

American Journal of Embedded Systems and Applications
2014; 2(4): 29-37
Published online August 20, 2014 (http://www.sciencepublishinggroup.com/j/ajesa)
doi: 10.11648/j.ajesa.20140204.11

Design and evaluation of controller area network for
automotive applications

Abu Asaduzzaman, Sandip Bhowmick, Md Moniruzzaman

EECS Department, Wichita State University, Wichita, Kansas, USA

Email address:
Abu.Asaduzzaman@wichita.edu (A. Asaduzzaman), sxbhowmick@wichita.edu (S. Bhowmick),

mxmoniruzzaman@wichita.edu (M. Moniruzzaman)

To cite this article:
Abu Asaduzzaman, Sandip Bhowmick, Md Moniruzzaman. Design and Evaluation of Controller Area Network for Automotive

Applications. American Journal of Embedded Systems and Applications. Vol. 2, No. 4, 2014, pp. 29-37.

doi: 10.11648/j.ajesa.20140204.11

Abstract: Now-a-days, as computerization of automotive increases, the need for more/advanced electronic control units
(ECUs) is growing. Vehicles are increasingly behaving like computers with wheels. Due to the abundance use of ECUs in
cars, electronic system design is becoming complicated day by day. As a consequence, information processing in such
complex systems faces interruptions. Therefore, there is a need for a system which will be the connective tissue between a
vehicle's computers and different sensors. Controller Area Network (CAN) is such an embedded system to bring
communication and connectivity in automobile system together. Optimization of CAN bus is a concerning issue because of
the recent demands such as hybrid, electric propulsion, or driver assistance that involves more stringent real-time constraints.
In this paper, we introduce an optimized CAN bus for vehicle automation through microcontroller based design and
implementation. Multiple modules of a vehicle are modeled using CAN bus. The proposed CAN bus system is evaluated by
analyzing the frame response time using “RTaW-Sim:” a CAN simulation and configuration tool. Experimental results show
that the proposed CAN system helps decrease the frame response time by up to 45% when compared with a traditional system.
The CAN bus simulation platform using RTaW-Sim also helps reduce the design cost and improve the systems quality.

Keywords: CAN Module, Controller Area Network, Frame Response, Microcontrollers, RTaW-Sim

1. Introduction

The automobile industry has faced great development in
the 21st century. Vehicle system is made up of automotive
electric architectures consist of a large number of ECUs
carrying out a selection of managed functions [1, 2].
Developing electricity preserving and low emission
merchandises becomes both directions of automobile
industry. In automobile system, we generally expect less fuel
consumption, greater safety, more comfort, and better
pollution management. As a response, automakers started to
roll out innovative attributes. In addition, new technology
with improved computing capacity is available. However, the
competition among the automakers is growing day-to-day.
Therefore, automakers are adopting the most recent
technology to make their vehicles get noticed in a busy
marketplace [2]. Recognizing the demand for increased
operations in automobiles, researchers adopt intelligent
computing systems, such as embedded systems, in cars. An
embedded system is a microprocessor system with a number

of committed functions, generally with real-time
computation constraints.

A modern vehicle may have many ECUs in different
subsystems for various purposes. Different such subsystems
include air bags, anti-lock braking, engine-control, audio
systems, windows, doorways, mirror alteration, etc. Many of
these subsystems are independent or reliant subsystems.
Improved electronic control system can improve relaxation
and vehicle dynamics. However, there are some new
challenges such as the body wiring sophistication, space
constraints, and reliability dilemmas. Communicating among
dependent subsystems is also crucial. In order to address
these issues, the car network engineering concept has been
developed [3-6]. In automobile networking protocols, some
prerequisites must be satisfied, which contain important
reduction of wiring harness, lowering body fat and prices,
bettering the effectiveness of low latency times, fault
diagnosis and settings flexibility, and accentuating the level

30 Abu Asaduzzaman et al.: Design and Evaluation of Controller Area Network for Automotive Applications

of intelligent control [7, 8]. Subsystems necessitate the
exchange of particular performance and position advice
within defined communication latency. CAN bus can offer a
simple but effective real-time communication protocol
between controls, actuators, sensors, and other subsystems.
In this work, a CAN bus protocol is used with a
microcontroller system for car automation.

2. Literature Survey

Since 1970s, there is an exponential increase in the
variety of electronic systems that have replaced those
which are only mechanical or hydraulic. Reliability of
hardware parts and the improving performance due to
software technologies enable implementations of
complicated functions. As a result, the safety and the
comfort of the vehicle's occupier are enhanced. Particularly,
one of the primary motives of electronic systems is to assist
the driver to manage the vehicle through capabilities related
to the steering system, grip (i.e., manage the driving
torsion), or braking such as antilock braking system (ABS),
electronic equilibrium software (EES), electrical power
steering (EPS) system, lively suspensions, and
engine-control. Another reason for using electronic systems
is to control apparatus within the body of a vehicle; for
example, lights, wipers, doors, windows, amusement, and
communicating gear (e.g., radio, DVD, hands free phones,
and satnav systems). At the beginning of automotive
electronics, each new function is executed as a stand-alone
ECU, which is a subsystem composed of a microcontroller
and a set of detectors and actuators. This tactic quickly
proved to be insufficient with the need for functions to be
dole out over several ECUs and the importance of
information exchanges capabilities. In today's luxury cars,
up to 2500 pieces of information are exchanged by up to 70
ECUs. Until the beginning of the 1990s, information was
changed through point-to-stage links between ECUs. These
problems are addressed by using networks where the

communicators are multiplexed over a shared medium,
which therefore demand defining rules and protocols for
handling communications, particularly, for granting bus
accessibility. Today, it has become the most broadly used
network in automotive systems and it's estimated that the
quantity of CAN nodes offered per year is now around
400-million [1].

2.1. Automobile OnBoard Diagnostics

From early 1980s, cars have already been designed with
engineering that assists to determine issues related to digital
engine systems. This technology, called OnBoard
diagnostics (or OBD), refers to a vehicle's self-diagnostic
and reporting capability. OBD is composed of numerous
devices that exchange their results to some special nodes in
the shape of analytical trouble codes within the car's
computer system. A fundamental OBD system consists of an
ECU (short for electronic or engine control unit) as depicted
in Figure 1. ECU utilizes input signal from various sensors
to manage the actuators (e.g., gas injectors) to get the
desirable functionality. The “Check Engine” light, also
known as the Malfunction Gauge Light (MIL), supplies an
early warning of malfunctions to the car owner. A modern
vehicle can support numerous parameters, which can be
generated via the Diagnostic Link Connecter (DLC) using
an apparatus called a scan-tool. (MIL and DLC are not
shown in the figure.) While the automobile will be powered
on, the OBD-II program screens various output signals and
motor states. When the OBD-II program finds a trouble
within the discharge control program, a dash light is lit
suggesting “test the engine”. An affiliated diagnostic trouble
code is saved in the PC’s storage to record the exceptional
issues and states of the discharged control parts. The
diagnostic problem signal tips could be retrieved by the
computer using a check device. Through the uses of these
records, an accurate tech-repair is possible; other troubles
may also be uncovered precisely.

Figure 1. Schematic diagram of the OnBoard diagnostic.

 American Journal of Embedded Systems and Applications 2014; 2(4): 29-37 31

2.2. OBD-II with New Technology

The CAN is the newest communication program within
the automotive planet. CAN is a way of linking each of the
digital systems within a vehicle together allowing them to
communicate with each other. As OnBoard computers
improve, so does the variety of distinct electronic systems.
The information processed and recorded by each
management module is regularly used by one or more
management modules on the program. A necessary
standardized means of swiftly passing information between
the modules is required to improve the CAN bus
performance. The CAN bus can do a lot in automobile
communications. In general, CAN bus systems have the
potential to truly make changes in the process and can
conduct communication between parts faster. The unique
OBD-II/EOBD protocols (J1850 PWM, J1850VPW,
ISO-9141 and ISO-14230) help reduce the variety of tools
needed for engine and/or emissions fault diagnosis.
However, by permitting four protocols there was none the
less a great deal of confusion and over-complexity of tools.
Simplifying this to an individual protocol can merely lead
to lessen the cost of diagnostic tools. So multiplexing
technologies and specifically CAN, rise up very fast, and
help keep the wiring harness complexity under control
while satisfying the growing demand for data broadcasting.
The use of CAN bus can enhance the OBD-II system by
replacing the following criteria:
� Reduced wiring requirements and fast communication

between data bus.
� Increased electrical reliability due to the reduction of

electrical connectors and reduced use of redundant
sensors.

� It helps to master the complexity of the architectures.
� It reduces the hardware cost, weight, consumption,

space, lower vehicle weight, etc.
� It facilitates an incremental design process.
� It leads to better communication performance and

helps to match the bandwidth needs. Sometimes, a
60% loaded CAN network can be more efficient than
two 40% CAN networks interconnected by a gateway
causing delays and high jitters.

3. Controller Area Network

The Controller Area Network (i.e., CAN) is a serial
communication protocol for networking detectors, actuators,
and other nodes in real-time systems. In this section, we
discuss the basic description of CAN including network
layer, rule of bus arbitration, and its error handling
mechanisms. Extensions of time oriented greater-level
protocols and CAN, including time-triggered CAN are
explained in Figure 2. CAN communication protocol data is
passed between different parts of CAN module on a network
and conformed by the Open Systems Interconnection (OSI)
model. The physical layer of OSI model defines the actual
communication between devices connected by the physical
medium. The ISO 11898 architecture (as shown in Figure 2)
defines the lowest two layers of the seven layer OSI/ISO
model as the data-link layer and physical layer. These two
layers are mostly used for CAN bus communication [2].

Figure 2. Application layers of ISO Standard 11898 architecture.

3.1. CAN Bus Message Formats

CAN distinguishes four message formats: data, distant,
malfunction, and overload frames. Here, we restrict the
discussion into the information frame. An information frame
starts with the start-of-frame (SOF) bit. The identifier and
the remote transmission request (RTR) bit form the
arbitration subject. The management field consists of six bits
and signifies how many bytes of information follow in the

information field. The information field is accompanied by
the cyclic redundancy checksum (CRC) discipline, which
empowers the receiver to verify if the received bit sequence
was corrupted. The 2-bit acknowledgment (ACK) area is
used by the transmitter for an acknowledgment of a valid
frame from any receiver. The ending of a frame is signaled
through a seven-bit end-of-frame (EOF). In addition, there is
an extended data frame with a twenty nine bit identifier.

32 Abu Asaduzzaman et al.: Design and Evaluation of Controller Area Network for Automotive Applications

3.2. CAN Bus Arbitration

Arbitration is the mechanism that handles bus access
conflicts. Whenever the CAN bus is free, any unit can start
to transmit a message. Possible conflicts, due to greater than
one unit beginning to transmit concurrently, are resolved by
bit shrewd arbitration utilizing the identifier of each device.
During the arbitration phase, each transmitting device
transmits its identifier and compares it with the amount
monitored on the bus. The system continues to transmit, if
these amounts are equivalent.

3.3. CAN Bus Error Handling

Error detection and error management are significant for
the operation of CAN. Error detection is done in five distinct
manners in CAN: (i) Bit monitoring, (ii) bit stuffing, (iii)
frame check, (iv) ACK check, and (v) CRC. Bit tracking
means each transmitter monitors bus level; the bus level
malfunctions if the level doesn't agree with the transmitted
signal. After having transmitted five indistinguishable bits, a
node will consistently transmit the reverse bit. This
additional bit is ignored by the receiver. During the ACK in
the concept frame, all receivers are presumed to send a
dominant bus. If the transmitter, which conducts a recessive
level, doesn’t detect the dominant level, then an error is
indicated by the ACK check mechanism. In comparison to
other network protocols, this mechanism leads to high data
integrity and a short error recovery time. CAN bus, therefore,
supplies procedures for malfunction handling, including
re-transmission, and re-initialization.

3.4. Scheduling of CAN Bus

CAN protocol implements fixed priority scheduling of
CAN messages. Higher priority node has lower node
identification (ID). If available bandwidth is insufficient,
then the problem occurred is traditional fixed-priority
established scheduling. It is possible that the low
precedence control iterations cannot access the network on
a regular basis, since the limited resources have been used
by high priority loops. As an effect of incredible delays,
low precedence control iterations may be destabilized.

The trouble of given priority may be defeated by the use
of immediate feedback scheduling algorithm, namely
maximum urgency first (MUF). MUF is integrated in the
community scheduler. Upon invocation, the scheduler
computes the urgency of each manage iteration centered on
current system output signals and the set points. According
to the MUF algorithm, new precedence is produced by the
scheduler according to the urgency values. Then, messages
in distinct iterations will be aired in accordance with the

newly assigned precedence [3]. A fresh mixed traffic
schedule (MTS) is centered on the communicating principle
of controller area network, community scheduling, and
investigation of program. The heart thought of MTS is to
place the comparative deadline tips into the identifier [4].
The earliest deadline first (EDF) concept scheduling
algorithm is used for high precedence tips and the rate
monotonic scheduling (RMS) concept scheduling algorithm
is used for low precedence tips.

3.5. Reliability of CAN Bus

Reliability refers no failures in an operating time. High
malfunction management capacity of CAN enhances system
dependability. Transmission is aborted by the node forcibly,
if a malfunction has been found by any concept transmitting
node. Afterward, it tries to re-transmit repeatedly till its
concept is transmitted efficiently. To avert such catastrophe,
the transmit malfunction counter (TEC) and the receive
malfunction counter (REC) are began to diagnose the states
of CAN control. CAN control has REC and TEC which
improves dependability of CAN bus system [5]. A CAN
controller can be in one of three states: error active, error
passive, or bus off state. Once the CAN controller has
entered bus off state, it must be reset by the host
microcontroller in order to be able to continue operation.

4. Controller Area Network for Vehicle

Automation

Controller area network (i.e., CAN) provides high
dependability and good real-time performance with very low
cost. It is a vehicle bus standard designed to allow
microcontrollers and devices to communicate with each
other within a vehicle without a host computer [6]. The
robustness and performance of the CAN technology, as well
as the new possibilities brought by distributed software
functions, have motivated engineers to use more and more
bandwidth in order to improve existing Electrical and
Electronic (EE) functions and introduce new ones. Data
communication in automobile regularly has many sensors
transmitting modest information packets.

4.1. Prototype Design

The CAN is a multi-master broadcast serial bus standard
for connecting ECUs. A prototype design, as shown in
Figure 3, illustrates how electronic components in
distributed control architecture for cars are connected by
CAN. Some of these form independent subsystems, but
communications among others are essential.

 American Journal of Embedded Systems and Applications 2014; 2(4): 29-37 33

Figure 3. Electronic components of a car connected by CAN bus.

Table 1. ECU Parameters

Powertrain and Chassis

TCM: Transmission Control Module
ECM: Engine Control Module
BCM: Brake Control Module
BSC: Body Sensor Cluster
SAS: Steering Angle Sensor
SUM: Suspension Module

Infotainment/Telematics

MP1,2: Media Players 1 and 2
PHM: Phone Module
MMM: Multimedia Module
SUB: Subwoofer
ATM: Antenna Tuner Module

Body Electronics

CEM: Central Electronic Module
SWM: Steering Wheel Module
DDM: Driver Door Module
PDM: Passenger Door Module
REM: Rear Electronic Module
CCM: Climate Control Module
ICM: Infotainment Control
UEM: Upper electronic Module
DIM: Driver Information Module
AEM: Auxiliary Electronic

The blocks represent ECUs and the thick lines represent
networks. There are three classes of ECUs: power-train and
chassis; infotainment; and body electronics. The ECUs are
defined by their acronyms. Several networks are used to

connect the ECUs and the subsystems. There are three
different CAN bus subsystems. CAN bus subsystems are
connected via a coordinator (COD) system. The maximum
configuration for the vehicle contains about 40 ECUs [6].
Some important ECU parameters are briefly discussed in
Table 1.

4.2. Block Diagram for CAN Bus Communication

The block diagram for CAN bus communication
developed in this study is shown in Figure 4. Node monitors
on bus and information is send to computer for display and
further investigation. CAN analyzer is used for fault
investigation of the program also as evaluation. The parts
which are connected by a CAN community are normally
sensors, actuators, and other control apparatus. These
devices are not connected right to the bus, but through a host
chip and a CAN controller. CAN nodes include host chip,
CAN controller, and CAN transceiver. An individual node is
linked to can-bus line. Following are the main component of
a CAN bus:

Host Processor: The host processor decides which
messages it wants to broadcast itself and what is the
significance of received messages. It manages devices and
sensors. Actuators can be linked to the host chip.

Figure 4. Block diagram for CAN communication.

34 Abu Asaduzzaman et al.: Design and Evaluation of Controller Area Network for Automotive Applications

CAN Controller: The CAN control stores received bits

serially in the bus until a complete message can be acquired,
which may subsequently be brought by the host CPU. The
host CPU stores the transmit messages.

Transceiver: It accommodates signal level in the bus to
degree that the CAN control has protecting circuitry that
shields the CAN control and anticipates. It converts the
transmit-bit sign received in the CAN control into a signal
which is sent onto the bus [7]. CAN transceiver is an
interface between the real bus and protocol control.

4.3. CAN Bus Software Protocol Design

In the proposed CAN bus prototype for vehicle
automation, we consider a host microcontroller and a CAN
controller. The software component of principal program
unit is broken up into method initialization device, CAN
initialization component, message sending unit, message
receiving unit, and interrupt support unit. System
initialization unit comprises initialization of host processor
and computer screen node. Work-flow diagram for the CAN
node is illustrated in Figure 5.

Figure 5. Work-flow of the proposed CAN node.

CAN Controller Initialization: CAN control initialization
procedure includes initialization of internal register of CAN
controller, such as initialization of transmit and obtain buffer.
When initializing the CAN registers in the CAN controller,
the system configures the controlling way, bit time filter,
mask register, and compose buffer; immediately clears the
study; and interrupts enable register.

CAN Message Sending: After initialization, the CAN
controller is prepared to work and is in standard
communicating status. The CAN concept sending embraces

inquest way or it sends concept when distant request is
obtained. In inquest mode, packet is created by host
processor and sends information to CAN Control transmit
buffer for additional transmission.

CAN Message Receiving: There are two means for
messages getting – interrupt way and inquest way. In the
system, the interrupt mode is executed. In interrupt mode, if
CAN controller receives legitimate message in obtain buffer,
it creates interrupt signal on INT pin. The message is
prepared by the host processor by utilizing SPI instructions
of CAN controller [7].

5. Simulation Criteria of CAN in

Automotive Design

In this section, we present a simulation technique for
frame response that happens around the network nodes at
runtime. As CAN bus could be the principal communication
method between Electric Control Units (ECUs) in vehicles,
CAN frame response times are now being thoroughly
researched. Frame response time distributions were
eventually provided richer information on the real-time
behavior of the system. So having the ability to get correct
frame response time distributions may result in substantial
cost optimization on hardware.

5.1. Assessing Frame Response Time Distribution

Frame response times fundamentally rely on the frame
characteristics and of the phasing involving the interacting
nodes. Upper bounds on the response times, regardless the
phasing between ECUs, can be computed with analysis tools
such as RTaW-Sim. Reply times while in the standard event
may be better assessed by simulation. The conventional
simulation method will be to gain data on the variety of
adjustments equivalent to unique original designs. This
really is required just because a simple simulation work
merely conveys a small pair of response times for each
frame, while the period of the machine is small (usually a
couple of seconds) [9]. As the phasing between the ECUs
varies continually because of the clock drifts, simulating just
one trajectory is enough to see an extensive range of
response situations for every single frame. Because there is
an individual simulation run to do, this method is easier from
an experimental point of view.

5.2. Simulator Toolset: Real Time at Work (RTaW-Sim)

RTaW-Sim is a timing accurate simulator of CAN
networks that enables the designer to come up quickly with
the best design and configuration choices. RTaW-Sim is also
useful to assess the performance and reliability of a CAN
bus system. In our experiments, we use RTaW-Sim Starter
edition 1.4.4. RTaWSim provides a comprehensive and
precise performance evaluation of CAN networks, and
enables to investigate scenarios and compare the impact of
different design and configuration alternatives. It is powered

 American Journal of Embedded Systems and Applications 2014; 2(4): 29-37 35

with rich graphical edition and visualization environment
with communication architecture editor, distribution plots,
and Gantt diagrams.

6. Simulation

In this section, we present step by step simulation
processes and frame response times related to the expected
behavior of the network [10]. This is the most elementary
and most beneficial characteristic of the CAN simulator

since it provides an exact idea of the frame response times
for a CAN bus. The experimental results depict the expected
performance improvement.

It should be remarked that the microcontroller clocks may
have drifts, as it happens, then it is obvious to understand the
length of time. Figure 6, a screen-shot, shows the CAN
connections between the electronic components of a car. In
the experiment, the speed of the bus in kbits/s and is
explained by the tool-tip of “Speed”.

Figure 6. Components of a car as connected by CAN buses through a gateway.

The periodic bus load is displayed for the chosen
bit-stuffing: “10%” means that the bit-stuffed part of the
frame is 10% longer than nominal, with the worst-case
option. As shown in Figure 7, we select “Length & Sample
Times” and enter “Intermediate Statistics” times, where
snapshots of the (evolving) response time statistics will be
taken: 30 sec, 10 min, 1 hour, and 1 day. When the

simulation ends, a second dialog pops-up and gives
information about the completed simulation. The statistics
are stored both in the RTaW-Sim input file and in csv files in
the indicated folder. The obtained statistics can be visualized
in the CAN bus tab, by choosing the corresponding bus
simulation configuration “BusSimConfig”. A sample time
statistics is shown in Figure 8.

Figure 7. Intermediate Statistics time selection.

36 Abu Asaduzzaman et al.: Design and Evaluation of Controller Area Network for Automotive Applications

Figure 8. Simulation results: time statistics.

Frame response times are illustrated in Figures 9(a) and
9(b) for CAN bus 1 and bus 2, respectively. Here, x-axis
represents the number of frames and the y-axis represents
their response times in milliseconds. The five graphs/lines in
Figure 9(a) correspond to the statistics: Minimum, Average,
Maximum, and two quantiles. The two quantiles are (1-10-2)
quantile and (1-10-3) quantile. A (1-10-n) quantile is a
threshold such that the probability that a response-time of

the frame is larger than that threshold, is lower than 10-n. For
the frames where only the minimum is visible, the average
and maximum have the same value as the minimum,
meaning that the response time of the frame is always the
same – of course this is not the typical behavior and it may
be due to the fact that station clock drifts, variable
bit-stuffing for the frames, and transmission jitters are not
modeled in this study.

Figure 9(a). Statistics of CAN bus 1.

 American Journal of Embedded Systems and Applications 2014; 2(4): 29-37 37

Figure 9(b). Statistics of CAN bus 2.

From Figures 9(a) and 9(b), the most observed response
times (the top two lines) may differ depending on the initial
configuration. This is especially true for the lowest priority
frames. As expected, the minimum response times (the most
bottom line) are almost equal because the phasing between
sending nodes changes in such a way that every frame will
be sent without delay. The fruitful outcome is that the
average response times (the second line from the bottom) are
almost equal. This result is meaningful because it suggests
that for a long simulation time, the initial phasing is not
significant for the final response time distributions.

7. Conclusion

This paper provides a brief discussion about CAN bus
implementation in automobiles. Real-time, reliability, and
flexibility – all these characteristics make CAN bus an icon
network communication technology applied in automobile
network communication field. In this work, CAN-bus based
communication system for vehicle automation is simulated.
Experimental results show that the CAN bus has potential to
save time and design cost. We plan to investigate a CAN
bus system with variable clocks which are available in the
Pro-Version of the simulation tool (RTaW-Sim).

References

[1] N. Navet, S. YeQiong, F. Simonot-Lion, C. Wilwert, “Trends
in Automotive Communication Systems,” IEEE proceedings,

Vol. 93, No. 6, pp. 1204-1223, 2005.

[2] K. Johansson, M. TÃrngren, et al, “Vehicle applications of
controller area network,” Handbook of Networked and
Embedded Control Syst., 2005.

[3] F. Xia, X. Dai, Z. Wang, and Y. Sun, “Feedback Based
Network Scheduling of Networked Control Systems,” IEEE
proceedings, 2005.

[4] S. Fan, J. Du, H. Sun, and T. Liang, “Research on Mixed
Traffic Scheduling of Networked Control Systems Based on
CAN Bus,” IEEE DOI 10.1109/ICINIS.2009.64, 2009.

[5] C.E. Lin and H.M. Yen, “Reliability and Stability Survey on
Can-Based Avionics Network for Small Aircraft,” IEEE DOI
7803-9307-4/05/2005, 2005.

[6] J. Fr¨oberg, K. Sandstr¨om, et al, “A comparative case study
of distributed network architectures for different automotive
applications,” Handbook on Information Technology in
Industrial Automation, CRC Press, 2004.

[7] A.S. Shinde and V.B. Dharmadhikari, “Controller Area
Network for Vehicle Automation,” Int’l J. of Emerging Tech.
and Advanced Engineering, 2(2), 2012.

[8] G.S. Kumar, “Designing and Development of a CAN Bus
Analyzer for Industrial Applications Using ARM and PIC,”
Int’l J. of Comp. Sci. and Info. Tech., 2012.

[9] N.N. Monot and B. Bavoux, “Fine-grained Simulation in the
Design of Automotive Communication Systems,” Embedded
Real-Time Software and Systems (ERTSS 2012), Toulouse,
France, 2012.

[10] “Real Time at Work: RTaW-Sim Brochure,” Real Time at
Work, Paris, 2014.

