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Abstract: The Sommerfeld’s problem of plane wave diffraction by a perfectly conducting half-plane is considered for the 

general case of an absorbing medium and an inhomogeneous incident wave, whose the constant phase planes are not parallel 

to the constant amplitude ones. The exact solution is represented in terms of parameters of incident wave propagation in the 

coordinate axes, but not in terms of angular variables, as usually. We adduce the original derivation of this solution, which use 

generalized functions and admits complex values for propagation parameters. Our approach is based on calculation of 

diffraction integrals by the method of transformations on the real axis without using a complex argument of integration. The 

results of diffraction field computation for the cases of an absorbing medium and of a decaying incident wave in a transparent 

medium are presented. 
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1. Introduction 

The rigorous solution of the problem of plane 

electromagnetic wave diffraction by a perfectly conducting 

half-plane in a homogeneous transparent medium was 

obtained by Sommerfeld more than 100 years ago [1] (see 

also [2–5]). From that time, this solution has been 

generalized more than once to the cases of impedance 

boundary conditions on a half-plane [6], a perfectly 

transparent half-plane [7], a moving half-plane [8], on the 

case of half-plane embedded into bi-isotropic medium [9], 

and also on the case of different media disposed bilaterally 

along that [10]. The solution for a plane incident wave has 

stood duty as the bases for the solutions obtained for a vector 

spherical wave [11] and for electromagnetic beams [6, 12]. 

However, for an absorbing medium surrounding the 

half-plane, or for the case of a decaying incident wave, the 

Sommerfeld’s solution is not applicable, because it is written 

in terms of real angular parameters, which determine 

direction of incident plane wave propagation and position of 

an observation point. In an absorbing medium, and also 

generally in the presence of decay, the propagation 

parameters of this wave become complex. The further 

attempts to obtain solutions for such cases are concerned 

with the approximate physical optics approach [13–15]. By 

this way, the solutions for a black half-plane [13], and for 

evanescent waves [14, 15], have been obtained using a 

complex angle of incidence. Meanwhile, such an approach 

cannot be admitted as constructive. Decaying field in an 

absorbing or transparent medium is excited usually after 

refraction of a wave (or after its total internal reflection) on a 

plane boundary with the other transparent medium, owing to 

that decay appears only in one spatial direction, which is 

orthogonal to the interface, but in parallel direction, wave 

amplitude does not vary. Hence, in practice, the presence of 

decay causes appearance of inhomogeneous waves, whose 

constant phase surfaces are not parallel to the constant 

amplitude ones [16]. Formal introducing a complex-valued 

angle of incidence does not allow simulation of propagation 

for such waves, and here, one should use the representation 

of diffraction solution in terms of the parameters of wave 

propagation in the various coordinate axes, which can be 

complex simultaneously or separately. In this work, such a 

representation is presented for the solution of the problem of 

electromagnetic wave diffraction by a perfectly conducting 

half-plane. At that, the original technique of its obtaining is 

used, because the standard method of obtaining of the 
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Sommerfeld’s solution assumes real values of propagation 

parameters and, strictly speaking, needs grounding to be 

applicable on their complex values. 

2. Solution of the Diffraction Problem 

As it is known, for two-dimensional diffraction problems 

in the Cartesian coordinate system, Maxwell’s equations are 

reduced to the following relations, determining two different 

polarizations of field [2, 4, 17] 
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where u and u  are the complex scalar functions, satisfying 

the Helmholtz’s equation 
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k=ω/c is the wave number, i=√−1 is the imaginary unite, ε is 

the dielectric permittivity of a medium, which can be a 

complex value. Here, and everywhere below, in equations 

hold true for two polarizations H and E simultaneously, the 

vinculum above the symbol of field function u for the latter 

is omitted. It is supposed that temporal dependence of fields 

is determined by the exponential factor exp(–iωt), which is 

also omitted. 

Let the plane wave  

)]( [ exp 00 yxiku βα +=    (3) 

is incident from negative x and y on the infinitely thin 

perfectly conducting half-plane x=0, y≤0 (Fig. 1), where 

α0
2
+β 0

2
=ε. It is assumed that for the H and E polarizations, 

the expression (3) determines the Ez and Ey component of an 

incident wave, respectively. 

We construct the solution of diffraction problem for two 

semi-infinite domains x≤0 and x≥0 separately on the bases of 

boundary conditions. The tangential components of electric 

field should be vanish on a perfectly conducting surface, but  

 

Figure 1. Diffraction of a plane wave by a half-plane. 

at its absence, the tangential electric and magnetic 

components should satisfy the continuity conditions on the 

boundaries between the indicated domains. From here, using 

Equations (1), one yields the following boundary conditions 

for the field functions of the H and E polarizations 

( ) 00 ==xu  for y<0      (4a) 
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where the symbol “0” denotes an infinitesimally small 

positive value. 

To obtain a rigorous solution of diffraction problem, 

satisfying the Helmholtz’s equation (3), one proceeds 

usually from a superposition of plane waves, what 

corresponds to decomposition of this solution in a Fourier 

integral on the initial plane x=0. We seek such a solution in 

the following form, writing that for two polarizations 

simultaneously 

{ } myxikyxiku −+−+= 00000  )]([ exp)]([ exp αβαβα ∓  
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where the upper and lower signs are related to the cases of 

the H polarization (m=0) and the E polarization (m=1), 

respectively, A(β) is the unknown Fourier image of the 

diffraction field, 

2βεα −=      (7) 

is the value having a nonnegative imaginary part, what 

should provide nonincreasing field magnitude at moving 

away from an obstacle (the edge of a half-plane). 

Our choice of the field in the form of (6) provides 

satisfaction of the first conditions (4b) and (5b). Remaining 

two conditions (4b) and (5b) together with the conditions (4a) 

and (5a) yield the system of the dual integral equations [2–5] 

∫
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Let us transform these equations from the spatial domain 

of the argument y into the spatially-frequency one. For that, 

we multiply both sides of those by )( exp βik−  with some 

ββ =  and than take integral of the first and second 

equations along the negative or positive semi axis of the y 

coordinate, respectively 
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where δ±(β) are the generalized functions [18] 
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δ(β) is the routine Dirac delta function [2], for which 

δ+(β)+δ−(β)=δ(β), and the symbol “0” denotes, as before, 

an infinitesimally small positive value. If for the certain 

function f(β) the integrals 
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exist, then they determine functions f
−
 and f

+
, which are 

analytic in the lower and upper half-plane of the complex 

variable β, respectively, and in the upper (lower) half-plane 

they have a simple pole. Further, it is obvious, that 
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Usually, the transformations (10) are written with the small 

displacement of the integration pass upper or lower from the 

real axis, where the poles of integrand are located [2–5]. 

Utilization of the functions (9) corresponds to the opposite 

case, when the integration contour are still, but only the 

poles are subjected to small displacement from the real axis. 

Returning to Equations (8), note that from (8a) we yield at 

once: A(β)=A
−
(β), i.e. the function A(β) is analytic in the 

lower complex half-plane and has not poles there. Only for 

this case the integral in the left side of (8a) vanishes [19, 20]. 

Really, for this integral, the initial contour of integration on 

the real axis, being completed by a semicircle of infinitely 

great radius in the lower complex half-plane, turns into a 

closed pass with analytic integrand in all interior points. 

Similarly, from (8b) we obtain 
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where B
+
(β) is a certain function, analytic in the upper 

half-plane. As it is known [2–5], the value α (7) can be 

represented as a product of two functions α± 

−+= ααα   βα ±=± n  

each of which is analytic in the upper (lower) half-plane of 

the argument β, and in the lower (upper) half-plane these 

functions determine the cuts, passing from the branch point 

0in ∓∓=β  to zero and further to the mines (plus) 

imaginary infinity [4]. Here, n=ε 1/ 2
 is the refractive index of 

a medium (generally speaking, a complex value). Let us 

divide (multiply) both sides of (12) on α+ and apply the first 

transformation (10) to both sides of the obtained relation: 
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Integrand in the right-hand side is analytic in the upper 

half-plane, hence, closing the path of integration by a 

semicircle through this half-plane, we obtain zero result [19, 

20]. From here, in view of the property (11), we have 
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This is a solution of diffraction problem in the 

spatially-frequency domain for two polarizations of field. To 

obtain the corresponding solution as a function of the spatial 

coordinates, one should inset (13) into (6) and calculate the 

diffraction integral 
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For that, consider an auxiliary integral 
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, Imα≥0. Let us introduce two new 

variables of integration 
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With their help, the integral (15) is broken up into two 

different integrals, which are reduced to the complex Fresnel 

integrals 
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Now, let us rewrite the initial diffraction integral (14) in 

the form 
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For computation of this integral, let us apply the method 

of differentiation with respect to parameter [20]: 
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The lower limit of integration is taken as –∞, because for 

this value of y exactly the integrand of (19) vanishes. This 

conclusion is true as for complex values of the propagation 

parameter β 0 (with a positive imaginary part), as for real its 

values owing to the presence of infinitely small additive i0 to 

the value β 0. To compute the integral (20), one can use the 

variables p=w(−β0) and q=−v(β0) (16), but now, as functions 

of the y coordinate. Note that 
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These relations allow to express the integral (20) in terms 

of the Fresnel integrals. As a result, we obtain for the 

integral (18) 
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is the additional complex Fresnel integral. A constant 

multiplier before that normalizes its value in infinity: 

F(−∞)=1. 

Thereby we have calculated the diffraction integral (14) 

of the problem actually without extending on a complex 

plane of the integration argument β. Such a method of 

computation are more simple than the usual method [2–5], 

which requires extension on a complex plane, but gives 

result, valid only for real parameters of incident wave 

propagation. 

For the case x≥0 the expression (21) at once gives the field 

function (6b). But for 0≤x  one should add exponential 

terms to this expression. Taking into account that |x|=−x, and 

converting from modulus of this coordinate to its real value, 

we have 

),,( 00 yxDu m βα ∓−=    (22) 

where m=0 for the H polarization and m=1 for the E 

polarization, 
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To obtain all components of the total field, one should insert 

the expressions (22)–(24) into (1) and calculate spatial 

derivatives. As a result, we give 

H polarization 
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If n=1 and β 0
2
<1, then the parameters of propagation of an 

incident wave α0 and β 0 can be characterized by sine and 

cosine of the angle ψ, determining the direction of their 

incidence relative to the plane x=0: α0=sinψ, β 0=cosψ (in 

[2], this angle is denoted as α0). The coordinates x and y of 

an observation point can be also determined in terms of the 

value ρ=(x
2
+y

2
)

1/ 2
 and orientation angle of the radius-vector 

of the given point ϕ : x=−ρsinϕ, y=−ρcosϕ (for this angle, 

corresponding designation in [2] is θ). Then 

)( cos 00 ϕψρβα ∓−=+± yx  

)( cos2 ϕψρ +−= kp
 

)( cos2 ϕψρ −−= kq
 

and the solution of diffraction problem (25), (26), written in 

terms of two angle parameters ψ and ϕ, coincides with the 

solution, presented in [2], up to the constant factor α0
−1

 for 

the E polarization. 

The terms proportional to exp(ikρ) in the right-hand sizes of 

(25b), (25c) and (26a), (26b), determine singular edge waves, 

whose amplitudes behave as ρ−1/ 2
 at ρ→0, i.e. increase 

infinitely at nearing to the edge of a half-plane. However, as 

it is well-known, such an increase of amplitudes does not 

contradict to the physical requirement of finiteness of 

electromagnetic energy magnitude in any finite spatial 

domain without sources, because corresponding volume 

integrals for fractional negative dependence on the distance 

take on finite values. 

3. Calculation Results 

If the passing from the general solution (25), (26) to the 

particular Sommerfeld’s solution, presenting in [2–5], is 

sufficiently straightforward, the inverse passing is not 

presented as fully obvious. The field of application of the 

solution (25), (26) is more wide than that for the standard 

solution [2–5], written in terms of angular variables and 

justified for real values of those. Firstly, the solution (25), 

(26) admits complexity of the refractive index of a medium n. 

Secondly, this solution, being expressed explicitly in terms 

of parameters of incident wave propagation α0 and β 0, 

admits their complexity, i.e. allows to study diffraction of 

decaying and inhomogeneous waves. To demonstrate this 

feature of our solution by means of numerical computations, 

we consider  

 

Figure 2. Spatial distribution of electric field magnitude for the 

components E z (the upper part) and E y (the lower part), when 

inhomogeneous plane waves of various polarizations diffract by a perfectly 

conducting half-plane in an absorbing medium. 

the cases of real β0 (β 0=sinϑ, ϑ is the angle of incidence, Fig. 

1). This corresponds to excitation of the given wave after 

refraction on a certain plane boundary x=−l with a certain 

transparent medium, which is located at x<−l. It is obviously, 

that here only one parameter of propagation α0=(ε−β 0
2
)

1/ 2
 

can be complex-valued, having a nonnegative imaginary 

part, what should provide nonincreasing wave amplitude at 

moving away from a source. 
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Figure 3. Spatial distribution of electric field magnitude for the 

components E z (the upper part) and E y (the lower part), when decaying 

plane waves of various polarizations diffract by a perfectly conducting 

half-plane in a transparent medium. 

 

Figure 4. Spatial distribution of electric field magnitude for the 

components E z (the upper part) and E y (the lower part), when 

homogeneous plane waves of various polarizations diffract by a perfectly 

conducting half-plane in a transparent medium. 

Figs. 2 and 3 displays results of computations according 

Equations (25) and (26) for magnitudes of two electric field 

components Ez and Ey under the diffraction of an 

imhomogeneous plane wave of the H or E polarization by a 

conducting half-plane, surrounded by a transparent and 

absorbing medium at l=3.2/k. In the first case (Fig. 2), 

n=1.5+0.21i, β 0=0.5, and the incident wave decays in the x 

direction. In the second case (Fig. 3), n=1, but β 0=1.024, so 

that this wave also decays in the same direction with a such 

coefficient of decay in magnitude. The difference between 

these two cases displays in the presence of phase variations 

along this direction in an absorbing medium. For 

the case of the E polarization, the influence of a singular 

edge wave is added to that. The amplitude of this wave is 

depended essentially on difference between the value β 0 and 

the refractive index n. For the case of excitation by total 

internal reflection (Fig. 3), rather wide domain of increase 

for the field amplitude near the half-plane edge is caused by 

small difference between β 0=1.024 and n=1. For 

comparison, we present on Fig. 4 analogous computation 

results for the classical case of the homogeneous wave 

diffraction [2–5] at n=1, β 0=0.5. 

Similarly, one can study the other case of excitation of the 

initial wave (3) after refraction on the dielectric interface y=l, 

parallel to the x axes. Then α0=cosϑ, and β 0=(ε−α0
2
)

1/ 2
 

should have a nonpositive imaginary part. 

4. Conclusion 

The solution of the Sommerfeld’s diffraction problem for 

a homogeneous incident wave can be generalized on the 

cases of an inhomogeneous decaying wave and of an 

absorbing medium, surrounding the half-plane, if one 

considers the problem in terms of parameters of propagation 

of an incident wave instead of its angle of incidence. The 

formal rewriting of the standard Sommerfeld’s solution on 

complex domain of propagation parameters and of refractive 

index of medium, is not too difficult, but at that, one should 

prove validity of such a solution, since the initial 

Sommerfeld’s solution was grounded only for their real 

values. In this work, we prove validity of our general 

solution by a nonstandard technique, which does not use any 
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assumptions about reality of propagation para meters and of 

the refractive index of a medium. Besides, this technique 

utilizes generalized functions and does not use a complex 

argument for diffraction integrals computation. Perhaps, the 

given technique with some modifications will be useful for 

obtaining rigorous solutions of another similar diffraction 

problems. 
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