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Abstract: Now-a-days, as computerization of automotive increases, the need for more/advanced electronic control units 
(ECUs) is growing. Vehicles are increasingly behaving like computers with wheels. Due to the abundance use of ECUs in 
cars, electronic system design is becoming complicated day by day. As a consequence, information processing in such 
complex systems faces interruptions. Therefore, there is a need for a system which will be the connective tissue between a 
vehicle's computers and different sensors. Controller Area Network (CAN) is such an embedded system to bring 
communication and connectivity in automobile system together. Optimization of CAN bus is a concerning issue because of 
the recent demands such as hybrid, electric propulsion, or driver assistance that involves more stringent real-time constraints. 
In this paper, we introduce an optimized CAN bus for vehicle automation through microcontroller based design and 
implementation. Multiple modules of a vehicle are modeled using CAN bus. The proposed CAN bus system is evaluated by 
analyzing the frame response time using “RTaW-Sim:” a CAN simulation and configuration tool. Experimental results show 
that the proposed CAN system helps decrease the frame response time by up to 45% when compared with a traditional system. 
The CAN bus simulation platform using RTaW-Sim also helps reduce the design cost and improve the systems quality. 
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1. Introduction

The automobile industry has faced great development in 
the 21st century. Vehicle system is made up of automotive 
electric architectures consist of a large number of ECUs 
carrying out a selection of managed functions [1, 2]. 
Developing electricity preserving and low emission 
merchandises becomes both directions of automobile 
industry. In automobile system, we generally expect less fuel 
consumption, greater safety, more comfort, and better 
pollution management. As a response, automakers started to 
roll out innovative attributes. In addition, new technology 
with improved computing capacity is available. However, the 
competition among the automakers is growing day-to-day. 
Therefore, automakers are adopting the most recent 
technology to make their vehicles get noticed in a busy 
marketplace [2]. Recognizing the demand for increased 
operations in automobiles, researchers adopt intelligent 
computing systems, such as embedded systems, in cars. An 
embedded system is a microprocessor system with a number 

of committed functions, generally with real-time 
computation constraints.  

A modern vehicle may have many ECUs in different 
subsystems for various purposes. Different such subsystems 
include air bags, anti-lock braking, engine-control, audio 
systems, windows, doorways, mirror alteration, etc. Many of 
these subsystems are independent or reliant subsystems. 
Improved electronic control system can improve relaxation 
and vehicle dynamics. However, there are some new 
challenges such as the body wiring sophistication, space 
constraints, and reliability dilemmas. Communicating among 
dependent subsystems is also crucial. In order to address 
these issues, the car network engineering concept has been 
developed [3-6]. In automobile networking protocols, some 
prerequisites must be satisfied, which contain important 
reduction of wiring harness, lowering body fat and prices, 
bettering the effectiveness of low latency times, fault 
diagnosis and settings flexibility, and accentuating the level 



30 Abu Asaduzzaman et al.:  Design and Evaluation of Controller Area Network for Automotive Applications 
 

of intelligent control [7, 8]. Subsystems necessitate the 
exchange of particular performance and position advice 
within defined communication latency. CAN bus can offer a 
simple but effective real-time communication protocol 
between controls, actuators, sensors, and other subsystems. 
In this work, a CAN bus protocol is used with a 
microcontroller system for car automation. 

2. Literature Survey 

Since 1970s, there is an exponential increase in the 
variety of electronic systems that have replaced those 
which are only mechanical or hydraulic. Reliability of 
hardware parts and the improving performance due to 
software technologies enable implementations of 
complicated functions. As a result, the safety and the 
comfort of the vehicle's occupier are enhanced. Particularly, 
one of the primary motives of electronic systems is to assist 
the driver to manage the vehicle through capabilities related 
to the steering system, grip (i.e., manage the driving 
torsion), or braking such as antilock braking system (ABS), 
electronic equilibrium software (EES), electrical power 
steering (EPS) system, lively suspensions, and 
engine-control. Another reason for using electronic systems 
is to control apparatus within the body of a vehicle; for 
example, lights, wipers, doors, windows, amusement, and 
communicating gear (e.g., radio, DVD, hands free phones, 
and satnav systems). At the beginning of automotive 
electronics, each new function is executed as a stand-alone 
ECU, which is a subsystem composed of a microcontroller 
and a set of detectors and actuators. This tactic quickly 
proved to be insufficient with the need for functions to be 
dole out over several ECUs and the importance of 
information exchanges capabilities. In today's luxury cars, 
up to 2500 pieces of information are exchanged by up to 70 
ECUs. Until the beginning of the 1990s, information was 
changed through point-to-stage links between ECUs. These 
problems are addressed by using networks where the 

communicators are multiplexed over a shared medium, 
which therefore demand defining rules and protocols for 
handling communications, particularly, for granting bus 
accessibility. Today, it has become the most broadly used 
network in automotive systems and it's estimated that the 
quantity of CAN nodes offered per year is now around 
400-million [1]. 

2.1. Automobile OnBoard Diagnostics 

From early 1980s, cars have already been designed with 
engineering that assists to determine issues related to digital 
engine systems. This technology, called OnBoard 
diagnostics (or OBD), refers to a vehicle's self-diagnostic 
and reporting capability. OBD is composed of numerous 
devices that exchange their results to some special nodes in 
the shape of analytical trouble codes within the car's 
computer system. A fundamental OBD system consists of an 
ECU (short for electronic or engine control unit) as depicted 
in Figure 1. ECU utilizes input signal from various sensors 
to manage the actuators (e.g., gas injectors) to get the 
desirable functionality. The “Check Engine” light, also 
known as the Malfunction Gauge Light (MIL), supplies an 
early warning of malfunctions to the car owner. A modern 
vehicle can support numerous parameters, which can be 
generated via the Diagnostic Link Connecter (DLC) using 
an apparatus called a scan-tool. (MIL and DLC are not 
shown in the figure.) While the automobile will be powered 
on, the OBD-II program screens various output signals and 
motor states. When the OBD-II program finds a trouble 
within the discharge control program, a dash light is lit 
suggesting “test the engine”. An affiliated diagnostic trouble 
code is saved in the PC’s storage to record the exceptional 
issues and states of the discharged control parts. The 
diagnostic problem signal tips could be retrieved by the 
computer using a check device. Through the uses of these 
records, an accurate tech-repair is possible; other troubles 
may also be uncovered precisely. 

 

Figure 1. Schematic diagram of the OnBoard diagnostic. 
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2.2. OBD-II with New Technology 

The CAN is the newest communication program within 
the automotive planet. CAN is a way of linking each of the 
digital systems within a vehicle together allowing them to 
communicate with each other. As OnBoard computers 
improve, so does the variety of distinct electronic systems. 
The information processed and recorded by each 
management module is regularly used by one or more 
management modules on the program. A necessary 
standardized means of swiftly passing information between 
the modules is required to improve the CAN bus 
performance. The CAN bus can do a lot in automobile 
communications. In general, CAN bus systems have the 
potential to truly make changes in the process and can 
conduct communication between parts faster. The unique 
OBD-II/EOBD protocols (J1850 PWM, J1850VPW, 
ISO-9141 and ISO-14230) help reduce the variety of tools 
needed for engine and/or emissions fault diagnosis. 
However, by permitting four protocols there was none the 
less a great deal of confusion and over-complexity of tools. 
Simplifying this to an individual protocol can merely lead 
to lessen the cost of diagnostic tools. So multiplexing 
technologies and specifically CAN, rise up very fast, and 
help keep the wiring harness complexity under control 
while satisfying the growing demand for data broadcasting. 
The use of CAN bus can enhance the OBD-II system by 
replacing the following criteria: 
� Reduced wiring requirements and fast communication 

between data bus.  
� Increased electrical reliability due to the reduction of 

electrical connectors and reduced use of redundant 
sensors. 

� It helps to master the complexity of the architectures.  
� It reduces the hardware cost, weight, consumption, 

space, lower vehicle weight, etc.  
� It facilitates an incremental design process.  
� It leads to better communication performance and 

helps to match the bandwidth needs. Sometimes, a 
60% loaded CAN network can be more efficient than 
two 40% CAN networks interconnected by a gateway 
causing delays and high jitters. 

3. Controller Area Network 

The Controller Area Network (i.e., CAN) is a serial 
communication protocol for networking detectors, actuators, 
and other nodes in real-time systems. In this section, we 
discuss the basic description of CAN including network 
layer, rule of bus arbitration, and its error handling 
mechanisms. Extensions of time oriented greater-level 
protocols and CAN, including time-triggered CAN are 
explained in Figure 2. CAN communication protocol data is 
passed between different parts of CAN module on a network 
and conformed by the Open Systems Interconnection (OSI) 
model. The physical layer of OSI model defines the actual 
communication between devices connected by the physical 
medium. The ISO 11898 architecture (as shown in Figure 2) 
defines the lowest two layers of the seven layer OSI/ISO 
model as the data-link layer and physical layer. These two 
layers are mostly used for CAN bus communication [2]. 

 

Figure 2. Application layers of ISO Standard 11898 architecture. 

3.1. CAN Bus Message Formats 

CAN distinguishes four message formats: data, distant, 
malfunction, and overload frames. Here, we restrict the 
discussion into the information frame. An information frame 
starts with the start-of-frame (SOF) bit. The identifier and 
the remote transmission request (RTR) bit form the 
arbitration subject. The management field consists of six bits 
and signifies how many bytes of information follow in the 

information field. The information field is accompanied by 
the cyclic redundancy checksum (CRC) discipline, which 
empowers the receiver to verify if the received bit sequence 
was corrupted. The 2-bit acknowledgment (ACK) area is 
used by the transmitter for an acknowledgment of a valid 
frame from any receiver. The ending of a frame is signaled 
through a seven-bit end-of-frame (EOF). In addition, there is 
an extended data frame with a twenty nine bit identifier. 
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3.2. CAN Bus Arbitration 

Arbitration is the mechanism that handles bus access 
conflicts. Whenever the CAN bus is free, any unit can start 
to transmit a message. Possible conflicts, due to greater than 
one unit beginning to transmit concurrently, are resolved by 
bit shrewd arbitration utilizing the identifier of each device. 
During the arbitration phase, each transmitting device 
transmits its identifier and compares it with the amount 
monitored on the bus. The system continues to transmit, if 
these amounts are equivalent.  

3.3. CAN Bus Error Handling 

Error detection and error management are significant for 
the operation of CAN. Error detection is done in five distinct 
manners in CAN: (i) Bit monitoring, (ii) bit stuffing, (iii) 
frame check, (iv) ACK check, and (v) CRC. Bit tracking 
means each transmitter monitors bus level; the bus level 
malfunctions if the level doesn't agree with the transmitted 
signal. After having transmitted five indistinguishable bits, a 
node will consistently transmit the reverse bit. This 
additional bit is ignored by the receiver. During the ACK in 
the concept frame, all receivers are presumed to send a 
dominant bus. If the transmitter, which conducts a recessive 
level, doesn’t detect the dominant level, then an error is 
indicated by the ACK check mechanism. In comparison to 
other network protocols, this mechanism leads to high data 
integrity and a short error recovery time. CAN bus, therefore, 
supplies procedures for malfunction handling, including 
re-transmission, and re-initialization. 

3.4. Scheduling of CAN Bus 

CAN protocol implements fixed priority scheduling of 
CAN messages. Higher priority node has lower node 
identification (ID). If available bandwidth is insufficient, 
then the problem occurred is traditional fixed-priority 
established scheduling. It is possible that the low 
precedence control iterations cannot access the network on 
a regular basis, since the limited resources have been used 
by high priority loops. As an effect of incredible delays, 
low precedence control iterations may be destabilized.  

The trouble of given priority may be defeated by the use 
of immediate feedback scheduling algorithm, namely 
maximum urgency first (MUF). MUF is integrated in the 
community scheduler. Upon invocation, the scheduler 
computes the urgency of each manage iteration centered on 
current system output signals and the set points. According 
to the MUF algorithm, new precedence is produced by the 
scheduler according to the urgency values. Then, messages 
in distinct iterations will be aired in accordance with the 

newly assigned precedence [3]. A fresh mixed traffic 
schedule (MTS) is centered on the communicating principle 
of controller area network, community scheduling, and 
investigation of program. The heart thought of MTS is to 
place the comparative deadline tips into the identifier [4]. 
The earliest deadline first (EDF) concept scheduling 
algorithm is used for high precedence tips and the rate 
monotonic scheduling (RMS) concept scheduling algorithm 
is used for low precedence tips. 

3.5. Reliability of CAN Bus 

Reliability refers no failures in an operating time. High 
malfunction management capacity of CAN enhances system 
dependability. Transmission is aborted by the node forcibly, 
if a malfunction has been found by any concept transmitting 
node. Afterward, it tries to re-transmit repeatedly till its 
concept is transmitted efficiently. To avert such catastrophe, 
the transmit malfunction counter (TEC) and the receive 
malfunction counter (REC) are began to diagnose the states 
of CAN control. CAN control has REC and TEC which 
improves dependability of CAN bus system [5]. A CAN 
controller can be in one of three states: error active, error 
passive, or bus off state. Once the CAN controller has 
entered bus off state, it must be reset by the host 
microcontroller in order to be able to continue operation. 

4. Controller Area Network for Vehicle 

Automation 

Controller area network (i.e., CAN) provides high 
dependability and good real-time performance with very low 
cost. It is a vehicle bus standard designed to allow 
microcontrollers and devices to communicate with each 
other within a vehicle without a host computer [6]. The 
robustness and performance of the CAN technology, as well 
as the new possibilities brought by distributed software 
functions, have motivated engineers to use more and more 
bandwidth in order to improve existing Electrical and 
Electronic (EE) functions and introduce new ones. Data 
communication in automobile regularly has many sensors 
transmitting modest information packets.  

4.1. Prototype Design 

The CAN is a multi-master broadcast serial bus standard 
for connecting ECUs. A prototype design, as shown in 
Figure 3, illustrates how electronic components in 
distributed control architecture for cars are connected by 
CAN. Some of these form independent subsystems, but 
communications among others are essential.  
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Figure 3. Electronic components of a car connected by CAN bus. 

Table 1. ECU Parameters 

Powertrain and Chassis 

TCM: Transmission Control Module 
ECM: Engine Control Module 
BCM: Brake Control Module 
BSC: Body Sensor Cluster 
SAS: Steering Angle Sensor 
SUM: Suspension Module 

Infotainment/Telematics 

MP1,2: Media Players 1 and 2 
PHM: Phone Module 
MMM: Multimedia Module 
SUB: Subwoofer 
ATM: Antenna Tuner Module 

Body Electronics 

CEM: Central Electronic Module 
SWM: Steering Wheel Module 
DDM: Driver Door Module 
PDM: Passenger Door Module 
REM: Rear Electronic Module 
CCM: Climate Control Module 
ICM: Infotainment Control 
UEM: Upper electronic Module 
DIM: Driver Information Module 
AEM: Auxiliary Electronic 

The blocks represent ECUs and the thick lines represent 
networks. There are three classes of ECUs: power-train and 
chassis; infotainment; and body electronics. The ECUs are 
defined by their acronyms. Several networks are used to 

connect the ECUs and the subsystems. There are three 
different CAN bus subsystems. CAN bus subsystems are 
connected via a coordinator (COD) system. The maximum 
configuration for the vehicle contains about 40 ECUs [6]. 
Some important ECU parameters are briefly discussed in 
Table 1. 

4.2. Block Diagram for CAN Bus Communication 

The block diagram for CAN bus communication 
developed in this study is shown in Figure 4. Node monitors 
on bus and information is send to computer for display and 
further investigation. CAN analyzer is used for fault 
investigation of the program also as evaluation. The parts 
which are connected by a CAN community are normally 
sensors, actuators, and other control apparatus. These 
devices are not connected right to the bus, but through a host 
chip and a CAN controller. CAN nodes include host chip, 
CAN controller, and CAN transceiver. An individual node is 
linked to can-bus line. Following are the main component of 
a CAN bus: 

Host Processor: The host processor decides which 
messages it wants to broadcast itself and what is the 
significance of received messages. It manages devices and 
sensors. Actuators can be linked to the host chip. 

 

Figure 4. Block diagram for CAN communication. 
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CAN Controller: The CAN control stores received bits 

serially in the bus until a complete message can be acquired, 
which may subsequently be brought by the host CPU. The 
host CPU stores the transmit messages.  

Transceiver: It accommodates signal level in the bus to 
degree that the CAN control has protecting circuitry that 
shields the CAN control and anticipates. It converts the 
transmit-bit sign received in the CAN control into a signal 
which is sent onto the bus [7]. CAN transceiver is an 
interface between the real bus and protocol control.  

4.3. CAN Bus Software Protocol Design 

In the proposed CAN bus prototype for vehicle 
automation, we consider a host microcontroller and a CAN 
controller. The software component of principal program 
unit is broken up into method initialization device, CAN 
initialization component, message sending unit, message 
receiving unit, and interrupt support unit. System 
initialization unit comprises initialization of host processor 
and computer screen node. Work-flow diagram for the CAN 
node is illustrated in Figure 5. 

 

Figure 5. Work-flow of the proposed CAN node. 

CAN Controller Initialization: CAN control initialization 
procedure includes initialization of internal register of CAN 
controller, such as initialization of transmit and obtain buffer. 
When initializing the CAN registers in the CAN controller, 
the system configures the controlling way, bit time filter, 
mask register, and compose buffer; immediately clears the 
study; and interrupts enable register. 

CAN Message Sending: After initialization, the CAN 
controller is prepared to work and is in standard 
communicating status. The CAN concept sending embraces 

inquest way or it sends concept when distant request is 
obtained. In inquest mode, packet is created by host 
processor and sends information to CAN Control transmit 
buffer for additional transmission.  

CAN Message Receiving: There are two means for 
messages getting – interrupt way and inquest way. In the 
system, the interrupt mode is executed. In interrupt mode, if 
CAN controller receives legitimate message in obtain buffer, 
it creates interrupt signal on INT pin. The message is 
prepared by the host processor by utilizing SPI instructions 
of CAN controller [7].  

5. Simulation Criteria of CAN in 

Automotive Design 

In this section, we present a simulation technique for 
frame response that happens around the network nodes at 
runtime. As CAN bus could be the principal communication 
method between Electric Control Units (ECUs) in vehicles, 
CAN frame response times are now being thoroughly 
researched. Frame response time distributions were 
eventually provided richer information on the real-time 
behavior of the system. So having the ability to get correct 
frame response time distributions may result in substantial 
cost optimization on hardware. 

5.1. Assessing Frame Response Time Distribution 

Frame response times fundamentally rely on the frame 
characteristics and of the phasing involving the interacting 
nodes. Upper bounds on the response times, regardless the 
phasing between ECUs, can be computed with analysis tools 
such as RTaW-Sim. Reply times while in the standard event 
may be better assessed by simulation. The conventional 
simulation method will be to gain data on the variety of 
adjustments equivalent to unique original designs. This 
really is required just because a simple simulation work 
merely conveys a small pair of response times for each 
frame, while the period of the machine is small (usually a 
couple of seconds) [9]. As the phasing between the ECUs 
varies continually because of the clock drifts, simulating just 
one trajectory is enough to see an extensive range of 
response situations for every single frame. Because there is 
an individual simulation run to do, this method is easier from 
an experimental point of view.  

5.2. Simulator Toolset: Real Time at Work (RTaW-Sim) 

RTaW-Sim is a timing accurate simulator of CAN 
networks that enables the designer to come up quickly with 
the best design and configuration choices. RTaW-Sim is also 
useful to assess the performance and reliability of a CAN 
bus system. In our experiments, we use RTaW-Sim Starter 
edition 1.4.4. RTaWSim provides a comprehensive and 
precise performance evaluation of CAN networks, and 
enables to investigate scenarios and compare the impact of 
different design and configuration alternatives. It is powered 
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with rich graphical edition and visualization environment 
with communication architecture editor, distribution plots, 
and Gantt diagrams.  

6. Simulation 

In this section, we present step by step simulation 
processes and frame response times related to the expected 
behavior of the network [10]. This is the most elementary 
and most beneficial characteristic of the CAN simulator 

since it provides an exact idea of the frame response times 
for a CAN bus. The experimental results depict the expected 
performance improvement. 

It should be remarked that the microcontroller clocks may 
have drifts, as it happens, then it is obvious to understand the 
length of time. Figure 6, a screen-shot, shows the CAN 
connections between the electronic components of a car. In 
the experiment, the speed of the bus in kbits/s and is 
explained by the tool-tip of “Speed”. 

 

Figure 6. Components of a car as connected by CAN buses through a gateway. 

The periodic bus load is displayed for the chosen 
bit-stuffing: “10%” means that the bit-stuffed part of the 
frame is 10% longer than nominal, with the worst-case 
option. As shown in Figure 7, we select “Length & Sample 
Times” and enter “Intermediate Statistics” times, where 
snapshots of the (evolving) response time statistics will be 
taken: 30 sec, 10 min, 1 hour, and 1 day. When the 

simulation ends, a second dialog pops-up and gives 
information about the completed simulation. The statistics 
are stored both in the RTaW-Sim input file and in csv files in 
the indicated folder. The obtained statistics can be visualized 
in the CAN bus tab, by choosing the corresponding bus 
simulation configuration “BusSimConfig”. A sample time 
statistics is shown in Figure 8. 

 

Figure 7. Intermediate Statistics time selection. 
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Figure 8. Simulation results: time statistics. 

Frame response times are illustrated in Figures 9(a) and 
9(b) for CAN bus 1 and bus 2, respectively. Here, x-axis 
represents the number of frames and the y-axis represents 
their response times in milliseconds. The five graphs/lines in 
Figure 9(a) correspond to the statistics: Minimum, Average, 
Maximum, and two quantiles. The two quantiles are (1-10-2) 
quantile and (1-10-3) quantile. A (1-10-n) quantile is a 
threshold such that the probability that a response-time of 

the frame is larger than that threshold, is lower than 10-n. For 
the frames where only the minimum is visible, the average 
and maximum have the same value as the minimum, 
meaning that the response time of the frame is always the 
same – of course this is not the typical behavior and it may 
be due to the fact that station clock drifts, variable 
bit-stuffing for the frames, and transmission jitters are not 
modeled in this study. 

 

Figure 9(a). Statistics of CAN bus 1. 
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Figure 9(b). Statistics of CAN bus 2. 

From Figures 9(a) and 9(b), the most observed response 
times (the top two lines) may differ depending on the initial 
configuration. This is especially true for the lowest priority 
frames. As expected, the minimum response times (the most 
bottom line) are almost equal because the phasing between 
sending nodes changes in such a way that every frame will 
be sent without delay. The fruitful outcome is that the 
average response times (the second line from the bottom) are 
almost equal. This result is meaningful because it suggests 
that for a long simulation time, the initial phasing is not 
significant for the final response time distributions. 

7. Conclusion 

This paper provides a brief discussion about CAN bus 
implementation in automobiles. Real-time, reliability, and 
flexibility – all these characteristics make CAN bus an icon 
network communication technology applied in automobile 
network communication field. In this work, CAN-bus based 
communication system for vehicle automation is simulated. 
Experimental results show that the CAN bus has potential to 
save time and design cost. We plan to investigate a CAN 
bus system with variable clocks which are available in the 
Pro-Version of the simulation tool (RTaW-Sim).  
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