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Abstract: Geographic Information Systems and spatial interpolation are the most often used geographic sciences for spatial 

analysis and visualization of temperature to use in hydrological studies. According to dependency of nature of thermal bands 

data to temperature, using thermal remote sensing images as auxiliary data can be useful in air temperature spatial 

interpolation. In light of these considerations, we used Landsat thermal bands together with Kriging and Co-kriging 

geostatistical methods for four seasons to interpolate mean temperature in Northeast of Iran as a region with low density of 

gauge distribution. Using Landsat (instead of for instance MODIS) is firstly to provide requirement of mentioned science. 

Secondly, help to provide deeper understand in case of “climatic neighborhood” concept. To assess the efficiency of the 

method cross validation indicators were used. Thermal images used in this study increase the accuracy for the winter and 

autumn in comparison to unused outputs. The provided results for spring and summer were good too. Also, the spatial impacts 

of thermal images on the results of autumn and spring are significant. This research indicated that using thermal images as 

auxiliary data have potential to improve spatial prediction accuracy and quality. At the end, we know that number of our 

observation stations are too low and considering the Kriging requirements like normal distribution and stationarity is toilsome 

but we should consider that this problem exist in the regions with low density of gauges and should find a way to enhance the 

air temperature interpolation in these cases. 

Keywords: Interpolation, Kriging, Thermal Co-Kriging, Golestan, Environmental Studies 

 

1. Introduction 

A valuable source of information can be provided by 

remotely sensed data that helping to understand spatial facts 

and providing authorities and scholars with genuine data 

sources for better decision making [7]. “Thermal remote 

sensing is the branch of remote sensing that deals with the 

acquisition, processing and interpretation of data acquired 

primarily in the thermal infrared (TIR) region of the 

electromagnetic (EM) spectrum” [16]. 

One of the most often used geographic techniques is 

spatial interpolation. It used for spatial query of properties, 

spatial data visualization and help to spatial decision-making 

processes in geography, earth sciences, and environmental 

science [12]. Indeed, spatial interpolation is often used to 

calculate a value of an unknown quantity at unmeasured 

locations with the available measurements at sampled sites” 

[9], [12]. Moreover, the spatial interpolation also applies for 

temperature mapping. For land evaluation and 

characterization systems in hydrological and ecological 

models, air temperature is one of the input variables [2]. 

Benavides et al. 2007 and some others e.g. [10] believe that 

modeling air temperature in topographically rough regions is 

a challenge and it is strict to obtain accurate climatic maps. 

Different spatial interpolation methods have been used to 

model air temperature; the more recently geostatistical 

models in continuation of former methods like regression 

analysis, thin-plate smoothing splines (ANUSPLIN), inverse 

distance interpolation weighting or Voronoi tessellation [2], 

[17]. The addition of auxiliary variables is often believed to 
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increase the performance of spatial prediction [12]. Some 

auxiliary variables that used hole around the world by 

researchers are Digital Elevation Model (DEM), slope, 

aspect, distance to sea, solar radiation, land cover, NDVI and 

etc [2], [3], [6], [11]. In this regard, due to development of 

remote sensing satellites and providing thermal images we 

decided to use thermal band of Landsat to enhance the 

performance of temperature interpolation. 

In other word, this study aimed to use Geostatistics and 

thermal remote sensing bands as an ancillary data to spatially 

predict mean air temperature in four season winter (March), 

spring (May), summer (August) and autumn (November) in a 

complex topographic region of North-east of Iran.  

2. Material and Method 

2.1. Study Area 

Study area is located in the northeastern part of Iran and 

covers an area of 18000 km
2
 (Figure. 1). It is located between 

the latitude of 36°43’ and 38°07’N and the longitude of 

54°19’ and 56°27’E. It included most of Gorganrood 

watershed and parts of Atrak and Gharasoo watersheds [13]. 

The altitude range is between -30 to 2956 meters above sea 

level. This region is very important in viewpoint of 

agricultural production and some parts of it are under impacts 

of yearly floods. It has a remarkable climate variation: the 

southern band which is covered by dense forests and 

croplands is humid and the northern parts are semi-arid and 

arid [5], [14].  

2.2. Data Sets 

Two categories of data were used in this research: mean air 

temperature data as station points and Remote Sensing 

images as raster. In the case of temperature data there are 27 

meteorological stations with different time periods in the 

area. But according to the definition of the World 

Meteorological Organization (WMO), data for a 30-year 

period are recommended because they provide stable and 

reproducible monthly means [2]. Therefore, monthly mean 

air temperature data for November 1988, August 1999, May 

2000 and March 2009 of eight stations, were selected (Table 

1; Figure. 1). Unlike many researches that only investigate 

the temperature interpolation in the coldest and warmest 

month we used thermal bands of four cloud free Landsat 

Thematic Mapper (TM) and Enhanced Thematic Mapper 

(ETM+) images (path 162, row 34) for March of 2009, May 

of 2000, August of 1999 and November of 1988 on behalf of 

four season (Figure. 2 and 3). TM and ETM+ sensor thermal 

bands are in the 10.40-12.50 µm with spatial resolution of 

120/60 m [18]. It is essential to mention that, both high gain 

and low gain thermal of August 1999 ETM+ images were 

used in the interpolation process. The images were selected 

and downloaded from the United States Geological Survey’s 

(USGS) National Center for Earth Resources Observation 

and Science (http://glovis.usgs.gov). 

Table 1. Meteorological Stations. 

Station Latitude Longitude Elevation(m) 

Tamar 37° 29ˊ 55° 30ˊ 132 
Gonbad 37° 14ˊ 55° 09ˊ 36 
Araz Kuse 37° 13ˊ 55° 08ˊ 34 
Bhalke Dashli 37° 04ˊ 54° 47ˊ 24 
Fazel Abad 37° 54ˊ 54° 45ˊ 210 
Sad Gorgan 37° 12ˊ 54° 44ˊ 12 

Ghafar Haji 37° 00ˊ 54° 08ˊ -22 

Cheshme Khan 37° 18ˊ 56° 07ˊ 1250 

Robat Gharabil 37° 21ˊ 56° 18ˊ 1450 

 

 

Figure 1. Location of the study area and meteorological stations. 
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Figure 2. Satellite images of the study area in A) March, B) May, C) August and D) November. 

 

Figure 3. Satellite images thermal bands of the study area in A) March, B) May, C) August and D) November. 

2.3. Geostatistics: Kriging/Co-Kriging 

As a brief description, Kriging is a geostatistical 

interpolation method derived from regionalized variable 

theory. It assumes that the distance, the direction, or both 

between observations which show spatial correlation can be 

employed to explain variation in the surface [4]. Kriging can 

propose the finest linear unbiased estimates with an accurate 

description of the spatial structure of the data and valuable 

information about estimation error distributions [4], [15]. “A 

clear improvement to ordinary space–time kriging includes 

the use of ancillary data to aid in the estimation process, 

referred to as external drift” [20]. Cokriging is a versatile 

statistical approach for spatial point estimation, especially, 

when both primary and auxiliary attributes are available. If 

each component of z(s0) satisfies the intrinsic hypothesis that 

assumes that stationarity of the differences between pairs of 

data points exists in the first and second moments, then co-

kriging is unbiased and defined by equations 1, 2, and 3 [11], 
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[12]. 
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Where I is an identity matrix = [1, 0, …, 0]
T
, T indicates a 

transpose, and Λj• are the weights associated with the 

prediction. z (sj) is the vector z1(sj)…zm(sj). Γ(si,sj) and Γ(si,s0) 

are the cross variograms and Ψ is the Lagrange Multiplier for 

i from 1 to n [11], [12]. 

The ordinary and simple kriging and co-kriging with and 

without transformations, optimization and stable model were 

implemented and tested and the results of them were 

compared to select the best output of anyone. 

2.4. Validation and Comparison 

A commonly applied method for accuracy assessment in 

Geostatistics is the leave-one-out cross-validation because no 

reserved data are required for the data validation [2]. In other 

word, as the number of sampled sites is usually not very large 

and they are sparse throughout the study area, so all the 

sampled data are used for the spatial prediction in order to 

improve the precision of the predictions [2]. In this regards, 

results were compared by goodness-of fit statistics such as 

Mean Error (ME), Root Mean Square Error (RMSE), Mean 

Standardized Error (MSE), Average Standard Error (ASE) 

and Root Mean Square Standardized Error (RMSSE) [1], [2], 

[4], [5], [12], [19].  
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Where ! 	�"�� is the measured value of the sample points, 

and its fitted values is!$�"�� ; Standard value of them is 

!��"��  and !)�"��  respectively and 7�"��  is standard 

deviation [1], [8], [19]. 

The ME indicates whether the model is, on average, 

producing estimates that are overestimating or 

underestimating the observed values. In a well-adapted 

model, ME and SME should be close to zero for unbiased 

methods. The RMSE measure the average precision of the 

prediction and should be as small as possible. The model that 

performs the best will be the one with the smallest RMSE. 

This would suggest that the predictions are impartial and 

close to the respective real values. The values of ASE are 

used in order to evaluate the prediction divergence from real 

values. Therefore, ASE should be the same as RMSE, in 

order to evaluate the divergence of predictions correctly. The 

values of RMSSE should be close to 1. If the RMSSE are 

greater than 1, then the variability of the predictions is 

underestimated vice versa [1], [8], [19]. 

The ME, RMSE, ASE, SME and RMSSE were calculated 

to check the performance of each state of interpolations. 

Therefore, results based on described above rules was 

compared. 

3. Result and Discussion 

In this study, due to low density of meteorological 

stations, we used the thermal bands of remote sensing 

imageries from Landsat. Figures 4 and 5 show four maps of 

winter to autumn predicted mean temperature derived from 

Kriging and Thermal Co-Kriging (TCK). Kriging shows 

interior regions warm while, there are two warm areas in 

the center and west (plains to the coastal area) in the TCK 

output. In spring and summer both of them has the same 

trend and the warm area is in the center (plain) and for the 

summer warm area move somehow to the west (to the 

coast). In the autumn the kriging shows a descending 

gradual from west to east but in the TCK warm area located 

in the north part of the region (hills) with some spatial 

distribution. On the other hand, the cool parts in all seasons 

are in the east part of the study area (mountains) and spread 

over the north and an area in the west in spring. 

Comparing statistics in the table 2 shows the difference 

between main data, kriging and TCK. In Min the difference 

between TCK and main data in winter, spring and autumn is 

less than kriging but in the summer the kriging is closer to 

the main data. While, For the Max kriging is more similar to 

the main data in winter, spring and autumn and for the 

summer the TCK is closer. The winter, spring and summer 

for the kriging and autumn for the TCK are closer to the main 

data in the Mean parameter. In the S.D. variable winter and 

autumn for TCK and spring and summer for kriging are more 

similar to the main data.  

Table 2. Statistics of the predicted temperatures. 

Geostatistics Method Winter Spring Summer Autumn 

Main Data     

Min 6.1 16.5 22.9 10.3 

Max 13.2 22.8 31.2 18 

Mean 10.87 19.8 27.76 15.18 

S.D. 2.91 2.26 3.14 2.73 

Kriging     

Min 6.62 16.41 23.11 12.24 

Max 12.87 22.85 32.76 16.68 

Mean 10.86 19.53 27.84 14.87 

S.D. 1.69 1.54 3.00 1.34 

Thermal Co-Kriging     

Min 6.094 16.49 23.24 10.63 

Max 14.68 23.20 31.24 19.60 

Mean 11.08 19.43 27.59 14.97 

S.D. 2.12 1.40 2 1.55 

Evaluation results based on ME, RMSE, MSE, RMSSE 

and ASE as goodness-of fit statistics can be seen in Table 3.  
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Figure 4. Models of predicted mean air temperature for Kriging: (A) winter, (B) spring, (C) summer, (D) autumn. 

 

Figure 5. Models of predicted mean air temperature with TCK: (A) winter, (B) spring, (C) summer, (D) autumn. 

Table 3. Results of ME, RMSE, MSE, RMSSE and ASE. 

Geostatistics Method Winter Spring Summer Autumn 

Kriging     

ME 0.0004 0.295 -0.128 0.042 

RMSE 1.371 1.005 1.403 2.036 

MSE 0.005 0.135 -0.3049 0.007 

ASE 2.127 1.330 1.490 2.140 

RMSSE 0.703 0.795 1.019 0.948 

Thermal Co-Kriging     

ME -0.133 0.24 -0.039 0.11 

RMSE 1.083 1.043 1.475 1.902 

MSE -0.026 0.102 0.002 0.051 

ASE 1.686 1.266 1.778 2.11 

RMSSE 0.952 0.863 0.927 0.902 
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For optimality and validity of the models if the root-mean-

squared prediction error is smaller for a particular model 

therefore it is the optimal model. However, when comparing 

to another model, the root-mean-squared prediction error 

may be closer to the average estimated prediction standard 

error. This is a more valid model, because when we predict at 

a point without data, we have only the estimated standard 

errors to assess our uncertainty of that prediction. We also 

must check that the root-mean-square standardized is close to 

one [1]. In light of these considerations and as can be 

understood from Table 3, TCK is optimal for the winter and 

autumn and valid for the winter and kriging is optimal for 

spring and summer and valid for summer. Also it has to be 

emphasized that, in general inspections of the results TCK 

getting more score in the winter and spring and kriging in 

summer and autumn. Furthermore, spatial distribution of 

standard errors maps for kriging and TCK are shown in 

Figures 6 and 7. 

 
Figure 6. Standard errors map of mean air temperature with Kriging: (A) winter, (B) spring, (C) summer, (D) autumn. 

 

Figure 7. Standard errors maps of mean air temperature with Thermal Co-Kriging: (A) winter, (B) spring, (C) summer, (D) autumn. 
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4. Conclusions and Future Works 

Developing Remote Sensing data (including thermal bands) 

is taking place at an unprecedented rate nowadays. In line with 

this development, satellite images can be relatively easily in 

access. Owing to this we decided to use the thermal bands of 

the TM and ETM+ sensors as auxiliary data to enhance the 

mean temperature interpolation quality in the complex regions 

with less meteorological stations. This study reveals that, for 

this region with mentioned images the TCK has shown good 

performance for winter and autumn instead of kriging, though 

its result for the spring and summer is good too. Future 

direction of this research include testing and use of different 

spatial interpolations and Geostatistics methods, thermal bands 

for different regions and time periods. It is recommended to 

provide thermal inputs of Geostatistics methods using different 

sampling methods to reduce calculation volumes. Furthermore, 

check the usefulness of the method for other geographical 

factors that need to be interpolated. 
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