

American Journal of Embedded Systems and Applications
2014; 2(4): 38-50

Published online September 30, 2014 (http://www.sciencepublishinggroup.com/j/ajesa)

doi: 10.11648/j.ajesa.20140204.12

Implementing adaptive time-triggered co-operative
scheduling framework for highly-predictable embedded
systems

Mouaaz Nahas
1, *

, Ricardo Bautista-Quintero
2

1Department of Electrical Engineering, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, KSA
2Department of Mechanical Engineering, Instituto Tecnologico De Culiacan, Sinaloa, Mexico

Email address:
mmnahas@uqu.edu.sa (M. Nahas), ricardo.bquintero@gmail.com (R. Bautista-Quintero)

To cite this article:
Mouaaz Nahas, Ricardo Bautista-Quintero. Implementing Adaptive Time-Triggered Co-Operative Scheduling Framework for

Highly-Predictable Embedded Systems. American Journal of Embedded Systems and Applications. Vol. 2, No. 4, 2014, pp. 38-50.

doi: 10.11648/j.ajesa.20140204.12

Abstract: For many real-time embedded systems, Time-Triggered Co-operative (TTC) scheduling algorithms provide

simple and reliable solution at low cost. Previous work in this area has focused on the development of a wide range of TTC

implementations for various purposes (e.g. for achieving low-jitter characteristics, reducing CPU power consumption or

dealing with task-overruns). Despite the great deal of work in this area, it can be said that each previous scheduler

implementation was created to address only one particular problem in TTC algorithm. For applications which require

extremely high degree of reliability, a combinational TTC architecture – that incorporates multiple features – can be an

appropriate solution. This paper describes the implementation of an adaptive, highly-predictable TTC scheduler that

addresses both jitter and task-overrun problems simultaneously. Furthermore, the presented scheduler incorporates an online

technique for measuring the practical “worst-case execution time” for each task during system runtime. The behavior of the

proposed scheduler is compared with a set of previously developed schedulers in terms of timing jitter, task-overrun handling

capability and resource requirements for practical real-time implementations.

Keywords: Time-Triggered, Co-Operative, Cyclic Executive, Jitter, Worst Case Execution Time,

Multiple Timer Interrupts, Task-Overrun, Task Guardian, Adaptive Scheduler

1. Introduction

Embedded systems are often implemented as a collection

of communicating tasks [1]. For example, if the tasks are

invoked as a response to aperiodic events, the system

architecture is described as “event-triggered” [2],[3].

Alternatively, if the tasks are invoked periodically under the

control of timer, the system architecture is described as

“time-triggered” [4],[3]. Moreover, if the tasks – once

invoked – can pre-empt (interrupt) other tasks, then the

system is described as “pre-emptive”: if, instead, tasks

cannot be interrupted, the system is described as “non

pre-emptive” or “co-operative”.

Cyclic executive [5],[6] is a form of co-operative

scheduler that has a time-triggered architecture. Such

Time-Triggered Co-operative (TTC) schedulers can be a

good match for a broad range of embedded applications,

even those which have hard real-time requirements [5]-[11] .

Since all tasks in TTC scheduler run regularly according to

their predefined order, such schedulers demonstrate very

low levels of task jitter (see for instance [6],[13] and [14]).

Moreover, they can maintain their low-jitter characteristics

even when complex techniques, such as Dynamic Voltage

Scaling (DVS), are employed to reduce system power

consumption [15].

Nonetheless, implementing the software code of TTC

algorithms, with less care, can result in demonstrating high

levels of task jitter [16],[17]. The presence of jitter can have

a detrimental impact on the performance of many embedded

applications. For example, [18] show that – during data

acquisition tasks – jitter rates of 10% or more can introduce

errors which are so significant that any subsequent

interpretation of the sampled signal may be rendered

meaningless. Similarly [19] discusses the serious impact of

jitter on applications such as spectrum analysis and filtering.

In embedded control systems, jitter can greatly degrade the

performance by varying the sampling period [20],[21].

 American Journal of Embedded Systems and Applications 2014; 2(4): 38-50 39

Impact of sampling jitter on real-time adaptive embedded

control system is explored in detail in [22].

In addition to jitter problem, a pure TTC architecture has a

failure mode which has the potential to impair the system

performance: this mode relates to task overruns (see [23]

and [24] for more details). Briefly, task-overrun describes a

situation when one or more tasks exceed their

pre-determined “worst-case execution time” (WCET)
1
. In

the most severe circumstances, overrun could mean that a

high-priority task attempts to execute “forever”, denying

lower-priority tasks access to the CPU. Buttazzo [14] has

noted that: “[Co-operative] scheduling is fragile during

overload situations, since a task exceeding its predicted

execution time could generate (if not aborted) a domino

effect on the subsequent tasks”.

As many researchers have observed, determining the

WCET of tasks is rarely straightforward [25]-[34].

Therefore, when implementing a TTC scheduler the user

needs to appreciate this potential risk and understand

precisely how the scheduler will behave in the presence of

task overrun. It should be noted that lack of knowledge

about WCET is a problem which faces the developers of

many embedded systems (not just those based on TTC). For

example, as Gergeleit and Nett [30] have noted: “Nearly all

known real-time scheduling approaches rely on the

knowledge of WCETs for all tasks of the system”. For further

details about WCET analysis, see [35].

One simple solution to this problem is to err on the side of

caution when employing WCET estimates, thereby reducing

the chances of an overrun occurrence. Typical “safety

margins”, used in this approach, are around 20% [36]. Such

technique is simple and can be effective, but inevitably adds

to costs. An alternative is to be slightly more conservative

when estimating WCET values (e.g. add 5% to accurate

estimates) and then extend the scheduler (or add additional

hardware) in such a way that (at runtime) any overrunning

tasks can be shut down, and/or the schedule can be adjusted

[37]. Such an approach also allows dealing with

error-related overruns (for example, tasks which overrun

because of a hardware-related error). In these circumstances,

the problem can be addressed (at least in part) by employing

some form of “watchdog timer” (e.g. [38]) in a “scheduler

watchdog” design (e.g. [39]). Alternatively, greater control

over the system behavior can be obtained by using a “task

guardian” [7],[23],[40]. The concept of allowance for

handling task overrun is introduced in [41],[42].

The present study is concerned with implementing

highly-predictable embedded system. Predictability is one of

the most important objectives of real-time embedded

systems [43]-[45],[14]. It simply reflects the ability to

determine, in advance, exactly what the system will do at

every moment of time in which it is running and hence

determines whether the system is capable of meeting all its

timing constraints. One way in which predictable behavior

1
 WCET is the longest time taken by the CPU to execute a task without

pre-emption [14].

manifests itself is in low levels of task jitter and the ability to

deal with any task-overrun.

The particular focus of this paper is on addressing the

problem of task jitter and task overruns in attempting to

increase the overall system predictability in TTC schedulers.

Previous work in this area has led to the development of

low-jitter TTC schedulers. For example, [17] introduced the

TTC-SD and TTC-MTI schedulers which both had the

potential to reduce the amount of task jitter significantly at the

cost of little increases in memory overheads. Moreover, [23]

and [46] developed the TTC-TG scheduler implementation

which employs a wide range of task guardian mechanisms to

address the task-overrun problem, thereby improving the

real-time performance of TTC system.

This paper describes and evaluates a flexible (adaptive)

TTC architecture that provides extremely predictable task

scheduling. This is aimed towards implementing a “perfect”

TTC scheduler which satisfies all requirements for which it

was initially intended (for example, high reliability,

predictability, efficiency and determinism). The new

implementation is called “TTC-Adaptive” scheduler which

has mainly been developed from the concepts employed in

the TTC-MTI and TTC-TG schedulers described elsewhere

(see [17] and [46], respectively). The developed scheduler is

simply based on a runtime measurement of the tasks’

WCETs before applying jitter-reduction and task guardian

techniques which would depend on the results obtained by

the WCET measurements.

The remainder of this paper is laid out as follows: Section 2

describes the concept and impact of task-overrun in TTC

system. Section 3 introduces the TTC-Adaptive scheduler and

describes its implementation in low-cost embedded system.

Section 4 provides the experimental methodology used to

assess the behavior of the TTC-Adaptive scheduler and the

results obtained from this scheduler. The results are presented

in the form of comparison between the TTC-Adaptive

scheduler and three previously developed TTC schedulers

against a set of criteria including: task jitter, ability to deal

with task-overrun and implementation costs. The overall

paper conclusion is finally presented in Section 5.

2. Task-Overrun in TTC System

In systems employing TTC architectures, task timing

should be highly predictable. To guarantee such levels of

predictability, the WCETs of all tasks need to be known in

advance. If, during runtime, a certain task executes in time

longer than its known WCET, the task is said to have

overrun.

Fig. 1 (a) shows the schedule of two tasks A and B. Task A

has a higher-priority with 1 ms period and 0.5 ms WCET.

Task B has a lower-priority with the period equals to 5 ms. In

Fig. 1 (b), Task A has executed in 5.5 ms (it has overrun). In

this case, Task B is delayed by 5 ms. In practice, the situation

may be much worse if Task A never completes, as this would

cause Task B to be entirely missed throughout system

runtime.

40 Mouaaz Nahas and Ricardo Bautista-Quintero: Implementing Adaptive Time-Triggered Co-Operative Scheduling

Framework for Highly-Predictable Embedded Systems

Figure 1. The impact of task-overrun on a TTC scheduler.

Consider the original TTC scheduler [8] with function call

tree shown in Figure 2. If a task overruns, then – instead of

‘Sleep’ (i.e. idle mode) being interrupted by the Interrupt

Service Routine (ISR) (e.g. Update function) – the

overrunning task is interrupted and all other co-operative

tasks are blocked as control from the interrupt is passed

straight back to the overrunning task: this process is

illustrated in Figure 3.

Main () Sleep ()Task ()Dispatch ()Update ()

Figure 2. Function call tree for the original TTC scheduler (normal

operation).

Main () Task ()Dispatch () Update ()

Figure 3. Function call tree for the original TTC scheduler (with

task-overrun).

Note that the most basic TTC scheduler (as in [8])

assumes that – if a task overruns – all subsequent tasks will

be delayed. This is fine, in theory, but it seems unlikely that

any practical TTC implementation can ever achieve this. For

example, if a task overruns for a week – or a year – then, in

theory, the TTC scheduler should keep track of all “missing”

tasks and execute them “immediately” when the

overrunning task completes. Providing full support for such

a mechanism requires a large memory capacity (potentially

an infinite memory capacity).

3. TTC-Adaptive Scheduler

This section describes the design and implementation of

the TTC-Adaptive scheduler. The developed scheduler

framework is intended to provide (generic) software-based

mechanisms for dealing with overruns in the co-operative

tasks, while maintaining very low-levels of jitter at task

release times. The framework also incorporates a simple, but

effective, mechanism for calculating practical WCETs of the

co-operative tasks during runtime. Our work, as noted

previously, is based on the use of task guardians. Note that

estimating the tasks’ WCETs is performed in this study by

employing a runtime measurement method.

The main software architecture of the proposed scheduler

is taken from the TTC-MTI scheduler (for operating mode)

whereas new task guardian mechanism is implemented here.

Also note that the WCET value computed by this scheduler

represents the longest possible execution time of the task

which is obtained during the measurement period (this does

not necessarily represent the actual WCET which is

accepted by many researches as a non-straightforward

process to calculate).

The reason for describing the proposed scheduler as

“adaptive” is that – unlike all previous TTC schedulers – it is

self-adapted to changes in task execution times during

system runtime.

3.1. Overview

The architecture of this TTC scheduler was based on that

used in our previously developed TTC-MTI scheduler [17].

In particular, with this implementation, two interrupts are

used: “Tick interrupt” and “Task interrupt”. The Tick

interrupt is used to generate the scheduler periodic tick while

the Task interrupt is used to trigger the execution of tasks

within the tick interval. The function call tree of the MTI

scheduler is shown in Fig. Figure 4. This helps to control

jitter levels at all task release times. Moreover, the present

scheduler employs a simple mechanism for calculating the

WCET of each task during the system operation. In all

previously developed TTC scheduler implementations,

WCET information is input to the system by the user (for

more details, see [17]).

Main ()
Tick

Update ()
Sleep ()

Task

Update ()
Task () Sleep ()

If Task () is not the last due task in the tick

If Task () is the last due task in the tick

Figure 4. Function call tree for the TTC-MTI scheduler (in normal

conditions).

Overall, there are two different modes in which the

system can operate: Calculating Mode (CM) and Operating

mode (OM). Each of these modes is described in the

following section.

3.2. Scheduler Modes

The proposed scheduler framework consists of two basic

modes as follows:

3.2.1. Calculating Mode (CM)

The system runs the calculating mode for a short period of

time, allowing the scheduler to perform an online calculation

of the WCET for each co-operative task, and the required

release time at which the task must start its execution. That is,

once the system starts (power is up), the scheduler takes short

time to measure the WCETs and release times of all tasks

before switching into a normal operating mode. The

calculating time period must be defined by the user in

“number of ticks”, based on system specifications. Note that

during this period, the system tasks execute normally but task

jitter might be at very high levels. This is fine and should not

jeopardize the whole system operation assuming that the

calculating mode takes a short but enough time to execute.

 American Journal of Embedded Systems and Applications 2014; 2(4): 38-50 41

The scheduler structure, described in Section 10, is used

here but with some modification (Fig. Figure 5).

If Task () is not the last due task in the tick

If Task () is the last due task in the tick

Main ()
Tick

Update ()
Sleep ()

Task

Update ()
Task () Sleep ()

WCET

Calculation ()

Figure 5. Function call tree for the TTC-Adaptive scheduler (calculating

mode).

In this process, after the task is executed, SCH_WCET()

function is called to calculate the WCET of the completed

task and its release time required for low-jitter

characteristics. The WCET of a task is measured by

recording the time just before and after the task execution

(using, for example, the Timer Control Register “TCR”: see

[47]). The WCET is then calculated, in the “SCH_WCET()”

function, by subtracting the stop time from the start time. In

the same way, release time of a task is measured by recoding

the time just after the Task Update() function begins to

execute. The SCH_WCET() stores the maximum WCET

and the maximum release time for each task in the task array.

Note that the release time of the first task in the system is

based on the worst case duration of the Tick Update()

function. After calculating the WCET of the current task, the

processor is placed in the idle (Sleep) mode for a very short

period before the next Task interrupt occurs (see void

SCH_WCET(void)

{

 tLong Duration;

 // Record Stop time

 Stop_Time = T1TC;

 // Calculate duration for no overrun

 Duration = Stop_Time - Start_Time;

 // Calculate duration of Task Update

 Task_Update_Duration = Start_Time - Release_Time;

 // If index is larger than 0

 if (Index_G)

 {

 // If the measured WCET is larger than recorded

 if (SCH_tasks_G[runme[Index_G - 1]].WCET < Duration)

 {

 // Modifiy the recorded WCET

 SCH_tasks_G[runme[Index_G - 1]].WCET = Duration+1;

 }

 // If release time is less than the tasks start time

 if (SCH_tasks_G[runme[Index_G - 1]].Req_Rls_Tm <

 (Release_Time))

 {

 // Modify the release time

 SCH_tasks_G[runme[Index_G - 1]].Req_Rls_Tm =

 Release_Time+2;

 }

 // set the match register to current time plus little margin: this is

 // because we want the Task_Update to be called immediately

 if (runme[Index_G] != SCH_MAX_TASKS)

 {

 // Set the timer to interrupt almost immediately so we can run next

task

 // Set timer match register to current time + 4

 T1MR1 = T1TC + 4;

 }

 }

 // Disable any interrupt and send the scheduler to sleep

 SCH_End_Task();

}

Listing 1).

Please recall that the WCET value computed in this

algorithm is basically the longest possible execution time of

the task obtained during the measurement period. As many

researchers have observed, determining the accurate WCET

of a particular activity is often a very complicated process

(see [46] for more details).

void SCH_WCET(void)

{

 tLong Duration;

 // Record Stop time

 Stop_Time = T1TC;

 // Calculate duration for no overrun

 Duration = Stop_Time - Start_Time;

 // Calculate duration of Task Update

 Task_Update_Duration = Start_Time - Release_Time;

 // If index is larger than 0

 if (Index_G)

 {

 // If the measured WCET is larger than recorded

 if (SCH_tasks_G[runme[Index_G - 1]].WCET < Duration)

 {

 // Modifiy the recorded WCET

 SCH_tasks_G[runme[Index_G - 1]].WCET = Duration+1;

 }

 // If release time is less than the tasks start time

 if (SCH_tasks_G[runme[Index_G - 1]].Req_Rls_Tm <

 (Release_Time))

 {

 // Modify the release time

 SCH_tasks_G[runme[Index_G - 1]].Req_Rls_Tm =

 Release_Time+2;

 }

 // set the match register to current time plus little margin: this is

 // because we want the Task_Update to be called immediately

 if (runme[Index_G] != SCH_MAX_TASKS)

 {

 // Set the timer to interrupt almost immediately so we can run next

task

 // Set timer match register to current time + 4

 T1MR1 = T1TC + 4;

 }

 }

 // Disable any interrupt and send the scheduler to sleep

 SCH_End_Task();

}

Listing 1. WCET-calculation function in the TTC-Adaptive scheduler.

42 Mouaaz Nahas and Ricardo Bautista-Quintero: Implementing Adaptive Time-Triggered Co-Operative Scheduling

Framework for Highly-Predictable Embedded Systems

3.2.2. Operating Mode (OM)

This relates to the normal operation mode of the scheduler.

It is assumed here that the user has set the duration of the

calculating mode long enough to obtain a correct set of

WCET values: this must be estimated by the user based on

prior knowledge about the system specifications. Once the

calculation time completes, the system is switched into the

operating mode during which scheduled tasks run in their

allotted time “slots” with no release jitter.

The function call tree for the operating mode is identical

to those illustrated in Figure 4. Note that, without any

addition to the design, the system is expected to behave in

the same way as the TTC-MTI scheduler [17]. This means

that a very simple task guardian mechanism is employed in

which the scheduler allows an overrunning task to run until

the next task (or tick) interrupt. This solution will be called

here ‘Option 1’. Here, the last task in that tick has a chance

to overrun for the rest of tick interval (which is relatively

large as compared to task slots) causing the CPU to consume

large amount of unnecessary power.

Therefore, a more effective task guardian solution is still

required. One suggested way is to employ a mechanism

which detects the overrun once occurred and shutdown the

overrunning task immediately whether or not there are

scheduled tasks to run afterwards in the same tick interval.

This solution will be called ‘Option 2’. In this solution, the

scheduler employs three interrupts: “Tick” interrupt and

“Task” interrupt (as before) and a third interrupt called “Task

Overrun” interrupt. The ISR functions for the Tick and Task

interrupts (i.e. Tick Update() and Task Update(),

respectively) are very similar to those used in the TTC-MTI

scheduler. However, the Tick Update() function here keeps

track of the number of ticks for the calculating mode. Once

the calculation time (defined by the user) is over, the

scheduler switches into operating mode.

In addition to setting the match register of the task timer to

be equal to the release time of the next due task, the Task

Update() function also sets the match register of the

“task-overrun” timer to be equal to the task release time plus

the task WCET plus the duration of the task update function.

This simply implies that if a task exceeds its measured

WCET, it will be interrupted immediately by a

Task_Overrun_Update() function which is linked to the

“Task Overrun” timer interrupt. This function reports the

overrun and sends the scheduler to ‘Sleep’. If everything

goes well and no overrun occurs, an End_Task() function is

called after the completion of each task which will simply

disable the task-overrun timer interrupt and send the

scheduler to ‘Sleep’. Note that the Tick Update() function

sets the return address after each task to be for the End_Task()

function.

Figure 6 and Figure 7 illustrate the sequence of functions

in ‘Option 2’ implementation with and without overrun.

Main ()
Tick

Update ()
Sleep ()

Task

Update ()
Task ()

End

Task ()

If Task () is not the last due task in the tick

If Task () is the last due task in the tick

Sleep ()

Figure 6. Function call tree for the TTC-Adaptive scheduler ‘Option 2’

(normal operation).

Main ()
Tick

Update ()
Sleep ()

Task

Update ()
Task () Sleep ()

Overrun

Update ()

Figure 7. Function call tree for the TTC-Adaptive scheduler ‘Option 2’

(with task-overrun).

In order to provide a complete task guardian mechanism,

a third solution which includes support for backup tasks has

been proposed: this is called ‘Option 3’. In this solution,

once an overrun is detected, the function referred to as

Task_Overrun_Update() will report the overrun, set

“backup” task to be the next due task to run and then send

the scheduler to ‘Sleep’. In the next Tick interrupt, the

scheduler executes the backup task before continuing to

execute the following tasks (if any). Note that the tasks that

have already been executed in the tick interval – in which the

overrun took place – will not be re-executed in the following

tick. Overall, with this approach, the scheduler imposes a

one-tick delay for the whole scheduler. This can still

maintain a high determinism assuming that overruns occur

very occasionally. The sequence of functions in ‘Option 3’

implementation is illustrated in Figure 8.

Main ()
Tick

Update ()
Sleep ()

Task

Update ()
Task () Sleep ()

Overrun

Update ()

Tick

Update ()
Sleep ()

Task

Update ()

Backup

Task ()
Sleep ()

End

Task ()

Figure 8. Function call tree for the TTC-Adaptive scheduler ‘Option 3’

(with task-overrun).

The code for the TTC-Adaptive scheduler is shown in

void SCH_Tick_Update(void)

 {

 tByte i = 0;

 tByte Index;

 static tWord Tick_Count = 0;

 // If tick is not paused (no overruns)

 if (!PauseTick)

 {

 // Go through the task array

 for (Index = 0; Index < SCH_MAX_TASKS - 1; Index++)

 {

 // Check if there is a task at this location

 if (SCH_tasks_G[Index].pTask)

 {

 if (--SCH_tasks_G[Index].Delay == 0)

 {

 // indicate the task is to be run

 runme[i++] = Index;

 if (SCH_tasks_G[Index].Period != 0)

 {

 // Schedule period tasks to run again

 American Journal of Embedded Systems and Applications 2014; 2(4): 38-50 43

 SCH_tasks_G[Index].Delay =

SCH_tasks_G[Index].Period;

 }

 else

 {

 // Delete one-shot tasks

 SCH_tasks_G[Index].pTask = 0;

 }

 }

 }

 }

 // Indicate no more tasks in runme queue

 runme[i] = SCH_MAX_TASKS;

 /* If there are tasks in current tick interval */

 if (runme[0] != SCH_MAX_TASKS)

 {

 // If task is 0

 if (runme[0] == 0)

 {

 // If release time is less than current time + 3

 if (SCH_tasks_G[0].Req_Rls_Tm <

 (Tick_Update_Duration))

 {

 // Modify release time to be current + 3

 SCH_tasks_G[0].Req_Rls_Tm =

 Tick_Update_Duration+3;

 }

 }

 // Setup Match Register 1 - interrupt in uS from tick

 T1MR1 = SCH_tasks_G[runme[0]].Req_Rls_Tm;

 // Interrupt on match 1

 T1MCR |= 0x08;

 }

 // Reset the task index

 Index_G = 0;

 }

 // If tick is paused, set release time to backup task so that the backup task runs

 // first and then the next tasks in the schedule can carry on as normal

 else

 {

 // Setup Match Register 1 - interrupt in uS from tick

 T1MR1 = SCH_tasks_G[runme[Index_G]].Req_Rls_Tm;

 // Interrupt on match 1

 T1MCR |= 0x08;

 // Enable tick to run next time

 PauseTick=0;

 }

 // Return to sleep

 cTask = SCH_Go_To_Sleep;

 // Keep track of the number of ticks for the calculating mode.

 // Once the calculation time (defined by the user) completes, the scheduler goes

to

 // operating (normal) mode.

 if (Mode_G == CALCULATING_MODE)

 {

 // If ticks is larger than calculation time

 if (Tick_Count++ > CALCULATION_TIME)

 {

 // Change mode to operating mode

 Mode_G = OPERATING_MODE;

 }

 }

 // If the scheduler goes into the operating mode

 if (Mode_G == OPERATING_MODE)

 {

 // Run End_Task after evry task

 mTask = SCH_End_Task;

 }

 // Record the duation of the Tick Update

 Tick_Update_Duration = T1TC;

 }

Listing 2 to

void SCH_Task_Overrun_Update(void)

{

 // Goto sleep after ISR

 cTask = SCH_Go_To_Sleep;

 // Increment task overrun flag

 SCH_tasks_G[Index_G-1].Overrun++;

 // If there exists a backup task

 if (SCH_tasks_G[Index_G-1].bTask)

 {

 // Disable task interrupt on match 1

 T1MCR &= 0xFFFFFFF7;

 // Set backup task to run

 SCH_tasks_G[Index_G-1].pTask = SCH_tasks_G[Index_G-1].bTask;

 // Point index back to overruning task

 Index_G--;

 // Pause the next tick

 PauseTick = 1;

 }

}

Listing 5.

void SCH_Tick_Update(void)

 {

 tByte i = 0;

 tByte Index;

 static tWord Tick_Count = 0;

 // If tick is not paused (no overruns)

 if (!PauseTick)

 {

 // Go through the task array

 for (Index = 0; Index < SCH_MAX_TASKS - 1; Index++)

 {

 // Check if there is a task at this location

 if (SCH_tasks_G[Index].pTask)

 {

 if (--SCH_tasks_G[Index].Delay == 0)

 {

 // indicate the task is to be run

 runme[i++] = Index;

 if (SCH_tasks_G[Index].Period != 0)

 {

 // Schedule period tasks to run again

 SCH_tasks_G[Index].Delay =

SCH_tasks_G[Index].Period;

 }

44 Mouaaz Nahas and Ricardo Bautista-Quintero: Implementing Adaptive Time-Triggered Co-Operative Scheduling

Framework for Highly-Predictable Embedded Systems

 else

 {

 // Delete one-shot tasks

 SCH_tasks_G[Index].pTask = 0;

 }

 }

 }

 }

 // Indicate no more tasks in runme queue

 runme[i] = SCH_MAX_TASKS;

 /* If there are tasks in current tick interval */

 if (runme[0] != SCH_MAX_TASKS)

 {

 // If task is 0

 if (runme[0] == 0)

 {

 // If release time is less than current time + 3

 if (SCH_tasks_G[0].Req_Rls_Tm <

 (Tick_Update_Duration))

 {

 // Modify release time to be current + 3

 SCH_tasks_G[0].Req_Rls_Tm =

 Tick_Update_Duration+3;

 }

 }

 // Setup Match Register 1 - interrupt in uS from tick

 T1MR1 = SCH_tasks_G[runme[0]].Req_Rls_Tm;

 // Interrupt on match 1

 T1MCR |= 0x08;

 }

 // Reset the task index

 Index_G = 0;

 }

 // If tick is paused, set release time to backup task so that the backup task runs

 // first and then the next tasks in the schedule can carry on as normal

 else

 {

 // Setup Match Register 1 - interrupt in uS from tick

 T1MR1 = SCH_tasks_G[runme[Index_G]].Req_Rls_Tm;

 // Interrupt on match 1

 T1MCR |= 0x08;

 // Enable tick to run next time

 PauseTick=0;

 }

 // Return to sleep

 cTask = SCH_Go_To_Sleep;

 // Keep track of the number of ticks for the calculating mode.

 // Once the calculation time (defined by the user) completes, the scheduler goes

to

 // operating (normal) mode.

 if (Mode_G == CALCULATING_MODE)

 {

 // If ticks is larger than calculation time

 if (Tick_Count++ > CALCULATION_TIME)

 {

 // Change mode to operating mode

 Mode_G = OPERATING_MODE;

 }

 }

 // If the scheduler goes into the operating mode

 if (Mode_G == OPERATING_MODE)

 {

 // Run End_Task after evry task

 mTask = SCH_End_Task;

 }

 // Record the duation of the Tick Update

 Tick_Update_Duration = T1TC;

 }

Listing 2. “Update” ISR of the Tick-Timer-Interrupt in the TTC-Adaptive

scheduler.

void SCH_Task_Update(void)

{

 Release_Time = T1TC;

 // Run task after this function

 cTask = SCH_tasks_G[runme[Index_G]].pTask;

 // Setup Match Register 1 - for the next task

 T1MR1 = SCH_tasks_G[runme[Index_G+1]].Req_Rls_Tm;

 // Setup Match Register 2 - for WCET for end task

 T1MR2 = SCH_tasks_G[runme[Index_G]].Req_Rls_Tm +

 SCH_tasks_G[runme[Index_G]].WCET + Task_Update_Duration + 4;

 // Increment task index

 Index_G++;

 // Disable Interrupt on match 1

 T1MCR &= 0xFFFFFFF7;

 // Enable Interrupt on match 1

 T1MCR |= (1 & (tLong) (runme[Index_G] != SCH_MAX_TASKS)) << 3;

 // Disable Interrupt on match 2

 T1MCR &= 0xFFFFFFBF;

 // Enable WCET end_task interrupt for current task

 T1MCR |= (1 & (tLong) (Mode_G == OPERATING_MODE)) << 6;

 // Record start time

 Start_Time = T1TC;

}

Listing 3. “Update” ISR of the Task-Timer-Interrupt in the TTC-Adaptive

scheduler.

void SCH_End_Task(void)

{

 // Disable Interrupt on match 2

 T1MCR &= 0xFFFFFFBF;

 // Goto Sleep

 SCH_Go_To_Sleep();

}

Listing 4. End-Task function in the TTC-Adaptive scheduler.

void SCH_Task_Overrun_Update(void)

{

 // Goto sleep after ISR

 cTask = SCH_Go_To_Sleep;

 // Increment task overrun flag

 SCH_tasks_G[Index_G-1].Overrun++;

 American Journal of Embedded Systems and Applications 2014; 2(4): 38-50 45

 // If there exists a backup task

 if (SCH_tasks_G[Index_G-1].bTask)

 {

 // Disable task interrupt on match 1

 T1MCR &= 0xFFFFFFF7;

 // Set backup task to run

 SCH_tasks_G[Index_G-1].pTask = SCH_tasks_G[Index_G-1].bTask;

 // Point index back to overruning task

 Index_G--;

 // Pause the next tick

 PauseTick = 1;

 }

}

Listing 5. “Update” ISR of the Task-Overrun-Interrupt in the

TTC-Adaptive scheduler.

4. Evaluation of the TTC-Adaptive

Scheduler

This section first outlines the experimental methodology

used in this study to evaluate the TTC-Adaptive scheduler

described in the previous section. It then presents the output

results in terms of release task jitter, task-overrun handling

capability and implementation costs. Note that the results

obtained from the TTC-Adaptive scheduler are compared

with those obtained from the modified version of the

original TTC scheduler (as described in [16]), TTC-TG and

TTC-MTI schedulers to highlight the benefits of using such

a new scheduler implementation in systems requiring high

degree of predictability.

4.1. Experimental Methodology

We first outline the experimental methodology used to

obtain the results presented in this section.

4.1.1. Hardware Platform

It is assumed in this project that the target platform for the

embedded system will be a small microcontroller (e.g. 8051,

Infineon C16x, Philips LPC2xxx, or PH Processor: [48])

which will be programmed in C language.

In particular, the empirical studies reported in this study

for the single-processor systems were conducted using

Ashling LPC2000 evaluation board supporting Philips

LPC2106 processor [49]. The LPC2106 is a modern 32-bit

microcontroller with an ARM7 core which can run – under

control of an on-chip PLL – at frequencies from 12 MHz to

60 MHz [47]. The single-processor studies outlined in this

paper used an oscillator frequency of 12 MHz, and a CPU

frequency of 60 MHz. The compiler used was the GCC

ARM 4.1.1 operating in Windows by means of Cygwin (a

Linux emulator for windows). The IDE and simulator used

was the Keil ARM development kit (v3.12).

4.1.2. Jitter Test

B1

A1

B2

C1

t = 0 1

C2

t = 0 1

t (Ticks)t = 0 1

Task A

Task B

Task C

t (Ticks)

t (Ticks)

Major cycle

B3

A2

C3

2

2

2

Figure 9. Graphical representation of the task set in jitter test.

In order to distinguish between the jitter behavior of the

compared TTC scheduler implementations, the following

task set is used (Fig. Figure 9). To allow exploring the impact

of schedule-induced jitter, Task A is scheduled to run every

two ticks. Moreover, all tasks have variable execution

durations: this is to allow exploring the impact of

task-induced jitter.

Jitter is measured at the release time of each task as well

as the scheduler tick. To measure the jitter experimentally,

we set a pin high at the beginning of the tick or task (for a

short time) and then measure the periods between every two

successive rising edges. We recorded 5000 samples in each

experiment. The periods were measured using a National

Instruments data acquisition card ‘NI PCI-6035E’ [50], used

in conjunction with appropriate software LabVIEW 7.1 [51].

To assess the jitter levels, we report two values: the

average jitter and the difference jitter. The difference jitter is

the difference between the minimum period and the

maximum period obtained from the measurements in the

sample set. This jitter is sometimes referred to as “absolute

jitter” [14]. The average jitter is represented by the standard

deviation in the measure of average periods. Note that there

are many other measures that can be used to represent the

levels of task jitter, but these measures were felt to be

appropriate for this study.

4.1.3. Task-Overrun Test

In order to check the ability of the scheduler to deal with a

task-overrun, we have used the following task set (Figure

10). Here, Task A is scheduled to run once every 20 ticks

whereas Task B runs every tick. However, Task A is set to

overrun by 10 ticks.

46 Mouaaz Nahas and Ricardo Bautista-Quintero: Implementing Adaptive Time-Triggered Co-Operative Scheduling

Framework for Highly-Predictable Embedded Systems

Task A

overruns

Task A

overruns

t (Ticks)t = 0 1 2 10

A1

20

A2

11 19

B1

t (Ticks)t = 0 1 2 10

B2 B3

20

B21B11 B12 B20

11 19

Major cycle

Task A

Task B

Figure 10. Graphical representation of the task set in task-overrun test.

4.1.4. CPU Overhead Test

In order to obtain CPU overhead measurements for each

scheduler, we run the scheduler for 25 seconds and then, by

using the performance analyzer supported by Keil simulator,

the total time required for the scheduler to run throughout

the measurement period was obtained. The percentage of the

recorded CPU time was then reported to indicate the

overhead (i.e. computational cost) required for each

scheduler implementation.

4.1.5. Memory Overhead Test

In this test, the CODE and DATA memory values required

to implement each scheduler were recorded. Memory values

were obtained using the “.map” file which is created when

the source code is compiled.

The STACK usage was also measured (as DATA memory

overhead) by initially filling the data memory with ‘DEAD

CODE’ and then reporting the number of memory bytes that

had been overwritten after running the scheduler for

sufficient period.

4.2. Jitter Measurements

Table 1 shows the periods and jitter measurements for the

tasks in the original TTC, TTC-TG, TTC-MTI and

TTC-Adaptive schedulers (for comparison purposes).

When comparing the original TTC and the TTC-TG

schedulers, it can be seen that jitter characteristics are not

improved by employing TG mechanisms. On the other hand,

Table 1. Task jitter from the original TTC, TTC-TG, TTC-MTI and

TTC-Adaptive schedulers (all values in µs).

Scheduler TaskA Task B Task C

Original TTC

scheduler

Min Period 9999.4 2988.4 2164.3

Max Period 9999.5 7011.1 7864.1

Average Period 9999.5 4882.0 4799.3

Diff. Jitter 0.1 4022.7 5699.8

Avg. Jitter 0.0 1172.7 1226.9

Scheduler TaskA Task B Task C

TTC-TG

scheduler

Min Period 9999.4 2985.5 2096.2

Max Period 9999.5 7011.7 7848.1

Average Period 9999.5 4922.7 4595.6

Diff. Jitter 0.1 4026.2 5751.9

Avg. Jitter 0.0 1175.3 1203.3

TTC-MTI

scheduler

Min Period 9999.4 4999.7 4999.7

Max Period 9999.5 4999.7 4999.7

Average Period 9999.5 4999.7 4999.7

Diff. Jitter 0.1 0.0 0.0

Avg. Jitter 0.0 0.0 0.0

TTC-Adaptive

scheduler

Min Period 9999.4 4999.7 4999.7

Max Period 9999.5 4999.7 4999.7

Average Period 9999.5 4999.7 4999.7

Diff. Jitter 0.1 0.0 0.0

Avg. Jitter 0.0 0.0 0.0

like the TTC-MTI scheduler, the TTC-Adaptive scheduler

provides very low jitter at the release time of all tasks

running in the system. Remember that in the TTC-Adaptive

scheduler, users are not requested to enter estimates of the

tasks’ WCETs prior to system execution (as in the TTC-MTI

scheduler). Also, the TTC-Adaptive scheduler has better

capability to deal with task-overrun problem. This is further

illustrated in the following section.4.3. Task-Overrun

Behavior

By monitoring the behavior of each scheduler, we found

that in the original TTC scheduler, when an overrun takes

place, the scheduler cannot prevent it. However, the

architecture used in the design of this scheduler allows the

system to keep track of the number of elapsed ticks during

the overrun, and – once the overrunning task (Task A in

Figure 10) completes – the scheduler performs all missing

executions for Task B (in this case, 10 executions), before

continuing to serve the tasks in the following ticks. This

means that the scheduler has the potential to “catch up” in

the event of certain (infrequent and temporary) errors: see

Figure 11.

Task

B

t (Ticks)t = 0 1 2 10

Task

B

Task

B

20

A2B1 B6 B11

11 12

A1 B2 B3 B7 B8 B12

Figure 11. The behavior of original TTC scheduler with when overrun occurs.

 American Journal of Embedded Systems and Applications 2014; 2(4): 38-50 47

Task

B

t (Ticks)t = 0 1 2

BK

(A)

21

A2B1 B2 B3A1

1 tick shift in time

3

Task

B

t (Ticks)t = 0 1 2

BK
(A)

22

A2B1 B2A1

3

1 tick shift in time

1 tick shift in time

(a)

(b)

Figure 12. The behavior of TTC-TG scheduler when overrun occurs: (a)

running BK(A) and B1 tasks in the same tick, (b) running BK(A) and B1

tasks in different ticks to avoid domino effect.

With the TTC-TG scheduler, the scheduler detects and

hence terminates the overrunning task (Task A) at the

beginning of the tick following the one in which Task A

overruns. Moreover, the scheduler allows running a backup

task BK(A) to replace Task A in the same tick in which the

overrun is detected and hence continues to run the following

tasks (Figure 12 (a)). This means that one tick shift is added

to the whole schedule. However, in some cases where (for

example) the schedule is heavily loaded with tasks, the

insertion of a backup task in the next tick of overrun may

cause a domino effect. To reduce the impact of such a

problem, the whole schedule can be extended for one tick to

allow the backup task to complete before the scheduler goes

back to its normal operation. With the tasks arrangement

used in this study (Figure 10), the whole schedule will be

extended for two ticks: one for the backup task and one to

run the missed task B1 (Figure 12 (b)).

In contrast, the TTC-Adaptive scheduler has also been

designed to provide an efficient solution to task overrun

problem. For example, such an implementation detects the

overrun immediately and shutdown the overrunning task:

this is similar to the behavior observed with the TTC-MTI.

However, unlike the TTC-MTI scheduler, the TTC-Adaptive

scheduler provides a support for backup task that will

replace the overrunning task once shut down. In this

scheduler, there can be three different options:

1) If it is not dependent on the output from Task A, Task

B1 can still be scheduled to run in the same tick as Task

A1 and before BK(A) executes (Figure 13 (a)).

2) If it is dependent on the output from Task A, Task B1

must be scheduled to run in the next tick after task

BK(A) completes execution (Figure 13 (b)). This will

obviously add one tick shift to the whole schedule.

3) To avoid any possibility for a domino effect to take

place, the whole schedule can be extended for one

more tick to allow a completion of BK(A) before

returning to the normal schedule (Figure 13 (c)). The

figure shows that, for the task set considered in Figure

10, two tick shifts will be added to the whole schedule.

t (Ticks)t = 0 1 2

BK

(A)

21

A2B1 B2 B3A1

1 tick shift in time

3

t (Ticks)t = 0 1 2

BK

(A)

20

A2B1 B2 B3A1

3

B4

(b)

(a)

t (Ticks)t = 0 1 2

BK
(A)

22

A2B1 B2A1

1 tick shift in time

3

(c)

1 tick shift in time

Figure 13. The behavior of TTC-Adaptive scheduler when overrun occurs.

Note that the TTC-Adaptive implementation presented in

this paper considered the second option (Figure 13 (b)).

Such a behavior has been checked through the IDE and

simulator used. However, the scheduler framework

developed has been made so flexible that the user can – with

a little modification – adopt any of the three proposed

solutions.

Remember that, in addition to low-jitter provision and

overrun prevention, the most advantageous feature of the

TTC-Adaptive scheduler is its ability to control the timing

behavior of tasks based on real-time measurements (not

estimations) of their WCETs.

4.4. CPU and Memory Overheads

Table 2 shows the CPU overhead for the original TTC,

TTC-TG, TTC-MTI and TTC-Adaptive schedulers (for

comparison purposes).

Table 2. CPU overhead for the original TTC, TTC-TG, TTC-MTI and

TTC-Adaptive schedulers

Scheduler Scheduler time (s):
Total time

(s):
Overhead %

Original TTC

scheduler
9.93 25.01 39.7

TTC-TG

scheduler
9.95 25.03 39.8

TTC-MTI

scheduler
9.90 25.01 39.6

TTC-Adaptive

scheduler
9.95 25.01 39.8

The results in the table show that the implementation of

the TTC-Adaptive scheduler requires no additional

processing time as compared to the previous schedulers.

This means that the developed scheduler is computationally

cost-effective.

Table 3 shows the memory overheads for the original TTC,

TTC-TG, TTC-MTI and TTC-Adaptive schedulers (for

comparison purposes). It can clearly be seen that the code

memory overhead in the TTC-Adaptive scheduler is 48%

larger than that in the TTC-MTI scheduler. Such a difference

48 Mouaaz Nahas and Ricardo Bautista-Quintero: Implementing Adaptive Time-Triggered Co-Operative Scheduling

Framework for Highly-Predictable Embedded Systems

is resulted from the integration of the WCET measurement

technique and the task guardian mechanism in the scheduler

source code. This increase is around 34% and 25% when

comparing the TTC-Adaptive with the original TTC and

TTC-TG schedulers, respectively. Such an increase in the

memory overhead is outweighed by the improvement

achieved in the scheduler behavior.

Table 3. Memory requirements (RAM and ROM) for the original TTC, TTC-TG, TTC-MTI and TTC-Adaptive schedulers

Scheduler ROM requirements (Bytes) RAM requirements (Bytes)

Original TTC scheduler 4012 325

TTC-TG scheduler 4296 446

TTC-MTI scheduler 3620 514

TTC-Adaptive scheduler 5364 510

5. Conclusions

This paper suggested a useful addition to the range of

TTC schedulers that have previously been developed. To

deal with task-overrun problem while maintaining low

levels of task jitter, TTC-Adaptive scheduler has been

introduced and evaluated. As noted in the paper, addressing

task overrun and task release jitter at the same time requires

knowledge about the tasks’ WCETs; which is accepted to be

a very complicated process. In previous TTC

implementations, it was assumed that such values are

estimated and provided to the scheduler by the user. The

TTC-Adaptive scheduler was aimed at offering a flexible

implementation where the user needs not to estimate the

tasks’ WCETs during the design stage which in many cases

cannot be accurate and may hence cause a significant

degradation in the timing performance of the system.

As discussed in the paper, the TTC-Adaptive scheduler

employs an online measurement method to calculate the

WCETs for all tasks over a sufficient period of time. Such

values are then used by the scheduler to adjust the timing of

tasks and protect (guard) any task from overrunning. It is

worth reminding that the WCET value computed by this

scheduler for a particular task is the longest possible

execution time of the task during the measurement period

(this is not the actual WCET which, as observed in many

studies, might require further sophisticated techniques to

compute/estimate).

Since it was adapted from the TTC-MTI scheduler

developed previously, TTC-Adaptive scheduler also has low

resource requirements (for example, low code memory is

required). Again, decision to employ the TTC-Adaptive

scheduler in a given system would need to consider the

system requirements in terms of timing as well as

implementation costs.

It is important to note that the TTC-Adaptive scheduler

was aimed towards a perfect TTC implementation as it

provided effective solutions to jitter and overrun problems.

However, a perfect TTC scheduler can be achieved if more

features are considered. For example, future work suggests

that techniques such as DVS [15] can be incorporated in the

scheduler framework to achieve low-power characteristics

at zero jitter. Such a modification would require a substantial

amount of underlying work in order to avoid any conflicts

between timer configurations.

Acknowledgements

The work presented in this paper was carried out in the

Embedded Systems Laboratory (ESL) at University of

Leicester, UK, under the supervision of Professor Michael

Pont, to whom authors are thankful. This project was

supported in part by the UK Government (EPSRC-DTA

award). Authors would also like to thank Dr Zemian Hughes

for providing assistance in writing the software code for the

TTC-Adaptive scheduler.

References

[1] A.C. Shaw, Real-time systems and software, New York, John
Wiley & Sons Inc, 2001.

[2] N. Nissanke, Realtime Systems, Prentice-Hall, 1997.

[3] A. Albert, “Comparison of event-triggered and time-triggered
concepts with regard to distributed control systems,” in
Proceedings of Embedded World, Nurnberg, Germany, 17-19
Feb, 2004. pp. 235-252

[4] H. Kopetz, Real-time systems: Design principles for
distributed embedded applications, Kluwer Academic, 1997.

[5] T. P. Baker, and A. Shaw, “The cyclic executive model and
Ada”. Real-Time Systems, Vol. 1, No. 1, 1989, pp. 7-25.

[6] C. D. Locke, “Software architecture for hard real-time
applications: cyclic executives vs. fixed priority executives.”
Real-Time Systems, Vol. 4, No. 1, 1992, pp. 37-53.

[7] M. Short, “Analysis and redesign of the ‘TTC’ and ‘TTH’
schedulers”. Journal of Systems Architecture, Vol. 58, No. 1,
2012, pp. 38-47.

[8] M.J. Pont, Patterns for time-triggered embedded systems:
Building reliable applications with the 8051 family of
microcontrollers, ACM Press / Addison-Wesley, 2001.

[9] M. J. Pont, and M. Banner, “Designing embedded systems
using patterns: A case study”, Journal of Systems and Software,
Vol. 71, No. 3, 2004, 2004, pp. 201-213.

[10] S. Kurian, and M.J. Pont, “Maintenance and evolution of
resource-constrained embedded systems created using design
patterns”. Journal of Systems and Software, Vol. 80, No. 1,
2007, pp. 32-41

[11] E. Anbarasi, N. Karthik, and R. Prabakaran, “Analysis of time
triggered schedulers in embedded system”. In Electronics
Computer Technology (ICECT), 2011 3rd International
Conference on, Vol. 1, IEEE, 2011, pp. 134-137.

 American Journal of Embedded Systems and Applications 2014; 2(4): 38-50 49

[12] M. Nahas, and A.M. Nahhas, “Ways for Implementing
Highly-Predictable Embedded Systems Using
Time-Triggered Cooperative (TTC) Architectures”. In Dr.
Kiyofumi Tanaka (Ed.), Embedded Systems - Theory and
Design Methodology, ISBN: 978-953-51-0167-3, InTech,
2012.

[13] I.J. Bate, “Scheduling and Timing Analysis for Safety
Critical Real-Time Systems”, PhD dissertation, Department
of Computer Science, University of York, 1998.

[14] G. Buttazzo, Hard real-time computing systems: predictable
scheduling algorithms and applications, Second Edition,
Springer, 2005.

[15] T. Phatrapornnant, and M.J. Pont, “Reducing jitter in
embedded systems employing a time-triggered software
architecture and dynamic voltage scaling”, IEEE
Transactions on Computers, Vol. 55, No. 2, 2006, pp.
113-124.

[16] M. Nahas, Pont, M.J., and A. Jain, “Reducing task jitter in
shared-clock embedded systems using CAN”, In: Koelmans,
A., Bystrov, A. and Pont, M.J. (Eds.) Proceedings of the UK
Embedded Forum 2004, Birmingham, UK, October 2004, pp.
184-194. Published by University of Newcastle upon Tyne.

[17] M. Nahas, “Employing two ‘sandwich delay’ mechanisms to
enhance predictability of embedded systems which use
time-triggered co-operative architectures”, International
Journal of Software Engineering and Applications, Vol. 4, No.
7, 2011, pp. 417-425.

[18] F. Cottet, and L. David, “A solution to the time jitter removal
in deadline based scheduling of real-time applications”, 5th
IEEE Real-Time Technology and Applications Symposium -
WIP, Vancouver, Canada, 1999, pp. 33-38.

[19] A.J. Jerri, “The Shannon sampling theorem: its various
extensions and applications a tutorial review”, Proceeding of
the IEEE, Vol. 65, 1977, pp. 1565-1596.

[20] M. Torngren, “Fundamentals of implementing real-time
control applications in distributed computer systems”,
Real-Time Systems, Vol. 14, 1998, pp. 219-250.

[21] P. Marti, J.M., Fuertes, R. Villà, and G. Fohler, “On
Real-Time Control Tasks Schedulability”, European Control
Conference (ECC01), Porto, Portugal, 2001, pp. 2227-2232

[22] F. Abugchem, M. Short, and D. Xu, “An experimental HIL
study on the jitter sensitivity of an adaptive control system”,
Emerging Technologies & Factory Automation (ETFA),
2013 IEEE 18th Conference on, Cagliari, Italy, 2013, pp. 1-8.

[23] Z.H. Hughes, and M.J. Pont, “Design and test of a task
guardian for use in TTCS embedded systems”, In: Koelmans,
A., Bystrov, A. and Pont, M.J. (Eds.) Proceedings of the UK
Embedded Forum 2004, Birmingham, UK, October 2004, pp.
16-25

[24] K. L. Chan, and M. J. Pont, “Real-time non-invasive
detection of timing-constraint violations in time-triggered
embedded systems”, In Computer and Information
Technology (CIT), 2010 IEEE 10th International Conference
on, Bradford, UK, 2010, pp. 1978-1986.

[25] C.L. Liu, and J.W. Layland, “Scheduling algorithms for
multi-programming in a hard real-time environment”,
Journal of the AVM 20, Vol. 1, 1973, pp. 40-61.

[26] E. Nett, H. Streich, P. Bizzarri, A. Bondavalli and F. Tarini,
“Adaptive Software Fault Tolerance Policies with Dynamic
Real-Time Guarantees”. WORDS 96, IEEE Second Int.
Workshop on Object oriented Real-time Dependable Systems,
Laguna Beach, California, U.S.A., 1996.

[27] Y. Domaratsky, and M. Perevozchikov, “Highly Dependable
Time-Triggered Operating System”, Dedicated Systems
Magazine, Vol. 4, 2000, pp. 77-80.

[28] L.B. Becker, and M. Gergeleit, “Execution Environment for
Dynamically Scheduling Real-Time Tasks”. RTSS 2001,
22nd IEEE Real-Time Systems Symposium, 2001.

[29] J. Engblom, A. Ermedahl, M. Sjoedin, J. Gustafsson, and H.
Hansson, “Worst-Case Execution-Time Analysis for
Embedded Real-Time Systems”. Journal of Software Tools
for Technology Transfer, 2001.

[30] M. Gergeleit, and E. Nett, “Scheduling Transient Overload
with the TAFT Scheduler”. GI/ITG specialized group of
operating systems, Berlin, 2002.

[31] P. Puschner, “Is WCET Analysis a Non-Problem? - Towards
New Software and Hardware Architectures”. 2nd Intl.
Workshop on Worst Case Execution Time Analysis, Vienna,
Austria, 2002.

[32] L.B. Becker, E. Nett, S. Schemmer, and M. Gergeleit,
“Robust scheduling in team-robotics”. 11th International
Workshop on Parallel and Distributed Real-Time Systems,
Nice, France, 2003.

[33] R. Kirner, and P. Puschner, “Discussion of Misconceptions
about Worst-Case Execution-Time Analysis”. 3rd Euromicro
International Workshop on WCET Analysis, 2003.

[34] J. Lelli, D. Faggioli, T. Cucinotta, and G. Lipari, “An
experimental comparison of different real-time schedulers on
multicore systems”, Journal of Systems and Software, Vol. 85,
No. 10, 2012, pp. 2405-2416.

[35] R. Wilhelm and D. Grund, “Computation Takes Time, but
How Much?,” Communications of the ACM, Vol. 57, no. 2,
pp. 94–103, Feb. 2014.

[36] K.S. Vallerio, and N.K. Jha, “Task graph extraction for
embedded system synthesis”, Proceedings 16th International
Conference on VLSI Design concurrently with the 2nd
International Conference on Embedded Systems Design,
2003, pp. 480-486

[37] A.K. Gendy, and M.J. Pont, “Automatically configuring
time-triggered schedulers for use with resource-constrained,
single-processor embedded systems”, IEEE Transactions on
Industrial Informatics, Vol. 4, No. 1, 2008, pp. 37-46.

[38] J. Ganssle, The art of programming embedded systems,
Academic Press, San Diego, USA, 1992.

[39] M.J. Pont, and H.L.R. Ong, “Using watchdog timers to
improve the reliability of TTCS embedded systems”. in
Hruby, P. and Soressen, K. E. [Eds.]Proceedings of the First
Nordic Conference on Pattern Languages of Programs,
September, 2002 pp.159-200. Published by Micrsoft
Business Solutions.

[40] F. Lakhani and M.J. Pont, “Applying Design Patterns to
Improve the Reliability of Embedded Systems through a
Process of Architecture Migration”, High Performance
Computing and Communication & 2012 IEEE 9th

50 Mouaaz Nahas and Ricardo Bautista-Quintero: Implementing Adaptive Time-Triggered Co-Operative Scheduling

Framework for Highly-Predictable Embedded Systems

International Conference on Embedded Software and
Systems (HPCC-ICESS), 2012 IEEE 14th International
Conference on, 25-27 June, 2012, pp. 1563-1570.

[41] L. Bougueroua, L. George, and S. Midonnet, “An Execution
Overrun Management Mechanism for the Temporal
Robustness of Java Real-time Systems,” in Proceedings of
the 4th International Workshop on Java Technologies for
Real-time and Embedded Systems, New York, NY, USA,
2006, pp. 188–195.

[42] F. Fauberteau, S. Midonnet, and L. George, “Robust
Partitioned Scheduling for Real-Time Multiprocessor
Systems,” in Distributed, Parallel and Biologically Inspired
Systems, M. Hinchey, B. Kleinjohann, L. Kleinjohann, P. A.
Lindsay, F. J. Rammig, J. Timmis, and M. Wolf, Eds.
Springer Berlin Heidelberg, 2010, pp. 193–204.

[43] R.E. Kontak, “Applicability of Ada tasking for avionics
executives”, Proceedings of the IEEE 1988 National
Aerospace and Electronics Conference (NAECON), 23-27
May, Vol. 2, 1988, pp. 739-746.

[44] J.A. Stankovic, “Misconceptions about real-time computing”,
IEEE Computers, Vol. 21, No. 10, 1988.

[45] W.A. Halang, and A.D. Stoyenko, “Comparative evaluation
of high-level real-time programming languages”, Real-Time
Systems, Vol. 2, No. 4, 1990, pp. 365-382.

[46] Z.M. Hughes, and M.J. Pont, "Reducing the impact of task
overruns in resource-constrained embedded systems in which
a time-triggered software architecture is employed",

Transactions of the Institute of Measurement and Control,
Vol. 30, 2008, pp.427 – 450.

[47] Philips Semiconductors, LPC2106/2105/2104 USER
MANUAL, 2003, available online (Last accessed: September
2014)
http://www.standardics.nxp.com/products/lpc2000/datasheet
/lpc2104.lpc2105.lpc2106.pdf

[48] Z.M. Hughes, M.J. Pont, and H.L.R. Ong, "The PH Processor:
A soft embedded core for use in university research and
teaching In: Koelmans, A., Bystrov, A., Pont, M.J., Ong, R.
and Brown, A. (Eds.), Proceedings of the Second UK
Embedded Forum, Birmingham, UK, October 2005,pp.
224-245. Published by University of Newcastle upon Tyne.

[49] Ashling Microsystems LPC2000 Evaluation and Development
Kits datasheet, 2007, available online (Last accessed:
September 2014)
http://www.ashling.com/pdf_datasheets/DS266-EvKit2000.pd
f

[50] National Instruments, Low-Cost E Series Multifunction
DAQ – 12 or 16-Bit, 200 kS/s, 16 Analog Inputs, 2006,
available online (Last accessed: September 2014):
http://www.ni.com/pdf/products/us/4daqsc202-204_ETC_21
2-213.pdf

[51] LabVIEW (2007) “LabVIEW 7.1 Documentation
Resources”, WWW website (Last accessed: September 2014):
http://digital.ni.com/public.nsf/allkb/06572E936282C0E486
256EB0006B70B4

