models, 
Math. Comput. Model. 40 (2004) 721–727. 

[53] J. Carpentier, Contribution to the economic dispatch problem. 
Bulletin Society Francaise Electriciens 3 (8) (1962) 431–447. 

[54] A. J. Wood, F. Bruce, Power generation operation and control. 
Wollenberg: John Wiley & Sons, Inc, 1984. 

[55] R. Zimmerman, D. Gan, MATPOWER: A Matlab power 
system simulation package, Available: 
http://www.pserc.cornell.edu/matpower/. 

 

 


