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Abstract: This paper presents the analysis of electromagnetic fields in random metallic materials for plasmonics applications. 

In this context, the two-dimensional finite- difference time-domain (2D-FDTD) method is used to simulate the surface Plasmons 

(SPs), with the perfectly matched layer (PML). To solve the problem, the idea of effective permittivity for the curved surface is 

applied to the dispersive media, while the Z-transform method is applied to the Drude model. The numerical results obtained by 

2D -FDTD for circular silver cylinders are given and discussed. 
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1. Introduction 

In recent years, SPs have been applied to advanced optical 

devices, such as sensors, microscopies, lasers, and 

hyperlenses. A SP may be defined classically as “a 

fundamental electromagnetic mode of an interface between a 

material with a negative permittivity and a material with a 

positive permittivity having a well-defined frequency and 

which involves electronic surface-charge oscillation” [1]. 

The first scientific observations of SP were reported at the 

beginning of the twentieth century [2], when Wood, in 1902, 

observed an anomalous intensity drops in spectra produced 

when visible light reflects at metallic gratings [4].More than 

30 years later, Fano established another explanation of Wood’s 

anomalies[5]. Around this time, Ritchie reported the abnormal 

behavior of metal gratings in terms of excited surface plasmon 

resonance modes [6].In the same year, Otto [7], Kretschmann 

and Raether [8] presented methods to optically excited surface 

plasmon on metal surfaces. Since this pioneer study, various 

metallic nanostructures are reported for nano-plasmonic 

devices [3, 9, 10, 12, 13, 14]. 

Numerical simulations are useful to analyze the 

complicated structures of these devices. In this context, the 

FDTD method [18, 19, 21, 22] is seen as the most popular 

numerical technique in the simulation of plasmonic structure. 

Since 1966, the FDTD method has been successfully 

applied by Yee [17], to various electromagnetic problems and 

phenomena, such as plasmonic applications [16]. Then the 

FDTD method can model propagation in dispersive media 

known as Drude material [16], [19]. The z-transform approach 

was applied to describe the complex permittivity and its 

frequency dependence of the medium [20]. The effective 

Permittivity at the curved material interfaces [24, 25, 26] was 

used to take into count the geometry of the system with the 

PML absorbing boundary conditions [23]. 

In this paper, the numerical 2D-FDTD simulation results 

are showed for silver cylinders immersed in a dielectric 

medium. 

2. FDTD Method 

Following the study for a SP, the FDTD method was applied 

to simulate light interaction by particles of cylindrical shapes 

immersed in dielectric medium. The first start is from 

Maxwell’s equations. These can be expressed in differential 

form as: 
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Where B is the magnetic flux density, D is the electric flux 

density, E is the electric field intensity and H is the magnetic 

field intensity. 

In the following, the media are assumed that J = 0 and ρ = 0, 

that is to say there is no flow of current and no free charges. 

Assume also nonmagnetic material and therefore set µ = µ0. 

The flux densities and the field intensities are related 

through the constitutive relations. For linear, isotropic media, 

these are: 

D = ε E                   (3) 

B = µ H                   (4) 

where ε and µ are respectively the permittivity and the 

permeability of the media. 

Substituting the space and time derivatives by central 

differences using a staggered mesh, where the electric and 

magnetic fields components are located at different points. For 

the time derivative, the electric and magnetic fields are 

disposed according to the leapfrog scheme. 

So the time and space evolutions of every field component 

which casted in the form suitable for 2D discretization in 

space and time domain [18, 21] can be written as, for example 

the z component of the electric field: 
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where n, i, j are integers that are running on the space and time 

mesh, ∆x and ∆yare the space mesh steps and ∆t is the time 

mesh step. 

Checking the Courant–Friedrich–Levy stability condition 

[18], if the time-step is larger than the Courant limit, the 

method becomes unstable, thus the time-step must be very 

small. 

The PML [23] was applied as an absorbing boundary 

condition to truncate the computational grids. 

3. Effective Permittivity for Plasmonic 

Materials 

At nano scale, the nano structured materials present many 

interesting optical properties; the Plasmonic technologies 

exploit the optical electromagnetic wave propagation locally 

confined to a metal-dielectric interface [15]. 

The optical properties of a medium and its interaction with 

an external excitation electromagnetic wave is described by 

the dielectric response function ε1(ω). In this work the well 

known single-pole Drude dispersion form of ε1(ω) is used to 

describe the silver cylinder-dielectric response[18]: 
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              (6) 

Where ωp is the plasma frequency and νc is the collision 

frequency. The dielectric medium is characterized by the real 

permittivity ε2 which depends slightly on the excitation wave 

frequency. 

The staircased effective permittivity (S-EP) model for 

FDTD computation of plasmonic materials is based to 

represent curved plasmonic surfaces in 2-D Cartesian-cell 

FDTD grids [27]. The S-EP method is implemented only by 

changing permittivity values assigned to Ecomponents near 

the surface of a plasmonic medium. 

The Effective Permittivity in a general form is given by [24, 

25, 26]: 

2 2(1 )eff n nε ε ε⊥= − +�            (7) 

Where n is the projection of the unit normal vector n along 

the field, ε�  and ε⊥  are parallel and perpendicular 

permittivity to the material interface, respectively and defined 

as: 
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where f is the filling ratio of metal in a certain FDTD cell. 

Finally, the Z-transform technique [20] was used to 

calculate the electric field from the electric flux density: 

0 1( ) ( ) ( )D Eω ε ε ω ω=           (10) 

where εo is the free-space permittivity. 

4. Numerical Results 

In this simulation, a monochromatic Gaussian plane wave 

source with TMz polarized waves illuminates metallic 

cylinder with radius r=15 nm and permittivity ε2, immersed in 

dielectric medium (air) has the permittivity ε2 as shown in 

Figure 1. 
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Figure 1. Computational Setup: an Incident TMz polarization illuminate 

silver cylinder with permittivity ε1 immersed in the dielectric medium with 

permittivity ε2. 

The operating frequency of the incident plane wave is 

f=750 THz, which corresponds to the wavelength in free space, 

λ=400nm. 

The 2D- FDTD computational domain is discretized with 

200 ∗ 200 Yee cells, and is terminated in 10-cell. PMLs were 

used to truncate the simulation region with the condition [23]: 

*

0 0

σ σ
ε µ

=                    (11) 

Where 0ε  and 0µ  are the permittivity and permeability 

of free space, σ  is the specific conductivity, σ * is a 

nonphysical parameter that allows the absorption of the 

magnetic field to be symmetrized with respect to the 

absorption of the electric field. 

The spatial discretization is uniform, and can be given as 

x y∆ = ∆ = 10
-9

 m. The time step is chosen to satisfy the 

Courant–Friedich–Levy (CFL) condition for FDTD algorithm 

as: 

2

dx
dt

c
=                   (12) 

where c is the speed of light in the free space. 

In each of these examples, the silver cylinder was assumed 

to be characterized by the following Drude model parameters 

in [15, 19]: ε∞ = 1; ωp = 1.256 .10
16

 rad/s; 

νc = 5.7 . 10
13

 s
–1

 

The dielectric medium (air) has been characterized by the 

permittivity ε2=1. 

The incident, total and scattered electric field distribution 

respectively Ez inc, Ez tot and Ez scat, and also the two components 

of magnetic field respectively Hx and Hy in the near field is 

simulated using the 2D-FDTD method as shown in Figure 2; 

Figure 3; Figure 4 and Figure 5 respectively. 

 

 

Figure 2. Visualization of the FDTD-computed Ez incident wave along the x-y 

planar before the traveling time between the source and silver cylinder 

surface. 

 

Figure 3. Visualization of the FDTD-computed Ez total field distribution 

along the x-y planar. 

 

Figure 4. Visualization of the FDTD-computed Ez scattered field distribution 

along the x-y planar. 
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Figure 5. Visualization of the FDTD-computed magnetic field distribution along the x-y planar: (a) Hx component; (b) Hy component. 

From the two dimensional field distribution which arrive 

one dimensional spatial field distribution along x axis. The 

Figure 6(a) and Figure 6(b) showed respectively the amplitude 

and intensity of the electric field along the x axis with (y=100, 

z=0) corresponding to the cylinder center coordinate. 

Figure 6(a) shows an enhancement of field amplitude 

implying that an oscillating surface charge has been involved 

by the incident plane wave. This is the localized SP. 

In Figure 6(a), oscillations of several periods and different 

amplitudes can be observed; they are due to the interference 

between the excited and scattered waves. The oscillations of 

short period and small amplitude in the region x<70 and 

x>130 are due to the interference between the incidence and 

the scattered waves. The peak of the electric field amplitude at 

the surface is greater than that of the incident field amplitude 

by nearly an order of magnitude. The electric field inside the 

cylinder made negligible. 

A plot of the square of electric field in Figure 6(b) shows 

that the field intensity is much stronger at the surface of 

cylinder. 

 
Figure 6. The spatial configurations of the Electric field enhancement along x axis: (a) the evolution of the electric field at the center(y=100); (b)his intensity 

(maxima normalized). 

The magnetic field Hx amplitude and intensity are 

respectively plotted, in Figure 7(a) and Figure 7(b), as 

function of x along the axis in the two dielectric-metal 

interfaces (at y=85 and y=115) for z=0. The maximum of the 

intensity is approximately two times higher than the 

incidence. 

The magnetic field Hy amplitude and intensity are 

respectively plotted, in Figure 8(a) and Figure 8(b), as 

function of x along the axis in the dielectric-metal interface 

and the centre of cylinder (at y=85 and y=100) for z=0. It may 

be seen that Hy is continuous and changes sign at the two 

dielectric-metal interfaces. 
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Figure 7. The spatial configurations of the Hx component of the magnetic field enhancement along x axis.(a) the evolution of Hx component in the two 

dielectric-metal interfaces (at y=85 and y=115); (b) their intensity (maxima normalized). 

 
Figure 8. The spatial configurations of the Hy component of the magnetic field enhancement along x axis: (a) the evolution of Hy component at the center(y=100) 

and the interface (y=85); (b) the distribution of their intensities. 

5. Conclusions 

This work proposed a S-EP model based FDTD 

computation of plasmonic materials. 

FDTD simulations using the S-EP model were 

implemented for the infinitely-long Ag cylinder. A 

monochromatic Gaussian plane wave source illuminate the 

metallic cylinder with the complex permittivity ε(ω) 

immersed in dielectric medium, the method is based on Drude 

dispersive model which is incorporated into Maxwell 

equations. Z-transform technique was used to analyze the 

stability and the accuracy of finite-difference time-domain 

(FDTD) algorithms and the PML was usedto truncate the 

computational grids. 

In this study the distribution of electromagnetic fields in 

the x-y planar has been described and simulated, and the 

spatial configurations of the near-fields enhancement along x 

axis and their intensities are plotted where clearly verified 

the applicability of the FDTD to model the metallic 

nanoparticle. 

The proposed model and simulation can be applied to other 

dispersion medium, because it is implemented only by 

changing how permittivity values are assigned to grid points. 
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