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Abstract: For many real-time embedded systems, Time-Triggered Co-operative (TTC) scheduling algorithms provide 

simple and reliable solution at low cost. Previous work in this area has focused on the development of a wide range of TTC 

implementations for various purposes (e.g. for achieving low-jitter characteristics, reducing CPU power consumption or 

dealing with task-overruns). Despite the great deal of work in this area, it can be said that each previous scheduler 

implementation was created to address only one particular problem in TTC algorithm. For applications which require 

extremely high degree of reliability, a combinational TTC architecture – that incorporates multiple features – can be an 

appropriate solution. This paper describes the implementation of an adaptive, highly-predictable TTC scheduler that 

addresses both jitter and task-overrun problems simultaneously. Furthermore, the presented scheduler incorporates an online 

technique for measuring the practical “worst-case execution time” for each task during system runtime. The behavior of the 

proposed scheduler is compared with a set of previously developed schedulers in terms of timing jitter, task-overrun handling 

capability and resource requirements for practical real-time implementations. 

Keywords: Time-Triggered, Co-Operative, Cyclic Executive, Jitter, Worst Case Execution Time,  
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1. Introduction 

Embedded systems are often implemented as a collection 

of communicating tasks [1]. For example, if the tasks are 

invoked as a response to aperiodic events, the system 

architecture is described as “event-triggered” [2],[3]. 

Alternatively, if the tasks are invoked periodically under the 

control of timer, the system architecture is described as 

“time-triggered” [4],[3]. Moreover, if the tasks – once 

invoked – can pre-empt (interrupt) other tasks, then the 

system is described as “pre-emptive”: if, instead, tasks 

cannot be interrupted, the system is described as “non 

pre-emptive” or “co-operative”. 

Cyclic executive [5],[6] is a form of co-operative 

scheduler that has a time-triggered architecture. Such 

Time-Triggered Co-operative (TTC) schedulers can be a 

good match for a broad range of embedded applications, 

even those which have hard real-time requirements [5]-[11] . 

Since all tasks in TTC scheduler run regularly according to 

their predefined order, such schedulers demonstrate very 

low levels of task jitter (see for instance [6],[13] and [14]). 

Moreover, they can maintain their low-jitter characteristics 

even when complex techniques, such as Dynamic Voltage 

Scaling (DVS), are employed to reduce system power 

consumption [15]. 

Nonetheless, implementing the software code of TTC 

algorithms, with less care, can result in demonstrating high 

levels of task jitter [16],[17]. The presence of jitter can have 

a detrimental impact on the performance of many embedded 

applications. For example, [18] show that – during data 

acquisition tasks – jitter rates of 10% or more can introduce 

errors which are so significant that any subsequent 

interpretation of the sampled signal may be rendered 

meaningless. Similarly [19] discusses the serious impact of 

jitter on applications such as spectrum analysis and filtering. 

In embedded control systems, jitter can greatly degrade the 

performance by varying the sampling period [20],[21]. 
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Impact of sampling jitter on real-time adaptive embedded 

control system is explored in detail in [22]. 

In addition to jitter problem, a pure TTC architecture has a 

failure mode which has the potential to impair the system 

performance: this mode relates to task overruns (see [23] 

and [24] for more details). Briefly, task-overrun describes a 

situation when one or more tasks exceed their 

pre-determined “worst-case execution time” (WCET)
1
. In 

the most severe circumstances, overrun could mean that a 

high-priority task attempts to execute “forever”, denying 

lower-priority tasks access to the CPU. Buttazzo [14] has 

noted that: “[Co-operative] scheduling is fragile during 

overload situations, since a task exceeding its predicted 

execution time could generate (if not aborted) a domino 

effect on the subsequent tasks”.  

As many researchers have observed, determining the 

WCET of tasks is rarely straightforward [25]-[34]. 

Therefore, when implementing a TTC scheduler the user 

needs to appreciate this potential risk and understand 

precisely how the scheduler will behave in the presence of 

task overrun. It should be noted that lack of knowledge 

about WCET is a problem which faces the developers of 

many embedded systems (not just those based on TTC). For 

example, as Gergeleit and Nett [30] have noted: “Nearly all 

known real-time scheduling approaches rely on the 

knowledge of WCETs for all tasks of the system”. For further 

details about WCET analysis, see [35]. 

One simple solution to this problem is to err on the side of 

caution when employing WCET estimates, thereby reducing 

the chances of an overrun occurrence. Typical “safety 

margins”, used in this approach, are around 20% [36]. Such 

technique is simple and can be effective, but inevitably adds 

to costs. An alternative is to be slightly more conservative 

when estimating WCET values (e.g. add 5% to accurate 

estimates) and then extend the scheduler (or add additional 

hardware) in such a way that (at runtime) any overrunning 

tasks can be shut down, and/or the schedule can be adjusted 

[37]. Such an approach also allows dealing with 

error-related overruns (for example, tasks which overrun 

because of a hardware-related error). In these circumstances, 

the problem can be addressed (at least in part) by employing 

some form of “watchdog timer” (e.g. [38]) in a “scheduler 

watchdog” design (e.g. [39]). Alternatively, greater control 

over the system behavior can be obtained by using a “task 

guardian” [7],[23],[40]. The concept of allowance for 

handling task overrun is introduced in [41],[42]. 

The present study is concerned with implementing 

highly-predictable embedded system. Predictability is one of 

the most important objectives of real-time embedded 

systems [43]-[45],[14]. It simply reflects the ability to 

determine, in advance, exactly what the system will do at 

every moment of time in which it is running and hence 

determines whether the system is capable of meeting all its 

timing constraints. One way in which predictable behavior 

                                                             
1
 WCET is the longest time taken by the CPU to execute a task without 

pre-emption [14]. 

manifests itself is in low levels of task jitter and the ability to 

deal with any task-overrun. 

The particular focus of this paper is on addressing the 

problem of task jitter and task overruns in attempting to 

increase the overall system predictability in TTC schedulers. 

Previous work in this area has led to the development of 

low-jitter TTC schedulers. For example, [17] introduced the 

TTC-SD and TTC-MTI schedulers which both had the 

potential to reduce the amount of task jitter significantly at the 

cost of little increases in memory overheads. Moreover, [23] 

and [46] developed the TTC-TG scheduler implementation 

which employs a wide range of task guardian mechanisms to 

address the task-overrun problem, thereby improving the 

real-time performance of TTC system. 

This paper describes and evaluates a flexible (adaptive) 

TTC architecture that provides extremely predictable task 

scheduling. This is aimed towards implementing a “perfect” 

TTC scheduler which satisfies all requirements for which it 

was initially intended (for example, high reliability, 

predictability, efficiency and determinism). The new 

implementation is called “TTC-Adaptive” scheduler which 

has mainly been developed from the concepts employed in 

the TTC-MTI and TTC-TG schedulers described elsewhere 

(see [17] and [46], respectively). The developed scheduler is 

simply based on a runtime measurement of the tasks’ 

WCETs before applying jitter-reduction and task guardian 

techniques which would depend on the results obtained by 

the WCET measurements. 

The remainder of this paper is laid out as follows: Section 2 

describes the concept and impact of task-overrun in TTC 

system. Section 3 introduces the TTC-Adaptive scheduler and 

describes its implementation in low-cost embedded system. 

Section 4 provides the experimental methodology used to 

assess the behavior of the TTC-Adaptive scheduler and the 

results obtained from this scheduler. The results are presented 

in the form of comparison between the TTC-Adaptive 

scheduler and three previously developed TTC schedulers 

against a set of criteria including: task jitter, ability to deal 

with task-overrun and implementation costs. The overall 

paper conclusion is finally presented in Section 5. 

2. Task-Overrun in TTC System 

In systems employing TTC architectures, task timing 

should be highly predictable. To guarantee such levels of 

predictability, the WCETs of all tasks need to be known in 

advance. If, during runtime, a certain task executes in time 

longer than its known WCET, the task is said to have 

overrun. 

Fig. 1 (a) shows the schedule of two tasks A and B. Task A 

has a higher-priority with 1 ms period and 0.5 ms WCET. 

Task B has a lower-priority with the period equals to 5 ms. In 

Fig. 1 (b), Task A has executed in 5.5 ms (it has overrun). In 

this case, Task B is delayed by 5 ms. In practice, the situation 

may be much worse if Task A never completes, as this would 

cause Task B to be entirely missed throughout system 

runtime. 
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Figure 1. The impact of task-overrun on a TTC scheduler. 

Consider the original TTC scheduler [8] with function call 

tree shown in Figure 2. If a task overruns, then – instead of 

‘Sleep’ (i.e. idle mode) being interrupted by the Interrupt 

Service Routine (ISR) (e.g. Update function) – the 

overrunning task is interrupted and all other co-operative 

tasks are blocked as control from the interrupt is passed 

straight back to the overrunning task: this process is 

illustrated in Figure 3. 

Main () Sleep ()Task ()Dispatch ()Update ()

 

Figure 2. Function call tree for the original TTC scheduler (normal 

operation).  

Main () Task ()Dispatch () Update ()

 

Figure 3. Function call tree for the original TTC scheduler (with 

task-overrun). 

Note that the most basic TTC scheduler (as in [8]) 

assumes that – if a task overruns – all subsequent tasks will 

be delayed. This is fine, in theory, but it seems unlikely that 

any practical TTC implementation can ever achieve this. For 

example, if a task overruns for a week – or a year – then, in 

theory, the TTC scheduler should keep track of all “missing” 

tasks and execute them “immediately” when the 

overrunning task completes. Providing full support for such 

a mechanism requires a large memory capacity (potentially 

an infinite memory capacity). 

3. TTC-Adaptive Scheduler 

This section describes the design and implementation of 

the TTC-Adaptive scheduler. The developed scheduler 

framework is intended to provide (generic) software-based 

mechanisms for dealing with overruns in the co-operative 

tasks, while maintaining very low-levels of jitter at task 

release times. The framework also incorporates a simple, but 

effective, mechanism for calculating practical WCETs of the 

co-operative tasks during runtime. Our work, as noted 

previously, is based on the use of task guardians. Note that 

estimating the tasks’ WCETs is performed in this study by 

employing a runtime measurement method.  

The main software architecture of the proposed scheduler 

is taken from the TTC-MTI scheduler (for operating mode) 

whereas new task guardian mechanism is implemented here. 

Also note that the WCET value computed by this scheduler 

represents the longest possible execution time of the task 

which is obtained during the measurement period (this does 

not necessarily represent the actual WCET which is 

accepted by many researches as a non-straightforward 

process to calculate). 

The reason for describing the proposed scheduler as 

“adaptive” is that – unlike all previous TTC schedulers – it is 

self-adapted to changes in task execution times during 

system runtime. 

3.1. Overview 

The architecture of this TTC scheduler was based on that 

used in our previously developed TTC-MTI scheduler [17]. 

In particular, with this implementation, two interrupts are 

used: “Tick interrupt” and “Task interrupt”. The Tick 

interrupt is used to generate the scheduler periodic tick while 

the Task interrupt is used to trigger the execution of tasks 

within the tick interval. The function call tree of the MTI 

scheduler is shown in Fig. Figure 4. This helps to control 

jitter levels at all task release times. Moreover, the present 

scheduler employs a simple mechanism for calculating the 

WCET of each task during the system operation. In all 

previously developed TTC scheduler implementations, 

WCET information is input to the system by the user (for 

more details, see [17]). 

Main ()
Tick

Update ()
Sleep ()

Task

Update ()
Task () Sleep ()

If Task () is not the last due task in the tick

If Task () is the last due task in the tick

 

Figure 4. Function call tree for the TTC-MTI scheduler (in normal 

conditions). 

Overall, there are two different modes in which the 

system can operate: Calculating Mode (CM) and Operating 

mode (OM). Each of these modes is described in the 

following section. 

3.2. Scheduler Modes 

The proposed scheduler framework consists of two basic 

modes as follows: 

3.2.1. Calculating Mode (CM) 

The system runs the calculating mode for a short period of 

time, allowing the scheduler to perform an online calculation 

of the WCET for each co-operative task, and the required 

release time at which the task must start its execution. That is, 

once the system starts (power is up), the scheduler takes short 

time to measure the WCETs and release times of all tasks 

before switching into a normal operating mode. The 

calculating time period must be defined by the user in 

“number of ticks”, based on system specifications. Note that 

during this period, the system tasks execute normally but task 

jitter might be at very high levels. This is fine and should not 

jeopardize the whole system operation assuming that the 

calculating mode takes a short but enough time to execute. 
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The scheduler structure, described in Section 10, is used 

here but with some modification (Fig. Figure 5). 

If Task () is not the last due task in the tick

If Task () is the last due task in the tick

Main ()
Tick

Update ()
Sleep ()

Task

Update ()
Task () Sleep ()

WCET

Calculation ()

 

Figure 5. Function call tree for the TTC-Adaptive scheduler (calculating 

mode). 

In this process, after the task is executed, SCH_WCET() 

function is called to calculate the WCET of the completed 

task and its release time required for low-jitter 

characteristics. The WCET of a task is measured by 

recording the time just before and after the task execution 

(using, for example, the Timer Control Register “TCR”: see 

[47]). The WCET is then calculated, in the “SCH_WCET()” 

function, by subtracting the stop time from the start time. In 

the same way, release time of a task is measured by recoding 

the time just after the Task Update() function begins to 

execute. The SCH_WCET() stores the maximum WCET 

and the maximum release time for each task in the task array. 

Note that the release time of the first task in the system is 

based on the worst case duration of the Tick Update() 

function. After calculating the WCET of the current task, the 

processor is placed in the idle (Sleep) mode for a very short 

period before the next Task interrupt occurs (see void 

SCH_WCET(void) 

{ 

   tLong Duration; 

 

   // Record Stop time 

   Stop_Time = T1TC; 

 

   // Calculate duration for no overrun 

   Duration = Stop_Time - Start_Time; 

 

   // Calculate duration of Task Update 

   Task_Update_Duration = Start_Time - Release_Time; 

       

 // If index is larger than 0 

 if (Index_G) 

 { 

    // If the measured WCET is larger than recorded 

    if (SCH_tasks_G[runme[Index_G - 1]].WCET < Duration) 

      { 

       // Modifiy the recorded WCET 

       SCH_tasks_G[runme[Index_G - 1]].WCET = Duration+1; 

    } 

 

    // If release time is less than the tasks start time 

    if (SCH_tasks_G[runme[Index_G - 1]].Req_Rls_Tm < 

          (Release_Time)) 

    { 

       // Modify the release time 

       SCH_tasks_G[runme[Index_G - 1]].Req_Rls_Tm = 

             Release_Time+2; 

    } 

     

    // set the match register to current time plus little margin: this is  

      // because we want the Task_Update to be called immediately 

    if (runme[Index_G] != SCH_MAX_TASKS) 

    { 

            // Set the timer to interrupt almost immediately so we can run next 

task 

      // Set timer match register to current time + 4 

       T1MR1 = T1TC + 4; 

    } 

 } 

    

   // Disable any interrupt and send the scheduler to sleep 

   SCH_End_Task(); 

}  

Listing 1). 

Please recall that the WCET value computed in this 

algorithm is basically the longest possible execution time of 

the task obtained during the measurement period. As many 

researchers have observed, determining the accurate WCET 

of a particular activity is often a very complicated process 

(see [46] for more details). 

 
void SCH_WCET(void) 

{ 

   tLong Duration; 

 

   // Record Stop time 

   Stop_Time = T1TC; 

 

   // Calculate duration for no overrun 

   Duration = Stop_Time - Start_Time; 

 

   // Calculate duration of Task Update 

   Task_Update_Duration = Start_Time - Release_Time; 

       

 // If index is larger than 0 

 if (Index_G) 

 { 

    // If the measured WCET is larger than recorded 

    if (SCH_tasks_G[runme[Index_G - 1]].WCET < Duration) 

      { 

       // Modifiy the recorded WCET 

       SCH_tasks_G[runme[Index_G - 1]].WCET = Duration+1; 

    } 

 

    // If release time is less than the tasks start time 

    if (SCH_tasks_G[runme[Index_G - 1]].Req_Rls_Tm < 

          (Release_Time)) 

    { 

       // Modify the release time 

       SCH_tasks_G[runme[Index_G - 1]].Req_Rls_Tm = 

             Release_Time+2; 

    } 

     

    // set the match register to current time plus little margin: this is  

      // because we want the Task_Update to be called immediately 

    if (runme[Index_G] != SCH_MAX_TASKS) 

    { 

            // Set the timer to interrupt almost immediately so we can run next 

task 

      // Set timer match register to current time + 4 

       T1MR1 = T1TC + 4; 

    } 

 } 

    

   // Disable any interrupt and send the scheduler to sleep 

   SCH_End_Task(); 

}  

Listing 1. WCET-calculation function in the TTC-Adaptive scheduler. 
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3.2.2. Operating Mode (OM) 

This relates to the normal operation mode of the scheduler. 

It is assumed here that the user has set the duration of the 

calculating mode long enough to obtain a correct set of 

WCET values: this must be estimated by the user based on 

prior knowledge about the system specifications. Once the 

calculation time completes, the system is switched into the 

operating mode during which scheduled tasks run in their 

allotted time “slots” with no release jitter. 

The function call tree for the operating mode is identical 

to those illustrated in Figure 4. Note that, without any 

addition to the design, the system is expected to behave in 

the same way as the TTC-MTI scheduler [17]. This means 

that a very simple task guardian mechanism is employed in 

which the scheduler allows an overrunning task to run until 

the next task (or tick) interrupt. This solution will be called 

here ‘Option 1’. Here, the last task in that tick has a chance 

to overrun for the rest of tick interval (which is relatively 

large as compared to task slots) causing the CPU to consume 

large amount of unnecessary power. 

Therefore, a more effective task guardian solution is still 

required. One suggested way is to employ a mechanism 

which detects the overrun once occurred and shutdown the 

overrunning task immediately whether or not there are 

scheduled tasks to run afterwards in the same tick interval. 

This solution will be called ‘Option 2’. In this solution, the 

scheduler employs three interrupts: “Tick” interrupt and 

“Task” interrupt (as before) and a third interrupt called “Task 

Overrun” interrupt. The ISR functions for the Tick and Task 

interrupts (i.e. Tick Update() and Task Update(), 

respectively) are very similar to those used in the TTC-MTI 

scheduler. However, the Tick Update() function here keeps 

track of the number of ticks for the calculating mode. Once 

the calculation time (defined by the user) is over, the 

scheduler switches into operating mode. 

In addition to setting the match register of the task timer to 

be equal to the release time of the next due task, the Task 

Update() function also sets the match register of the 

“task-overrun” timer to be equal to the task release time plus 

the task WCET plus the duration of the task update function. 

This simply implies that if a task exceeds its measured 

WCET, it will be interrupted immediately by a 

Task_Overrun_Update() function which is linked to the 

“Task Overrun” timer interrupt. This function reports the 

overrun and sends the scheduler to ‘Sleep’. If everything 

goes well and no overrun occurs, an End_Task() function is 

called after the completion of each task which will simply 

disable the task-overrun timer interrupt and send the 

scheduler to ‘Sleep’. Note that the Tick Update() function 

sets the return address after each task to be for the End_Task() 

function. 

Figure 6 and Figure 7 illustrate the sequence of functions 

in ‘Option 2’ implementation with and without overrun. 

 

Main ()
Tick

Update ()
Sleep ()

Task

Update ()
Task ()

End

Task ()

If Task () is not the last due task in the tick

If Task () is the last due task in the tick

Sleep ()

 

Figure 6. Function call tree for the TTC-Adaptive scheduler ‘Option 2’ 

(normal operation). 

Main ()
Tick

Update ()
Sleep ()

Task

Update ()
Task () Sleep ()

Overrun

Update ()

 

Figure 7. Function call tree for the TTC-Adaptive scheduler ‘Option 2’ 

(with task-overrun). 

In order to provide a complete task guardian mechanism, 

a third solution which includes support for backup tasks has 

been proposed: this is called ‘Option 3’. In this solution, 

once an overrun is detected, the function referred to as 

Task_Overrun_Update() will report the overrun, set 

“backup” task to be the next due task to run and then send 

the scheduler to ‘Sleep’. In the next Tick interrupt, the 

scheduler executes the backup task before continuing to 

execute the following tasks (if any). Note that the tasks that 

have already been executed in the tick interval – in which the 

overrun took place – will not be re-executed in the following 

tick. Overall, with this approach, the scheduler imposes a 

one-tick delay for the whole scheduler. This can still 

maintain a high determinism assuming that overruns occur 

very occasionally. The sequence of functions in ‘Option 3’ 

implementation is illustrated in Figure 8. 

Main ()
Tick

Update ()
Sleep ()

Task

Update ()
Task () Sleep ()

Overrun

Update ()

Tick

Update ()
Sleep ()

Task

Update ()

Backup

Task ()
Sleep ()

End

Task ()

 

Figure 8. Function call tree for the TTC-Adaptive scheduler ‘Option 3’ 

(with task-overrun). 

The code for the TTC-Adaptive scheduler is shown in  

void SCH_Tick_Update(void) 

   {    

   tByte i = 0; 

   tByte Index; 

   static tWord Tick_Count = 0; 

 

   // If tick is not paused (no overruns) 

   if (!PauseTick) 

      { 

      // Go through the task array 

      for (Index = 0; Index < SCH_MAX_TASKS - 1; Index++) 

         { 

   // Check if there is a task at this location 

         if (SCH_tasks_G[Index].pTask) 

            { 

            if (--SCH_tasks_G[Index].Delay == 0) 

               {  

       // indicate the task is to be run 

       runme[i++] = Index; 

 

       if (SCH_tasks_G[Index].Period != 0) 

           { 

                  // Schedule period tasks to run again 
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            SCH_tasks_G[Index].Delay = 

SCH_tasks_G[Index].Period; 

            } 

         else 

         { 

            // Delete one-shot tasks 

            SCH_tasks_G[Index].pTask  = 0; 

            } 

        } 

     }   

    } 

 

  // Indicate no more tasks in runme queue 

  runme[i] = SCH_MAX_TASKS; 

 

  /* If there are tasks in current tick interval */ 

  if (runme[0] != SCH_MAX_TASKS) 

   { 

   // If task is 0 

   if (runme[0] == 0) 

     { 

      // If release time is less than current time + 3 

    if (SCH_tasks_G[0].Req_Rls_Tm <                   

    (Tick_Update_Duration)) 

       { 

       // Modify release time to be current + 3 

                         SCH_tasks_G[0].Req_Rls_Tm =  

    Tick_Update_Duration+3; 

       } 

     } 

 

      // Setup Match Register 1 - interrupt in uS from tick 

      T1MR1 = SCH_tasks_G[runme[0]].Req_Rls_Tm; 

 

          // Interrupt on match 1 

      T1MCR |= 0x08;    

   } 

    // Reset the task index 

      Index_G = 0; 

      } 

  

   // If tick is paused, set release time to backup task so that the backup task runs   

   // first and then the next tasks in the schedule can carry on as normal 

 else 

   { 

   // Setup Match Register 1 - interrupt in uS from tick 

   T1MR1 = SCH_tasks_G[runme[Index_G]].Req_Rls_Tm; 

 

   // Interrupt on match 1 

   T1MCR |= 0x08;    

 

   // Enable tick to run next time 

   PauseTick=0; 

   } 

 

   // Return to sleep 

   cTask = SCH_Go_To_Sleep; 

 

 // Keep track of the number of ticks for the calculating mode.  

 // Once the calculation time (defined by the user) completes, the scheduler goes 

to    

 // operating (normal) mode. 

   if (Mode_G == CALCULATING_MODE) 

     { 

  // If ticks is larger than calculation time 

  if (Tick_Count++ > CALCULATION_TIME) 

    { 

    // Change mode to operating mode 

    Mode_G = OPERATING_MODE; 

    }      

  } 

 

    // If the scheduler goes into the operating mode  

 if (Mode_G == OPERATING_MODE)  

      { 

    // Run End_Task after evry task 

      mTask = SCH_End_Task; 

      } 

 

   // Record the duation of the Tick Update 

   Tick_Update_Duration = T1TC; 

   } 

Listing 2 to  

void SCH_Task_Overrun_Update(void) 

{ 

 // Goto sleep after ISR 

 cTask = SCH_Go_To_Sleep; 

 

 // Increment task overrun flag 

 SCH_tasks_G[Index_G-1].Overrun++; 

 

 // If there exists a backup task 

 if (SCH_tasks_G[Index_G-1].bTask) 

  

       { 

    // Disable task interrupt on match 1 

          T1MCR &= 0xFFFFFFF7; 

     

    // Set backup task to run 

    SCH_tasks_G[Index_G-1].pTask = SCH_tasks_G[Index_G-1].bTask; 

 

    // Point index back to overruning task 

    Index_G--; 

 

    // Pause the next tick 

    PauseTick = 1; 

 } 

} 

Listing 5. 
 

void SCH_Tick_Update(void) 

   {    

   tByte i = 0; 

   tByte Index; 

   static tWord Tick_Count = 0; 

 

   // If tick is not paused (no overruns) 

   if (!PauseTick) 

      { 

      // Go through the task array 

      for (Index = 0; Index < SCH_MAX_TASKS - 1; Index++) 

         { 

   // Check if there is a task at this location 

         if (SCH_tasks_G[Index].pTask) 

            { 

            if (--SCH_tasks_G[Index].Delay == 0) 

               {  

       // indicate the task is to be run 

       runme[i++] = Index; 

 

       if (SCH_tasks_G[Index].Period != 0) 

           { 

                  // Schedule period tasks to run again 

            SCH_tasks_G[Index].Delay = 

SCH_tasks_G[Index].Period; 

            } 
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         else 

         { 

            // Delete one-shot tasks 

            SCH_tasks_G[Index].pTask  = 0; 

            } 

        } 

     }   

    } 

 

  // Indicate no more tasks in runme queue 

  runme[i] = SCH_MAX_TASKS; 

 

  /* If there are tasks in current tick interval */ 

  if (runme[0] != SCH_MAX_TASKS) 

   { 

   // If task is 0 

   if (runme[0] == 0) 

     { 

      // If release time is less than current time + 3 

    if (SCH_tasks_G[0].Req_Rls_Tm <                   

    (Tick_Update_Duration)) 

       { 

       // Modify release time to be current + 3 

                         SCH_tasks_G[0].Req_Rls_Tm =  

    Tick_Update_Duration+3; 

       } 

     } 

 

      // Setup Match Register 1 - interrupt in uS from tick 

      T1MR1 = SCH_tasks_G[runme[0]].Req_Rls_Tm; 

 

          // Interrupt on match 1 

      T1MCR |= 0x08;    

   } 

    // Reset the task index 

      Index_G = 0; 

      } 

  

   // If tick is paused, set release time to backup task so that the backup task runs   

   // first and then the next tasks in the schedule can carry on as normal 

 else 

   { 

   // Setup Match Register 1 - interrupt in uS from tick 

   T1MR1 = SCH_tasks_G[runme[Index_G]].Req_Rls_Tm; 

 

   // Interrupt on match 1 

   T1MCR |= 0x08;    

 

   // Enable tick to run next time 

   PauseTick=0; 

   } 

 

   // Return to sleep 

   cTask = SCH_Go_To_Sleep; 

 

 // Keep track of the number of ticks for the calculating mode.  

 // Once the calculation time (defined by the user) completes, the scheduler goes 

to    

 // operating (normal) mode. 

   if (Mode_G == CALCULATING_MODE) 

     { 

  // If ticks is larger than calculation time 

  if (Tick_Count++ > CALCULATION_TIME) 

    { 

    // Change mode to operating mode 

    Mode_G = OPERATING_MODE; 

    }      

  } 

 

    // If the scheduler goes into the operating mode  

 if (Mode_G == OPERATING_MODE)  

      { 

    // Run End_Task after evry task 

      mTask = SCH_End_Task; 

      } 

 

   // Record the duation of the Tick Update 

   Tick_Update_Duration = T1TC; 

   } 

Listing 2. “Update” ISR of the Tick-Timer-Interrupt in the TTC-Adaptive 

scheduler. 

void SCH_Task_Update(void) 

{  

  Release_Time = T1TC; 

 

  // Run task after this function 

  cTask = SCH_tasks_G[runme[Index_G]].pTask; 

   

  // Setup Match Register 1 - for the next task 

  T1MR1 = SCH_tasks_G[runme[Index_G+1]].Req_Rls_Tm;  

 

  // Setup Match Register 2 - for WCET for end task 

  T1MR2 = SCH_tasks_G[runme[Index_G]].Req_Rls_Tm + 

  SCH_tasks_G[runme[Index_G]].WCET + Task_Update_Duration + 4;  

 

  // Increment task index 

  Index_G++; 

 

  // Disable Interrupt on match 1 

  T1MCR &= 0xFFFFFFF7;  

   

  // Enable Interrupt on match 1 

  T1MCR |= (1 & (tLong) (runme[Index_G] != SCH_MAX_TASKS)) << 3;  

 

  // Disable Interrupt on match 2 

  T1MCR &= 0xFFFFFFBF; 

 

  // Enable WCET end_task interrupt for current task 

  T1MCR |= (1 & (tLong) (Mode_G == OPERATING_MODE)) << 6; 

 

  // Record start time 

  Start_Time = T1TC; 

} 

Listing 3. “Update” ISR of the Task-Timer-Interrupt in the TTC-Adaptive 

scheduler. 

void SCH_End_Task(void) 

{ 

 // Disable Interrupt on match 2 

  T1MCR &= 0xFFFFFFBF; 

 

 // Goto Sleep 

 SCH_Go_To_Sleep(); 

} 

Listing 4. End-Task function in the TTC-Adaptive scheduler. 

 

void SCH_Task_Overrun_Update(void) 

{ 

 // Goto sleep after ISR 

 cTask = SCH_Go_To_Sleep; 

 

 // Increment task overrun flag 

 SCH_tasks_G[Index_G-1].Overrun++; 
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 // If there exists a backup task 

 if (SCH_tasks_G[Index_G-1].bTask) 

  

       { 

    // Disable task interrupt on match 1 

          T1MCR &= 0xFFFFFFF7; 

     

    // Set backup task to run 

    SCH_tasks_G[Index_G-1].pTask = SCH_tasks_G[Index_G-1].bTask; 

 

    // Point index back to overruning task 

    Index_G--; 

 

    // Pause the next tick 

    PauseTick = 1; 

 } 

} 

Listing 5. “Update” ISR of the Task-Overrun-Interrupt in the 

TTC-Adaptive scheduler. 

4. Evaluation of the TTC-Adaptive 

Scheduler 

This section first outlines the experimental methodology 

used in this study to evaluate the TTC-Adaptive scheduler 

described in the previous section. It then presents the output 

results in terms of release task jitter, task-overrun handling 

capability and implementation costs. Note that the results 

obtained from the TTC-Adaptive scheduler are compared 

with those obtained from the modified version of the 

original TTC scheduler (as described in [16]), TTC-TG and 

TTC-MTI schedulers to highlight the benefits of using such 

a new scheduler implementation in systems requiring high 

degree of predictability. 

4.1. Experimental Methodology 

We first outline the experimental methodology used to 

obtain the results presented in this section. 

4.1.1. Hardware Platform 

It is assumed in this project that the target platform for the 

embedded system will be a small microcontroller (e.g. 8051, 

Infineon C16x, Philips LPC2xxx, or PH Processor: [48]) 

which will be programmed in C language. 

In particular, the empirical studies reported in this study 

for the single-processor systems were conducted using 

Ashling LPC2000 evaluation board supporting Philips 

LPC2106 processor [49]. The LPC2106 is a modern 32-bit 

microcontroller with an ARM7 core which can run – under 

control of an on-chip PLL – at frequencies from 12 MHz to 

60 MHz [47]. The single-processor studies outlined in this 

paper used an oscillator frequency of 12 MHz, and a CPU 

frequency of 60 MHz. The compiler used was the GCC 

ARM 4.1.1 operating in Windows by means of Cygwin (a 

Linux emulator for windows). The IDE and simulator used 

was the Keil ARM development kit (v3.12). 

4.1.2. Jitter Test 
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Figure 9. Graphical representation of the task set in jitter test. 

In order to distinguish between the jitter behavior of the 

compared TTC scheduler implementations, the following 

task set is used (Fig. Figure 9). To allow exploring the impact 

of schedule-induced jitter, Task A is scheduled to run every 

two ticks. Moreover, all tasks have variable execution 

durations: this is to allow exploring the impact of 

task-induced jitter. 

Jitter is measured at the release time of each task as well 

as the scheduler tick. To measure the jitter experimentally, 

we set a pin high at the beginning of the tick or task (for a 

short time) and then measure the periods between every two 

successive rising edges. We recorded 5000 samples in each 

experiment. The periods were measured using a National 

Instruments data acquisition card ‘NI PCI-6035E’ [50], used 

in conjunction with appropriate software LabVIEW 7.1 [51]. 

To assess the jitter levels, we report two values: the 

average jitter and the difference jitter. The difference jitter is 

the difference between the minimum period and the 

maximum period obtained from the measurements in the 

sample set. This jitter is sometimes referred to as “absolute 

jitter” [14]. The average jitter is represented by the standard 

deviation in the measure of average periods. Note that there 

are many other measures that can be used to represent the 

levels of task jitter, but these measures were felt to be 

appropriate for this study. 

4.1.3. Task-Overrun Test 

In order to check the ability of the scheduler to deal with a 

task-overrun, we have used the following task set (Figure 

10). Here, Task A is scheduled to run once every 20 ticks 

whereas Task B runs every tick. However, Task A is set to 

overrun by 10 ticks. 
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Figure 10. Graphical representation of the task set in task-overrun test. 

4.1.4. CPU Overhead Test 

In order to obtain CPU overhead measurements for each 

scheduler, we run the scheduler for 25 seconds and then, by 

using the performance analyzer supported by Keil simulator, 

the total time required for the scheduler to run throughout 

the measurement period was obtained. The percentage of the 

recorded CPU time was then reported to indicate the 

overhead (i.e. computational cost) required for each 

scheduler implementation. 

4.1.5. Memory Overhead Test 

In this test, the CODE and DATA memory values required 

to implement each scheduler were recorded. Memory values 

were obtained using the “.map” file which is created when 

the source code is compiled. 

The STACK usage was also measured (as DATA memory 

overhead) by initially filling the data memory with ‘DEAD 

CODE’ and then reporting the number of memory bytes that 

had been overwritten after running the scheduler for 

sufficient period. 

4.2. Jitter Measurements 

Table 1 shows the periods and jitter measurements for the 

tasks in the original TTC, TTC-TG, TTC-MTI and 

TTC-Adaptive schedulers (for comparison purposes). 

When comparing the original TTC and the TTC-TG 

schedulers, it can be seen that jitter characteristics are not 

improved by employing TG mechanisms. On the other hand,  

Table 1. Task jitter from the original TTC, TTC-TG, TTC-MTI and 

TTC-Adaptive schedulers (all values in µs). 

Scheduler  TaskA Task B Task C 

Original TTC 

scheduler 

Min Period 9999.4 2988.4 2164.3 

Max Period 9999.5 7011.1 7864.1 

Average Period 9999.5 4882.0 4799.3 

Diff. Jitter 0.1 4022.7 5699.8 

Avg. Jitter 0.0 1172.7 1226.9 

Scheduler  TaskA Task B Task C 

TTC-TG 

scheduler 

Min Period 9999.4 2985.5 2096.2 

Max Period 9999.5 7011.7 7848.1 

Average Period 9999.5 4922.7 4595.6 

Diff. Jitter 0.1 4026.2 5751.9 

Avg. Jitter 0.0 1175.3 1203.3 

TTC-MTI 

scheduler 

Min Period 9999.4 4999.7 4999.7 

Max Period 9999.5 4999.7 4999.7 

Average Period 9999.5 4999.7 4999.7 

Diff. Jitter 0.1 0.0 0.0 

Avg. Jitter 0.0 0.0 0.0 

TTC-Adaptive 

scheduler 

Min Period 9999.4 4999.7 4999.7 

Max Period 9999.5 4999.7 4999.7 

Average Period 9999.5 4999.7 4999.7 

Diff. Jitter 0.1 0.0 0.0 

Avg. Jitter 0.0 0.0 0.0 

like the TTC-MTI scheduler, the TTC-Adaptive scheduler 

provides very low jitter at the release time of all tasks 

running in the system. Remember that in the TTC-Adaptive 

scheduler, users are not requested to enter estimates of the 

tasks’ WCETs prior to system execution (as in the TTC-MTI 

scheduler). Also, the TTC-Adaptive scheduler has better 

capability to deal with task-overrun problem. This is further 

illustrated in the following section.4.3. Task-Overrun 

Behavior 

By monitoring the behavior of each scheduler, we found 

that in the original TTC scheduler, when an overrun takes 

place, the scheduler cannot prevent it. However, the 

architecture used in the design of this scheduler allows the 

system to keep track of the number of elapsed ticks during 

the overrun, and – once the overrunning task (Task A in 

Figure 10) completes – the scheduler performs all missing 

executions for Task B (in this case, 10 executions), before 

continuing to serve the tasks in the following ticks. This 

means that the scheduler has the potential to “catch up” in 

the event of certain (infrequent and temporary) errors: see 

Figure 11. 

Task

B

t (Ticks)t = 0 1 2 10

Task

B

Task

B

20

A2B1 B6 B11

11 12

A1 B2 B3 B7 B8 B12

 

Figure 11. The behavior of original TTC scheduler with when overrun occurs. 
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Figure 12. The behavior of TTC-TG scheduler when overrun occurs: (a) 

running BK(A) and B1 tasks in the same tick, (b) running BK(A) and B1 

tasks in different ticks to avoid domino effect. 

With the TTC-TG scheduler, the scheduler detects and 

hence terminates the overrunning task (Task A) at the 

beginning of the tick following the one in which Task A 

overruns. Moreover, the scheduler allows running a backup 

task BK(A) to replace Task A in the same tick in which the 

overrun is detected and hence continues to run the following 

tasks (Figure 12 (a)). This means that one tick shift is added 

to the whole schedule. However, in some cases where (for 

example) the schedule is heavily loaded with tasks, the 

insertion of a backup task in the next tick of overrun may 

cause a domino effect. To reduce the impact of such a 

problem, the whole schedule can be extended for one tick to 

allow the backup task to complete before the scheduler goes 

back to its normal operation. With the tasks arrangement 

used in this study (Figure 10), the whole schedule will be 

extended for two ticks: one for the backup task and one to 

run the missed task B1 (Figure 12 (b)). 

In contrast, the TTC-Adaptive scheduler has also been 

designed to provide an efficient solution to task overrun 

problem. For example, such an implementation detects the 

overrun immediately and shutdown the overrunning task: 

this is similar to the behavior observed with the TTC-MTI. 

However, unlike the TTC-MTI scheduler, the TTC-Adaptive 

scheduler provides a support for backup task that will 

replace the overrunning task once shut down. In this 

scheduler, there can be three different options: 

1) If it is not dependent on the output from Task A, Task 

B1 can still be scheduled to run in the same tick as Task 

A1 and before BK(A) executes (Figure 13 (a)). 

2) If it is dependent on the output from Task A, Task B1 

must be scheduled to run in the next tick after task 

BK(A) completes execution (Figure 13 (b)). This will 

obviously add one tick shift to the whole schedule. 

3) To avoid any possibility for a domino effect to take 

place, the whole schedule can be extended for one 

more tick to allow a completion of BK(A) before 

returning to the normal schedule (Figure 13 (c)). The 

figure shows that, for the task set considered in Figure 

10, two tick shifts will be added to the whole schedule. 
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Figure 13. The behavior of TTC-Adaptive scheduler when overrun occurs. 

Note that the TTC-Adaptive implementation presented in 

this paper considered the second option (Figure 13 (b)). 

Such a behavior has been checked through the IDE and 

simulator used. However, the scheduler framework 

developed has been made so flexible that the user can – with 

a little modification – adopt any of the three proposed 

solutions. 

Remember that, in addition to low-jitter provision and 

overrun prevention, the most advantageous feature of the 

TTC-Adaptive scheduler is its ability to control the timing 

behavior of tasks based on real-time measurements (not 

estimations) of their WCETs. 

4.4. CPU and Memory Overheads 

Table 2 shows the CPU overhead for the original TTC, 

TTC-TG, TTC-MTI and TTC-Adaptive schedulers (for 

comparison purposes). 

Table 2. CPU overhead for the original TTC, TTC-TG, TTC-MTI and 

TTC-Adaptive schedulers 

Scheduler Scheduler time (s): 
Total time 

(s): 
Overhead % 

Original TTC 

scheduler 
9.93 25.01 39.7 

TTC-TG 

scheduler 
9.95 25.03 39.8 

TTC-MTI 

scheduler 
9.90 25.01 39.6 

TTC-Adaptive 

scheduler 
9.95 25.01 39.8 

The results in the table show that the implementation of 

the TTC-Adaptive scheduler requires no additional 

processing time as compared to the previous schedulers. 

This means that the developed scheduler is computationally 

cost-effective. 

Table 3 shows the memory overheads for the original TTC, 

TTC-TG, TTC-MTI and TTC-Adaptive schedulers (for 

comparison purposes). It can clearly be seen that the code 

memory overhead in the TTC-Adaptive scheduler is 48% 

larger than that in the TTC-MTI scheduler. Such a difference 
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is resulted from the integration of the WCET measurement 

technique and the task guardian mechanism in the scheduler 

source code. This increase is around 34% and 25% when 

comparing the TTC-Adaptive with the original TTC and 

TTC-TG schedulers, respectively. Such an increase in the 

memory overhead is outweighed by the improvement 

achieved in the scheduler behavior. 

Table 3. Memory requirements (RAM and ROM) for the original TTC, TTC-TG, TTC-MTI and TTC-Adaptive schedulers 

Scheduler ROM requirements (Bytes) RAM requirements (Bytes) 

Original TTC scheduler 4012 325 

TTC-TG scheduler 4296 446 

TTC-MTI scheduler 3620 514 

TTC-Adaptive scheduler 5364 510  

5. Conclusions 

This paper suggested a useful addition to the range of 

TTC schedulers that have previously been developed. To 

deal with task-overrun problem while maintaining low 

levels of task jitter, TTC-Adaptive scheduler has been 

introduced and evaluated. As noted in the paper, addressing 

task overrun and task release jitter at the same time requires 

knowledge about the tasks’ WCETs; which is accepted to be 

a very complicated process. In previous TTC 

implementations, it was assumed that such values are 

estimated and provided to the scheduler by the user. The 

TTC-Adaptive scheduler was aimed at offering a flexible 

implementation where the user needs not to estimate the 

tasks’ WCETs during the design stage which in many cases 

cannot be accurate and may hence cause a significant 

degradation in the timing performance of the system. 

As discussed in the paper, the TTC-Adaptive scheduler 

employs an online measurement method to calculate the 

WCETs for all tasks over a sufficient period of time. Such 

values are then used by the scheduler to adjust the timing of 

tasks and protect (guard) any task from overrunning. It is 

worth reminding that the WCET value computed by this 

scheduler for a particular task is the longest possible 

execution time of the task during the measurement period 

(this is not the actual WCET which, as observed in many 

studies, might require further sophisticated techniques to 

compute/estimate). 

Since it was adapted from the TTC-MTI scheduler 

developed previously, TTC-Adaptive scheduler also has low 

resource requirements (for example, low code memory is 

required). Again, decision to employ the TTC-Adaptive 

scheduler in a given system would need to consider the 

system requirements in terms of timing as well as 

implementation costs. 

It is important to note that the TTC-Adaptive scheduler 

was aimed towards a perfect TTC implementation as it 

provided effective solutions to jitter and overrun problems. 

However, a perfect TTC scheduler can be achieved if more 

features are considered. For example, future work suggests 

that techniques such as DVS [15] can be incorporated in the 

scheduler framework to achieve low-power characteristics 

at zero jitter. Such a modification would require a substantial 

amount of underlying work in order to avoid any conflicts 

between timer configurations. 
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