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Abstract: In this paper we have analyzed the modal dispersion characteristics of two unconventional Bragg waveguides 
namely hypocycloidal and elliptical Bragg waveguide by the use of very simple matrix method. We are using matrix 
equation which replaces the boundary condition. We obtained the characteristic equation analytically. In both cases all the 
outputs are showing in the form of dispersion curves and we are also trying to compare their dispersion characteristics. It is 
seen that in case of hypocycloidal Bragg waveguide [1] the cut off frequency increases with the decrease of cladding 
layers .But in case of elliptical Bragg waveguide [2], when the cladding layer decreases from six layered to four layered the 
cutoff frequency increases and from four layer to two layer the cutoff frequency become decreases. 
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1. Introduction 

Now a day’s Bragg waveguide replaces the conventional 
optical waveguides where guiding of light takes place via 
Bragg reflection .Here refractive index of the core is lower 
than the cladding regions that surround it [3, 4]. We know 
that in conventional transmission of light waves through 
optical waveguide is guided by the phenomena of total 
internal reflection (TIF).In this sort of waveguide the 
refractive index of the core is higher compared to the 
claddings that surround it. Because of the perfection of the 
TIF no other losses occur except some absorption and 
scattering losses. Bragg waveguides are reliable and 
advantageous in compared to other conventional optical 
fibers in a sense that here core is guided by air therefore by 
the transmission of light through Bragg fibers some 
nonlinear effects can be easily minimized. In case of Bragg 
fibers we can get truly single guided mode which is not 
possible for a conventional fiber. This concept helps the 
Bragg fiber to work as a mode filter. Bragg fiber eliminates 
some undesirable effects that are dependent on polarization. 
By the use of optical waves atom guiding is possible in 
case of Bragg fiber [10].It brings the concept of photonic 

band gap which is a topic of recent interest [5–8].   

 

Fig 1. (i) Cross-section of a hypocycloidal Bragg waveguide. (ii) Cross-

section of an elliptical Bragg waveguide. 
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In one sense we can say this as photonic band gap Bragg 
fibers [8, 9].Finally we can say that transmission of optical 
wave through Bragg fiber makes the optical transmission 
process more reliable as well as efficient. In this present 
paper we are trying to analyze two Bragg waveguides, 
hypocycloidal Bragg waveguide Fig.1 (i) and a elliptical 
Bragg waveguide Fig. 1(ii) which are not conventional. The 
details of the procedure and analysis are given below. At 
the end of this paper we are also trying to make a 
comparison between them. 

2. Theoretical Approach 

We are considering the unconventional Bragg waveguide 
having hypocycloidal core cross section and an 
unconventional Bragg waveguide having elliptical core 
cross-section shown in Fig.1(i) and Fig.1(ii) respectively. 
The two diagrams are given for comparison purposes. 

2.1. Hypocycloidal Bragg Waveguide 

2.1.1. Eigen Value Equation 

We have analyzed the simple matrix method [1] to 
determine the modal characteristics of a hypocycloidal 
Bragg waveguide. Where by using the matrix equation we 
are trying to replace the boundary condition. For a six 
layered Bragg waveguide the cross sectional view is shown 
in Fig. 1(i).with low refractive index (nc) in the core and 
higher refractive indices n1 and n2 (n1> n2) in the cladding 
regions around the core. By this we have designed a Bragg 
waveguide having claddings with alternate high and low 
refractive indices. The index profile for the considered 
structure is given below 

                       (1) 

Where,  
m1=p1;  
m2=p0; 

m3=p0+ p1; 

m4=p0+2 p1; 

m5=p0+3 p1; 

m6=p0+4 p1; 

The general equation for a hypocycloidal curve can be 
written as  

xN+ yN= p0
N.                                       (2)  

We have chosen new coordinates (ϱ, ž, z) sufficient for 
our considered geometry and we make an assumption that 
electromagnetic wave propagates along the z-direction. 
Considering N= 2/3 and ‘p0’ is a parameter indicating the 
size of the considered geometry. 

By considering above assumption the equation for a 
hypocycloidal curve in Cartesian coordinate can be written 
as 

x2/3+ y2/3=ϱ2/3.                                     (3) 

The equation for the curve which is normal to eq (3) can 
be written as 

x4/3+ y4/3= ž 4/3                                    (4) 

Here, the curve is symmetric with respect to both x and 
the y-axis, so we can consider only one quadrant. Now, we 
can get the expressions for electric and magnetic field in 
terms of our new coordinate considered by using the 
Maxwell equations. Now we can have an assumption, that 
is ϱ >>ž [13] which is valid in case of the four conical 
regions of the considered waveguide. 

Now, in Cartesian coordinate system we can write the 
scalar wave equation as 

d2Ez / dx2+ d2Ez / dy2+d2Ez / dz2+u2Ez=0                 (5) 

Ez is the z-component of the E field. Now for the 
harmonic variation of the z component of E field with 
respect to z and t, we can derive the above equation as 

                                              (4ϱ8/3/ϱ8/3-ž8/3)(d2Ez/d ϱ 2) – {4ϱ5/3(ϱ8/3+3ž8/3)/3(ϱ8/3-ž8/3)2} 

(dEz/dϱ)+(ϱ/ž)2/3(d2Ez/d ž2)-{ ϱ2/3(ϱ8/3+3 ž8/3)/3 ž5/3(ϱ8/3-ž8/3)}(dEz/dž)+u2Ez=0                                 (6) 

Again we have a similar equation for the magnetic field 
Hz . 

We have, u2= ω2 ε1 µ1-β
2, 

Where, 
ω - Angular frequency. 
ε1- permittivity of the guiding region. 

µ1- permeability. 

β- Propagation constant. 

To simplify eq(6) we have to consider that ϱ>ž to have a 
valid special case [13].Now the above differential equation 
can be modified to 

4(d2Ez /dϱ2) – (4/3ϱ)(dEz /dϱ)+( ϱ/ž)2/3(d2Ez / dž
2)–(ϱ2/3/3ž5/3)(dEz /dž)+ u2Ez=0                          (7)

By the separation of variable concept, we can obtain 
Ez= E11(ϱ) E22(ž) exp(j(ωt-βz)                          (8) 
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For our proposed consideration, the longitudinal 
components of the E field can be written as 

Ez11= (Ui ϱ)2/3MJ2/3(Ui ϱ d) F(ž)exp(j(ωt-βz)        (9) 

Ez12=(Ui ϱ)2/3NY2/3(Ui ϱ d) F(ž)exp(j(ωt-βz)         (10) 

Ez1= Ez11+ Ez12 

Now, for the even modes we can have the longitudinal 
component of the E field Ez1 as 

Ecore= Ez1 

Ecore=(Ui ϱ)2/3[MJ2/3(Ui ϱ d)+NY2/3(Ui ϱ d)] F(ž)exp(j(ωt-βz)      
(for core)                      (11) 

Hz11=(Ui ϱ)2/3OJ2/3(Ui ϱ d) F(ž)exp(j(ωt-βz)                   (12) 

 Hz12=(Ui ϱ)2/3PY2/3(Ui ϱ d) F(ž) exp(j(ωt-βz)                (13) 

Hz1= Hz11+ Hz12 

Now, for the even modes we can have the longitudinal 
component of the H field Hz1 

Hcore= Hz1 

Hcore=(Ui ϱ)2/3[OJ2/3(Ui ϱ d)+PY2/3(Ui ϱ d)] F(ž)exp(j(ωt-βz) (14) 

Where , 

Ui
 2=k0

2ni
2-β2 , 

For i= 1, 2, the corresponding refractive indices are n1 
and n2.Again we can have the solution for core and the 
outer most region as 

Ez21= (w ϱ)2/3QI2/3(w ϱ d)F(ž) exp(j(ωt-βz)                  (15) 

Ez22=(wϱ)2/3RK2/3(wϱd) F(ž) exp(j(ωt-βz)                    (16) 

Ecladd= Ez21+ Ez22 

Ecladd=(wϱ)2/3[QI2/3(wϱd)+RK2/3(wϱd)] F(ž)exp(j(ωt-βz)       (17)  

(for cladding)    

Hz21=(wϱ)2/3SJ2/3(w ϱd) F(ž) exp(j(ωt-βz)                              (18) 

Hz22=(wϱ)2/3TK2/3(wϱ d) F(ž) exp(j(ωt-βz)                            (19) 

Hz2= Hz21+ Hz22 

Hcladd= Hz2 

Hcladd=(wϱ)2/3[SJ2/3(wϱd)+TK2/3(wϱd)] F(ž)exp(j(ωt-βz)     (20) 

Where  

nc- common refractive index . 
J2/3- Bessel functions of first kind. 

Y2/3 - Bessel functions of second kind. 

I2/3& K2/3 - modified Bessel functions. 
β - Axial component of propagation vector. 

ω- Wave frequency. 

µ -permeability of non-magnetic medium 
ε1- permittivity of the core. 

ε2 - permittivity of the cladding region  

d=
  �

    �
 (emerging due to peculiarity of the geometrical  

shape) 

M, N, O, P, Q, R, S and T are all constants and these are 
unknown. 

Boundary conditions for the above Bragg waveguide 
consideration  

Ecore|m =ECladd|m 

  � ���	


�� 
 |m = 

����
��

��  
 |m 

By analytically solving this equation we get equations 
which contain twenty two unknown constants. Then we put 
in a 12×12 matrix[1].The determinant formed by this 
matrix is det[i].We can get the nontrivial solution only 
when 

det[i]=0                                       (21) 

2.1. Elliptical Bragg Waveguide 

The index profile for elliptical is similar with the 
previous case. This can be written as 

                         (22) 

Where, 
m1=p1;  
m2=p0; 

m3=p0+ p1; 

m4=p0+2 p1; 

m5=p0+3 p1; 

m6=p0+4 p1; 

The general equation for the elliptical structure can be 
written as 

x4+ y4=ƥ4.                                  (23)  

The equation for the curve which is normal to eq (23), 
we can write it as 

1/ x2-1/ y2=1/ ƥ2.                            (24) 

We have chosen new coordinates (ξ, ž, z) sufficient for 
our considered geometry and we make an assumption that 
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electromagnetic wave propagates along the z-direction. 
Now, we can get the expressions for electric and magnetic 
field in terms of our new coordinate considered by using 
the Maxwell equations [12]. Where for even modes Ez1(ξ) 
and Hz1(ξ) are the longitudinal field components. 

We can write different field components as,  

E11(ξ)= 
�

� 
 AJ1(Uid ξ)                                               (25) 

E12(ξ)=
�

� 
 BY1(Uid ξ)                                               (26)  

Ez1 (ξ)= E11(ξ)+ E12(ξ)  

Ez1 (ξ)=Ecore(ξ) = 
�

� 
 [AJ1(Uid ξ) +BY1(Uid ξ)      (27)  

H11(ξ)= 
�

� 
CJ1(Uid ξ)                                               (28) 

H12(ξ)=
�

�  
DY1(Uidξ)                                               (29)    

Hz1(ξ)= H11(ξ)+ H12(ξ)  

Hz1(ξ)= Hcore(ξ)= 
�

� 
 [CJ1(Uid ξ) + D Y1 (Uid ξ)],   (30)  

Where,  

Ui
 2=k0

2ni
2-β2 , 

For i= 1, 2 the corresponding refractive indices are n1 
and n2. Again we can have the solution for core region and 
the outmost part as 
Ez2(ξ)= 

�

� 
 [EI1(wd ξ)+FK1(wd ξ)],                          (31) 

Ez2(ξ)= Ecladd(ξ) 

(for       cladding) 

Hz2(ξ)=
�

� 
 [GI1(wd ξ)+HK1(wd ξ)],                         (32) 

Hz2(ξ)= Hcladd(ξ) 

Where,  

nC- common refractive index . 
Jn- Bessel functions of first kind. 

Yn - Bessel functions of second kind. 

In&Kn - modified Bessel functions. 
β - Axial component of propagation vector. 

ω- Wave frequency. 

µ -permeability of non-magnetic medium 
ε1- permittivity of the core. 

ε2 - permittivity of the cladding region 

d=( √2)2 

A, B, C, D, E, F, G and H are all constants and these are 
unknown. 

Boundary conditions for the above Bragg waveguide 
consideration is 

Ecore(ξ)|m= Ecladd(ξ) |mi, 

�����

��
 |m = 

�����

�� 
 |mi . 

By analytically solving this equation we get equations 
which contain twenty two unknown constants. Then we put 
in a 12×12 matrix[2].The determinant formed by this 
matrix is det[i].We can get the nontrivial solution only 
when 

det[i]=0 .                                       (33)  

2.2. Dispersion 

We have the general equation for normalized propagation 
constant, 

b= (β2/ k0
2- n1

2)/( nc
2-n1

2) ,                        (34) 

Where,  values of β lying between nck0and n1k0. 

nc- Refractive index of the core. 
n1- Refractive index of the  cladding . 

Since,  β/ k0≈ nc for the region which is far from the cut-
off. 

b ≈ (β/ k0- n1)/( nc-n1) .                         (35) 

Similarly, cut-off frequency, 

V=
��

 �
p0 (nc

2-n1
2)1/2, 

V=
��

 �
p0 .NA ,                                  (36) 

But here, for our proposed waveguide geometry the 
equation for cut-off frequency and normalized propagation 
constant can be modified as, 

V=k0(p0- p1)( n1
2- nc

2) 1/2 

 ≈ k0(p0- p1)[2n(q + q’)] 1/2 .                  (37)  

Where 
q=n1- n2, 
q’= n1-nc, 

k0 - vacuum  wave number. 

k0=
��

 �
, 

We can write the expression for the normalized 
propagation constant as 

b=β2- k0
2nc

2/ k0
2( n1

2- nc
2) 

 ≈β-k0nc/k0(q+ q’)                             (38)   

(for weak  guidance  consideration) 

The parameter V i.e. the cutoff frequency is a 
dimensionless parameter. The other parameters that we 
have considered here   nc ,  n1, p0, p1 and k0  that may have 
an effect on propagation. There are also different 
alternative procedure to define the cutoff frequency V and 
normalized propagation constant b. 
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2.3. Intermodal Dispersion Calculation 

The equation for Intermodal dispersion [14] in multimode 
propagation, 

∆T=(L /2 ncc)(nc
2-n1

2)2                       (39) 

= (L /2 ncc)(NA)2, 

Where, 
c - Speed of light 
L- Length of the fiber considered. 

For our unconventional Bragg waveguide consideration 
if we take nc = 1.0002, n1 =1.45 and c=3×108 then we can 
calculate 

∆T= -1.83×10-9 L. 

Again for conventional case if we take nc = 1.45, n1 
=1.0002. 

∆T=1.26×10-9 L. 

For a particular length L we have calculated the 
dispersion and analyze that in the sense of dispersion this 
Bragg waveguides shows good performance compared to 
the conventional one.  

2.4. Power Loss 

Ratio of power through the cladding to the total power 
[14] is 

��

��
=

�

� M
-1/2                                   (40) 

M= V2/2 

From this equation we can analyze that power loss in the 
present consideration totally depends on the diameter of the 
core considered. For higher core diameter the power loss is 
less. 

2.5. Group Velocity Consideration 

We have, 

Vmin= c(n1/nc),       Vmax= c 

From this we can analyze that the minimum group 
velocity (Vmin) [14] for our Bragg waveguide consideration 
is higher in compared to any conventional fiber. As a result 
the transmission is faster. 

2.6. Response Time 

Ϭ≈
�

�

 � 

�
(41) 

Where, 

∆=(nc- n1)/ nc 

 
 

i.e. . From this expression we can observe that here the 
response time [14] is less compared to the conventional 
fibers. 

2.7. Pulse broadening Rate(Pbr) 

Pbr≈(nc ∆
2) /4c                                  (42) 

i.e. for this Bragg waveguide consideration pulse 
broadening rate [14] is less as a consequence there is less 
possibility of interference.  

3. Numerical Analysis 

The mathematical analyses are shown above for 
hypocycloidal and elliptical Bragg waveguide respectively. 
That gives us relevant information’s in case of the modal 
dispersion of the considered Bragg waveguides. The 
equation (37) gives the expression for the dimensionless 
parameter V .In the same way equation (38) gives the 
expression for the dimensionless parameter b for our Bragg 
waveguide consideration. Then we have considered  nc = 
1.00004, n1 =1.35, n2= 1.40, p1 =0.01 µm, 0.1 µm,1.0 µm  
and  2 µm, λ0= 1.55µm and  for other values of  p0.The 
values of p0 are changed  in ar increasing order to 
exemplify eq(33) and (21). At first, for a particular value of  
p0 we are trying to calculate  the left hand side of eq.(33) & 
eq.(21).  Which is for various values of β that lies between 
k0 n1& k0 n2.We have plotted the results of the left hand side 
of the Eq. (33) with respect to β .From this we get a graph, 
the graph intersects the β=0 axis at a point and we 
considered that point as the value of  β for the guided 
modes. By putting the β values eq(38)  we can get  the 
value b . Similarly, By putting different value of p0 in eq(37) 
we can get the cutoff frequency V. After that we have 
plotted the b against V. Then we get the dispersion curves 
for the considered Bragg waveguide. 

4. Results and Discussion 

The results are shown in the form of dispersion  
Curves below,  

 

Fig 2. Cutoff frequency V vs Normalized propagation constant b for the 

six-layered Cladding (hypocycloidal Bragg waveguide) considering 

thickness p1=0.01µ m 
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Fig 3. Cutoff frequency V vs. Normalized propagation constant b for the 

four-layered cladding (hypocycloidal Bragg waveguide) considering 

thickness p1=0.01µ m 

 

Fig 4.Cutoff frequency V vs Normalized propagation constant b for the 

two-layered Cladding (hypocycloidal Bragg waveguide) considering 

thickness p1=0.01µ m 

For hypocycloidal Bragg waveguide dispersion curves 
are shown above from Fig.2 to Fig.4 for thickness of 
p1=0.01µ m. Here, we can analyze from the figures that the 
cutoff frequencies of lowest order modes are V =2.6, V 
=2.8 and V=3.2 respectively. For the thickness of p1=0.1µm   
the cutoff frequencies for lowest order modes are V =3.7, V 
=4.5 and V =4.7 respectively. From this we can infer that 
with the increase of thickness the cutoff frequency also 
increases. Again we can analyzed from the table that the 
cutoff frequencies increases for both from six layered to 
four layered and from four layered to two layered. Similarly, 
we get the cutoff frequencies for higher order modes which 
are shown in Table.1.  

 

Fig 5. Cutoff frequency V vs Normalized propagation constant b for the 

Two-layered Cladding (elliptical Bragg waveguide) considering thickness 

p1=0.01µ m 

 

Fig 6. Cutoff frequency V vs Normalized propagation constant b for the 

four-layered cladding (elliptical Bragg waveguide) considering thickness 

p1=0.01µ m  

 

Fig 7. Cutoff frequency V vs. Normalized propagation constant b for the 

six-layered cladding (elliptical Bragg waveguide) considering thickness 

p1=0.01µ m  

 

Fig 8. Cutoff frequency V vs Normalized propagation constant b for the 

two-layered cladding (elliptical Bragg waveguide) considering thickness 

p1=0.1µ m  

 

Fig 9. Cutoff frequency V vs Normalized propagation constant b for the 

four-layered Cladding (elliptical Bragg waveguide) considering thickness 

p1=0.1µ  
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Fig 10. Cutoff frequency V vs. Normalized propagation constant b for the 

four-layered cladding (elliptical Bragg waveguide) considering for 

thickness p=1µ m 

 

Fig 11. Cutoff frequency V vs Normalized propagation constant b for the 

six-layered cladding (elliptical Bragg waveguide) considering thickness 

p1=1µ m  

For elliptical Bragg waveguide some dispersion curves 
are shown above from Fig.5 to Fig.11.For thickness of 
p1=0.01µm the dispersion curves for two layered, four 
layered and six layered cladding are shown from Fig.5 to 
Fig.7 respectively.. Here, we can analyze from the figures 
that the cutoff frequencies of lowest order modes are V 
=1.9, V =2.6 and V =1.0 respectively. For the thickness of 
p1=0.1µm   the cutoff frequencies for lowest order modes 
are V =1.0, V =416 and V =1.3 respectively. From this we 
can infer that with the increase of thickness the cutoff 
frequency decreases. The same case is also happening in 
case of higher order modes. Again we can analyze from  
Table.2 that the cutoff frequencies increases form  six 
layered to four layered but from four layered to two layered 
it become decreases. Similarly, we get the cutoff 
frequencies for higher order modes which are shown in 
Table.2 

 

Fig 12. Cutoff frequency V vs.  Normalized propagation constant b for the 

six-layered cladding (hypocycloidal Bragg waveguide) considering 

thickness p1=2µ m 

 

Fig 13. Cutoff frequency V vs Normalized propagation constant b for the 

four-layered cladding (hypocycloidal Bragg waveguide) considering 

thickness p1=2µ m  

 

Fig 14. Cutoff frequency V vs Normalized propagation constant b for the 

two-layered Cladding (hypocycloidal Bragg waveguide) considering 

thickness p1=2µ m  

 

Fig 15. Cutoff frequency V vs. Normalized propagation constant b for the 

six-layered cladding (elliptical Bragg waveguide), considering thickness 

p1=2µ m  

 

Fig 16. Cutoff frequency V vs Normalized propagation constant b for the 

four-layered cladding (elliptical Bragg waveguide) considering thickness 

p1=2µ m 
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Fig.17. Cutoff frequency V vs. Normalized propagation constant b for the 

two-layered cladding (elliptical Bragg waveguide), considering thickness 

p1=2µ m  

4.1. Analysis from Dispersion Curves for p1=2µm 

For a thickness of p1=2µ m, the dispersion curves for 
hypocycloidal Bragg waveguide are shown from Fig.12 to 
Fig.14.We have analyzed that for LP12 mode the cutoff 
frequencies are V =2.21, V =3.2 and V =4.1 respectively. 
So we can infer that for this thickness, this Bragg 
waveguide retains the same property, where cutoff 
frequencies increases for both six layered to four layered 
and from four layered to two layered. The other interesting 
point that we have analyzed is that for this thickness the 
cutoff frequencies are become less compared to the 
previous thicknesses considered. Results are shown in 
Table.3. 

Again, for a thickness of p1=2µ m, the dispersion curves 
for elliptical Bragg waveguide are shown from Fig.15 to 
Fig.17. We have analyzed that for LP12 mode the cutoff 
frequencies are V =1.42, V =1.6 and V =1.25 respectively. 
So we can infer that for this thickness, this Bragg 
waveguide retains the same property, where cutoff 
frequencies increases for six layered to four layered and 
from four layered to two layered it becomes decreases. But 
here we got an exception for the lowest order mode where 
the cut off frequencies are V =1.0, V =1.0 and V =1.0 

respectively. Results are shown in Table.3. 
For hypocycloidal Bragg waveguide with a thickness of 

1µm we have seen that in case of six-layered as well as in 
four-layered curves are not coming in an observable way. 
So we can infer that transmission of information in both 
this cases is not reliable because there is possibility of 
losing information 

 

Fig 18. Cutoff frequency V vs Normalized propagation constant b for the 

six-layered Cladding (hypocycloidal Bragg waveguide)for thickness 1µm 

 

Fig 19. Cutoff frequency V vs Normalized propagation constant b for the 

four-layered Cladding (hypocycloidal Bragg waveguide)for thickness1µm 

Table 1. For hypocycloidal Bragg fiber the Cutoff frequencies are given below for various modes considering thicknesses p1=0.01µm, p1=0.10µm and 

p1=1.00µm. 

Mode 

No. 

Cutoff frequencies for thickness of 

p1=0.01µm in hypocycloidal  Bragg fiber 

Cutoff frequencies for thickness of 

p1=0.1µm in hypocycloidal  Bragg fiber 

Cutoff frequencies for thickness of 

p1=1µm in hypocycloidal  Bragg fiber 

0<V<10 0<V<10 0<V<10 

LP1m 
6 

(layered) 
4 

(layered) 
2 

(layered) 
6 

(layered) 
4 

(layered) 
2 

(layered) 
6 

(layered) 
4 

(layered) 
2 

(layered) 

LP11 2.6 2.8 3.2 3.7 4.5 4.7 - - 2.38 

LP12 5.8 6.8 7.8 8.6 9.2 9.42 - 0.0 4.9 

LP13 7.9 9.1 9.26 9.2 9.4 9.7 1.1 1.9 7.1 

LP14 - - - - - - 1.8 3.7 - 

LP15 
 

-  
 

-  
 

-  
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Table 2. For elliptical Bragg fiber the Cutoff frequencies are given below for various modes    considering thicknesses p1=0.01µm, p1=0.10µm and 

p1=1.00µm. 

Mode 

No. 

Cutoff frequencies for thickness of 

p1=0.01µm in elliptical  Bragg fiber 

Cutoff frequencies for thickness of 

p1=0.1µm in elliptical  Bragg fiber 

Cutoff frequencies for thickness of p1=1µm in 

elliptical  Bragg fiber 

0<V<10 0<V<10 0<V<10 

LP1m 
6 

(layered) 
4 

(layered) 
2 

(layered) 
6 

(layered) 
4 

(layered) 
2 

(layered) 
6 

(layered) 
4 

(layered) 
2 

(layered) 
LP11 1.9 2.6 1.0 1.0 1.6 1.3 

 
1.21 4.7 

LP12 2.6 3.5 1.8 2.6 3.63 3.3 3.0 3.92 3.64 
LP13 3.8 5.8 2.4 3.5 4.46 4.25 4.5 4.7 8.26 

LP14 5.6 7.9 3.3 5.0 5.3 5.18 5.2 6.1 9.2 

LP15 6.3  5.0 7.4 8.8 8.2 6.8 9.11  
LP16 -   -   -  - 
LP17 -   -   - - - 

Table 3. For elliptical Bragg fiber and hypocycloidal Bragg fiber the Cutoff frequencies are given below for various modes considering thicknesses 

p1=2µm. 

Mode 

No. 

Cutoff frequencies for thickness of p1=2µm in elliptical  Bragg 

fiber 

Cutoff frequencies for thickness of p1=2µm in hypocycloidal  

Bragg fiber 

0<V<10 0<V<10 

LP1m 
6 

(layered) 
4 

(layered) 
2 

(layered) 
6 

(layered) 
4 

(layered) 
2 

(layered) 

LP11 1 1 1 1.8 2.2 3.0 
LP12 1.42 1.6 1.25 2.21 3.2 4.1 
LP13 2.5 2.3 2.2 3.4 4.6 5.8 
LP14 3.3 3.4 2.82 - -  
LP15 3.7 4.5  

 
- - 

 

5. Conclusion 

We find the interesting feature that for thickness 
p1=0.01µm and for V≤10.0 for the different cladding layer 
consideration the hypocycloidal Bragg waveguide can 
sustain a single mode only. This shows that this Bragg 
waveguide with less number of claddings shows 
comparatively better performance than other Bragg fiber. In 
addition to that in this Bragg waveguide the absorption of 
energy is very less. From the analysis we can also infer that 
this Bragg waveguide sustains less number of modes 
compared to the elliptical Bragg waveguide. 

It is also observed that in case of hypocycloidal Bragg 
waveguide the cutoff frequency of some modes are greater 
compared to the elliptical Bragg waveguide. But in one or 
two case there is exception also observed. As a result 
hypocycloidal Bragg waveguide sustains less number of 
modes in compared to the elliptical Bragg waveguide. 
Because greater the Cutoff frequency corresponds to the 
less number of modes sustain. For the elliptical Bragg 
waveguide consideration we can infer that when the 
cladding layer decreases from six-layer to four layers the 
cutoff values increases. But when it goes from four layers 
to two layers the cutoff values become decreases. The 
disadvantage of elliptical Bragg waveguide is that this 
structure is more complicated compared to the 
hypocycloidal in case of greater thickness and higher 
number of cladding layers. 

The analysis has been done by the authors in [1] on 
hypocycloidal Bragg waveguide for thicknesses p1=0.01 
µm, 0.1µm  and 1µm. Based on their analysis in this paper 
we are also trying to observe the cut-off values for higher 
thickness values. We observed that if we increase the 
thickness to p1=2µ m, then it also follows the same property 
for different layers but the cutoff frequency values are 
lower compared to the other thicknesses considered above. 
Similarly, based on [2], in this paper we are trying to 
observe the cut-off values for higher thickness values It is 
observed that when the thickness is increase to p1=2µ m, 
then it also retains the same property for different layers but 
the cutoff frequency values are lower compared to the other 
thicknesses considered. 
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