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Abstract: The aim of this paper is to investigate a new type of magnetic material, which has a permanent random exchange 

interaction. The ferromagnetic properties (magnetizations) of an Ising nanostructure are investigated using the effective field 

theory with correlations. The system has consisted from spin-1/2 atoms with a random exchange interaction Jij. The value of Jij 

is randomly distributed by a random function. A specific investigation about the special effects of the random core exchange 

interaction on the magnetization and the critical temperature has been studied. For the appropriate value of the system 

parameter new descriptions and phenomena of the magnetizations in 3D have been obtained. The results show that it is 

possible to get the same ferromagnetic behavior observed with a constant exchange interaction by using a permanent random 

exchange interaction. Moreover, the results found can be as well displayed in three dimensions (3D) with the same behavior 

observed in 2D. The results are well detailed in the paper. 

Keywords: Random Exchange Interaction, Effective Field Theory, Magnetization in 3D 

 

1. Introduction 

During the last years, magnetic nanoparticles systems [1-6] 

have attracted considerable attention of researchers due to their 

several applications in the new technologies [7-14]. Indeed, 

when the dimension of the magnetic nanoparticles decreases to 

the nanometer scale, the surface to volume ratio increases. 

Because of this process, these nanoparticles start to exhibit 

new phenomenon and interesting physical properties which are 

totally different from those observed in the bulk materials [15]. 

Some numerous experimental techniques have been reported 

to get nanoscales magnetic materials [16-19] and theoretically, 

the magnetic properties of these nanoparticles have mainly 

been examined by using the mean-field theory (MFA), the 

effective-field theory (EFT), and the Monte Carlo simulation 

(MC) [20-29]. Otherwise, the exchange interaction is among 

the most important parameters in the magnetic properties, 

several authors have already worked on it with different forms 

[30, 15, 22, 26], moreover, almost all the scientific 

investigations in the magnetic field are done with a constant 

exchange interaction. On the other hand, just a few groups of 

scientists used the influence of the random exchange 

interaction to investigate some magnetic properties such as M. 

F. Thrope and al. which investigated the phase diagram of a 

ferromagnetic system by using a random exchange interaction 

[31, 32]. Experimentally, M. Drillon and al. investigated the 

magnetic behavior of "rigid" ferrimagnetic chains and model 

their results by using the influence of the random exchange 

interaction in the ferrimagnetic Heisenberg Chain [33]. The 

aim in this paper is to investigate the ferromagnetic properties 

(magnetizations) by the EFT within the probability distribution 

technique that accounts for the self-spin correlations by using 

the random exchange interaction. On the other hand, as far as 

one knows, the magnetic properties of the Ising nanosystems 

obtained in this paper, have not yet been described in the 

literature with a random exchange interaction. In this paper, 

one presents a new method to observe the ferromagnetic 

magnetizations in three dimensions. 

2. Model and Formalism 

Consider the nanostructure defined by the following 

structure. 
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Figure 1. Nano-octahedral structure. 

The red atom is the central spin and the black atoms play 

the role of the nearest neighbors. In this system, the 

exchanges interactions (Js), which linked the atoms on the 

surface are neglected. Consider only the internal exchange 

interaction Jc=Jij as a random exchange interaction. 

Otherwise, the method used to establish the ordered moment 

is the EFT, well detailed in [34]. Therefore, the transverse 

Ising model used to investigate the ferromagnetism 

properties is defined by: 

( )

ij jz iz ix iz

ij i i

H J S S S h S= − − Ω −∑ ∑ ∑                 (1) 

where iz ixH AS BS= − +  

( )

ij jz

ij

A J S h= +∑  

and 

B = −Ω . 

The random exchange interaction is defined by Jij=rand 

(x) with rand () a random function, x the number of exchange 

interaction possibility, izS
 
and ixS

 
the components following 

(Oz) and (Ox) of the spin S=1/2, h the magnetic field and Ω  

the transversal field. Within the formulation of the EFT, 

accordingly, the different steps for the calculations of the 

magnetic properties of the system are well detailed in [34, 

35]. 

izS  and ixS  are represented by the following matrix: 
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To calculate the different averages, one has to find the 

eigenvalues and the associated vectors of the Hamiltonian H 

[34], which is represented by the following matrix: 
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and the corresponding vectors are given by: 
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The coefficients ak, bk (k=1, 2) can be calculated from the 

following equations [34]: 
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Taking account of the conditions of the following 

normalization of the states: 
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Thus, one has: 
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From statistics of spin systems, for the operators irSα  at 

site i, one has: 
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Where the angular bracket ... denotes a canonical 

thermal average, β=1/kB. T, T is the temperature and α is the 

number of order moment. If the exchange interactions are 

restricted to nearest-neighbors interactions only, the 

evaluation of the inner traces over selected spins in the last 

equations yields is 

( , )irS F A Bα
α=                      (10) 

Where 
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The above thermal averages are valid for a fixed spatial 

configuration. The step is to carry out the configurational 

average noted ...
r

, the quantities are the polarization M α  

defined by: 
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In the approximation of Zernike decoupling of the multiple 

correlations, one has: 
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To perform the configurational average on the right-hand 

side of the last equation, one uses the probability distribution 

method based on the use of generalized Van der Wander 

identities [38]. Once done we have: 
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Where the distribution functions ( )irV S  are given by: 
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Taking into account relations above, one gets the following 

relations for the order moments: 
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In this equation, N represents the coordination number and 

n
kC  is the binomial coefficients, 
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one has the 

self-consistent equations for the order moments M α  with the 

system, which can be solved directly by numerical iteration 

without any further algebraic manipulations. Then the 

average total polarization is given by: 

1 i

n z

i
M

M
N

== ∑                            (17) 

With N the number of spin in the structure represented in 

the Figure 1. 

3. Results and Discussions 

In certain magnetic materials, the magnetism is obtained 

by the coupling of the magnetic moments and form 

magnetically ordered states. The coupling is the exchange 

interaction which in nature quantum mechanical and is rooted 

in the overlap of electrons in conjunction with Pauli’s 

exclusion principle. 

In the present paper one has used only a direct internal 

random exchange operates “rand ()" between moments, 

which are close for having sufficient overlap of theirs waves 

functions. The coupling provides a short range and strong 

coupling, which decrease rapidly and randomly as the ions 

are separated. A simple way to understand a direct random 

exchange interaction is to look at two atoms with one 

electron each. Otherwise, when the interatomic distance is 

small, the electrons spend most of their time in between 

neighboring atoms. In the case where the atoms are far apart, 

the electrons spend their time away from each other in order 

to minimize the electron-electron repulsion. 

In the following paper, one has used a nanosystem where we 

consider only the internal exchange interaction (JC) with a null 

surface exchange interaction (JS=0). As you know, the phase 

transition from ferromagnetic to paramagnetic depends on the 

temperature and particularly from the Curie Temperature Tc. 

Otherwise, each ferromagnetic system has its own Curie 

temperature (Tc). Knowing that fact one investigated by 

comparison two cases, a case where the exchange interaction 

Jij is constant and another case where Jij is random by using 

our system describes by a spin S=1/2, a transverse field 

Ω/J=1.00, an external field h/J=0.0. The aim of the 

comparison was to investigate the behaviors of the 

magnetization according to the temperatures with two different 

types of exchange interaction as depicted in figure 2. 
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Figure 2. Thermal variation of the magnetization with random and constant 

exchange interaction. 

 

Figure 3. Thermal variation of the magnetization with a random exchange 

interaction for x=2. 

 

Figure 4. Thermal variation of the magnetization with a random exchange 

interaction for x=10. 

 

Figure 5. Thermal variation of the magnetization with a random exchange 

interaction for x=100. 

 

Figure 6. Thermal variation of the magnetization with a random exchange 

interaction for x=1000. 

For describing the behavior of the magnetization in three 

dimensions (3D), one has used several exchange interaction 

possibilities x=2, 10, 100, 1000 for the random function 

Jij=rand (x). One has demonstrated that more the random 

possibility is important more the signature of the 

magnetization is well displayed as shown in figures 3, 4, 5 

and 6. 

The ferromagnetic materials are sensitive to the 

temperatures, above the Curie temperature (TC) the materials 

lose its ferromagnetism properties and become merely 

paramagnetic. As with the paramagnetic particles, the 

ferromagnetic atoms have a permanent magnetic moment but 

are strongly oriented to the crystallographic axes, unlike the 

paramagnetic particles. One can explain this phenomenon by 

the fact, that in a single crystal it exists domains where all the 

magnetic moments are parallel. And they are linked by 

exchange interaction, taken randomly in the present paper 

and are aligned with a particular axis. Otherwise, from a 

domain to another all the moments are parallel to each other, 
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but they may be aligned with a different axis. Thus, one has a 

number of domains, each highly magnetized, with some 

domains magnetized in one direction and some in another. 

The random exchange interaction used is the origin of the 

internal field magnetic field, which reflects the electrostatic 

Coulomb repulsion of the electrons on neighboring atoms 

and the Pauli principle. According to the spin configuration, 

it exists an energy difference between them. That is why the 

random effects of the exchange interaction and the influence 

of the temperature cause a decrease in the spontaneous 

magnetization at higher temperatures, which cause as well 

the increasing excitation of spin waves with a shape of the 

magnetizations curves. The fluctuation of the spin from 

ferromagnetism to paramagnetic is random that is why we 

observed the unusual magnetization curves displayed in the 

Figures 2, 3, 4, 5 & 6. 

 

Figure 7. Thermal variation of the magnetization in 3D with a random 

exchange interaction for x=1. 

 

Figure 8. Thermal variation of the magnetization in 3D with a random 

exchange interaction for x=10. 

Otherwise, according to the temperature kBT/J, the 

transverse field Ω/J and the random exchange interaction Ji 

used, one has computed and represented the results of the 

magnetization as a matrix function F (x, y, z). Where x is the 

temperature, y is the random exchange interaction and z the 

results of the magnetization. For plotting the three 

dimensions (3D) magnetization, the matrix F (x, y, z) has 

been diagonalized and the results are displayed in figures 7, 

8, 9 & 10. 

 

Figure 9. Thermal variation of the magnetization in 3D with a random 

exchange interaction for x=100. 

 

Figure 10. Thermal variation of the magnetization in 3D with a random 

exchange interaction for x=1000. 

4. Conclusion 

In the present paper, we’ve investigated an octahedral 

nano-system. With one spin at the center and six spins on the 

surface connected via a random internal exchange 

interaction. The surface exchange interaction is neglected. 

The effects of the random internal exchange interaction have 

been explained. New ferromagnetic behavior have been 

observed and are well detailed. We’ve shown that with a 

random exchange interaction and another ferromagnetic 

behavior can be obtained. Otherwise, the model, Theory, and 

steps used for the results in 3D are well detailed in the article, 

in reference to the authors [34]. The study of the new 

phenomena observed with a random internal exchange 

interaction open a new field in the experimental research of 

magnetism. 
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