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Abstract: Nowadays, data and knowledge extracted by data mining techniques represent a key asset driving research, 

innovation, and policy-making activities. Many agencies and organizations have recognized the need of accelerating such 

trends and are therefore willing to release the data they collected to other parties, for purposes such as research and the 

formulation of public policies. However, the data publication processes are today still very difficult. Data often contains 

personally identifiable information and therefore releasing such data may result privacy breaches, this is the case for the 

examples of micro-data, e.g., census data and medical data. This thesis studies how we can publish and share micro data in 

privacy-preserving manner. This present a next ensive study of this problem along three dimensions: Designing a simple, 

intuitive, and robust privacy model, designing an effective anonymization technique that works on sparse and high-

dimensional data and developing a methodology for evaluating privacy and utility tradeoffs. Here, we present a novel 

technique called slicing which partitions the data both horizontally and vertically. It preserves better data utility than 

generalization and is more effective than bucketization in terms of sensitive attribute. 
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1. Introduction 

Data Anonymization is a technology that converts clear 

text into a non-human readable form. Data anonymization 

technique for privacy-preserving data publishing has received 

a lot of attention in recent years. Detailed data (alsocalledas 

micro-data) contains information about a person, a household 

or an organization. Most popular anonymization techniques 

are Generalization and Bucketization. There are number of 

attributes in each record which canbecategorized as 1) 

Identifiers such as Name or Social Security Number are the 

attributes that can be uniquely identify the individuals. 2) 

some attributes may be Sensitive Attributes (SAs) such as 

diseasend salary and 3) some may be Quasi-Identifiers(QI) 

such as pin code, age, and sex whose values, when taken 

together, can potentially identify an individual. Data 

anonymization enables the transfer of information acrossa 

boundary, such as between two departments with in an 

agency or between two agencies, while reducing the risk of 

unintended disclosure, and in certain environment inamanner 

that enables evaluation and analytics post-anonymization. 

 

Figure 1. A Simple Model of PPDP. 

2. Various Anonymization Techniques 

Two widely studied data anonymization techniques are 

generalization and bucketization. The main difference 
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between the two anonymization techniques lie in that 

bucketization does not generalize the QI attributes. 

2.1. Generalization 

Generalization is one of the commonly anonymized 

approaches, which replaces quasi-identifier values with 

values that are less-specific but semantically consistent. 

Then, all quasi-identifier values in a group would be 

generalized to the entire group extent in the QID space. If at 

least two transactions in a group have distinct values in a 

certain column (i.e. one contains an item and the other does 

not), then all information about that item in the current group 

is lost. The QID used in this process includes all possible 

items in the log. Due to the high-dimensionality of the quasi-

identifier, with the number of possible items in the order of 

thousands, it is likely that any generalization method would 

incur extremely high information loss, rendering the data 

useless.  In order for generalization to be effective, records in 

the same bucket must be close to each other so that 

generalizing the records would not lose too much 

information. However, in high-dimensional data, most data 

points have similar distances with each other. To perform 

data analysis or data miningtasks on the generalized table, the 

data analyst has to make the uniform distribution assumption 

that every value inageneralized interval/set is equally 

possible, as no other distribution assumption can be justified. 

This significantly reduces the data utility of the generalized 

data. And also because each attribute is generalized 

separately, correlations between different attributes are lost. 

2.2. Bucketization 

Bucketization is used to partition the tuples in T into 

buckets, and then to separate the sensitive attributes from 

then on-sensitive ones by randomly permuting the sensitive 

attribute values within each bucket. The sanitized data then 

consists of the buckets with permuted sensitive values. In this 

paper, we use bucketization as a method of constructing the 

published data from the original table T, although all our 

results hold for full-domain generalization as well. We now 

specify our notion of bucketization more formally. 

Partitioning the tuples into buckets (i.e., horizontally partition 

the tablet according to some scheme), and with in each 

bucket, we apply an independent an domper mutation to the 

column containing S values. The resulting e to buckets, 

denoted by B, is the published. For example, if the 

underlying tableis T, then the publisher might publish 

bucketization B. Of course, foradded privacy, the publisher 

can completely mask the identifying attribute (Name) and 

may partially mask some of the othernon-sensitive attributes 

(Age, Sex, Zipcode). While bucketization has better data 

utility than generalization, it has several limitations. First, 

bucketization does not prevent membership disclosure. 

Because bucketization publishes the QI values in the 

iroriginal forms, an adversary can findout whether an 

individual has are cord in the published data ornot. 87 

percent of the individuals in the United States can be 

uniquely identified using only three attributes (Birthdate, 

Sex, and Zipcode). A micro-data (e.g., census data) usually 

contains many other attributes besides those three attributes. 

This means that he membership information of most 

individual scan be inferred from the bucketized table. 

Second, bucketization requires a clear separation between 

QIs and SAs. However, in many data sets, it is unclear which 

attributes are QIs and which are SAs. Third, by separating the 

sensitive attribute from the QI attributes, bucketization 

breaks the attribute correlations between the QIs and the SAs. 

Bucketization first partition stuples in the table in to buckets 

and then separates the quasi identifiers with the sensitive 

attribute by randomly permuting the sensitive attribute values 

in each bucket. The anonymized data consist of asset of 

buckets with permuted sensitive attribute values. There are 

some principles of privacy preserving as follows:- 

3. K-Anonymity 

Samarati and Sweeney introduced k-anonymity as the 

property that each record is indistinguishable with at least k-1 

other records with respect to the quasi-identifier. In other 

words, k-anonymity requires that each QI group contains at 

least k records. k-anonymity is one of the most classic 

models, which prevents joining attacks by generalizing or 

suppressing portions of the released micro data so that no 

individual can be uniquely distinguished from a group of size 

k. k-Anonymity attributes are suppressed or generalized until 

each row is identical with at least k-1 other rows. 

3.1. K-Anonymity Using Generalization 

The generalization hierarchy transforms the k-anonymity 

problem into a partitioning problem. Specifically, this 

approach consists of two steps. The first step is to find a 

partitioning of the dimensional space, where n is the number 

of attributes in the quasi identifier, such that each partition 

contains at least k records. Then the records in each partition 

are generalized so that they all share the same quasi-identifier 

value. The generalization method substitutes the values of a 

given attribute with more general values. Generalization can 

be applied at the following levels:- 

 

Figure 2. Privacy preserving model for microdata. 

K-anonymity model for multiple sensitive attributes 

mentioned that there are three kinds of information 

disclosures:- 

1) Identity Disclosure: When an individual is linked to a 

particular record in the published data called as identity 

disclosure. 

2) Attribute Disclosure: When sensitive information 

regarding individual is disclosed called as attribute 
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disclosure. 

3) Membership Disclosure: When information regarding 

individual’s information belongs from data set is present 

or not is disclosed is said to be membership disclosure. 

3.2. Attacks on K-Anonymity 

Here, we will study two attacks on k-anonymity: the 

homogeneity attack and the background knowledge attack:- 

1) Homogeneity Attack: 

Sensitive information may be revealed based on the known 

information if the non sensitive information of an individual 

is known to the attacker. If there is no diversity in the 

sensitive attributes for a particular block then it occurs. To 

get sensitive information, this method is also known as 

positive disclosure. 

2) Background Knowledge Attack: 

If the user has some extra demographic information which 

can be linked to the released data which helps in neglecting 

some of the sensitive attributes, then some sensitive 

information about an individual might be revealing 

information. Such a method of revealing information is 

known as negative disclosure. 

3.3. Limitations of K-Anonymity 

1) K-anonymity cannot hide whether a given individual is 

in the database, 

2) K-anonymity reveals individuals' sensitive attributes, 

3) K-anonymity cannot protect against attacks based on 

background knowledge, 

4) Mere knowledge of the k-anonymization algorithm can 

be violated by the privacy, 

5) K-anonymity can notbe applied to high-dimensional 

data without complete loss of utility. 

4. ℓ-Diverse Slicing 

In the example given below, tuple t1 has only one 

matching bucket. In general, a tuple t can have multiple 

matching buckets. We now extend the above analysis to the 

general case and introduce the notion of ℓ-diverse slicing. 

Consider an adversary who knows all the QI values of t and 

attempts to infer t’s sensitive value from the sliced table. He 

first needs to determine which buckets t may reside in, i.e., 

the set of matching buckets of t. Tuple t can be in any one of 

its matching buckets. Let p(t,B) is the probability that t is in 

bucket B (the procedure for computing p(t,B) will be 

described later in this section). For example, in the above 

example, p(t1,B1) = 1 and p(t1,B2) = 0. In the second step, 

the adversary computes p(t, s), the probability that t takes a 

sensitive value s. p(t, s) is calculated using the law of total 

probability. Specifically, let p(s|t,B) be the probability that t 

takes sensitive value s given that t is in bucket B, then 

according to the law of total probability, the probability p(t, 

s) is: 

p(t, s) =∑b p(t,B)p(s|t,B)                     (1) 

In the rest of this section, we will show how to compute 

the two probabilities: p(t,B) an d p(s|t,B). Computing 

p(t,B):Given a tuple t and a sliced bucket B, the probability 

that t is in B depends on the fraction of t’s column values that 

match the column values in B. If some column value of t 

does not appear in the corresponding column of B, it is 

certain that t is not in B. In general, bucket B can potentially 

match |B|c tuples, where |B| is the number of tuples in B. 

Without additional knowledge, one has to assume that the 

column values are independent; therefore each of the |B|c 

tuples is equally likely to be an original tuple. The 

probability that t is in B depends on the fraction of the |B|c 

tuples that match t. 

We formalize the above analysis. We consider the match 

between t’s column values {t[C 1], t[C2], · · ·, t[Cc]} and B’s 

column values {B[C1],B[C2], · · ·,B[Cc]}. Let fi(t,B) (1 ≤ i ≤ 

c − 1) be the fraction of occurrences of t[Ci] in B[Ci] and let 

fc(t,B) be the fraction of occurrences of t[Cc −{S}] in B[Cc − 

{S}]). Note that, Cc − {S} is the set of QI attributes in the 

sensitive column. For example, in Table, f1(t1,B1) = 1/4 = 

0.25 and f2(t1,B1) = 2/4 = 0.5. Similarly, f1(t1,B2) = 0 and 

f2(t1,B2) = 0. Intuitively, fi(t,B) measures the matching 

degree on column Ci, between tuple t and bucket B. Because 

each possible candidate tuple is equally likely to be an 

original tuple, the matching degree between t and B is the 

product of the matching degree on each column, i.e., f(t,B) = 

Q1_i_c fi(t,B). Note that Ptf(t,B) = 1 and when B is not a 

matching bucket of t, f(t,B) = 0. Tuple t may have multiple 

matching buckets, t’s total matching degree in the whole data 

is f(t) = PB f(t,B). 

The probability that t is in bucket B is: p(t,B) 

=f(t,B)/f(t)Computing p(s|t,B). Suppose that t is in bucket B, 

to determine t’s sensitive value, one needs to examine the 

sensitive column of bucket B. Since the sensitive column 

contains the QI attributes, not all sensitive values can be t’s 

sensitive value. Only those sensitive values whose QI values 

match t’s QI values are t’scandidate sensitive values. Without 

additional knowledge, all candidate sensitive values 

(including duplicates) in a bucket are equally possible. Let 

D(t,B) be the distribution of t’s candidate sensitive values in 

bucket B. 

Definition of (D(t,B)). Any sensitive value that is 

associated with t[Cc − {S}] in B is a candidate sensitive 

value for t (there are fc(t,B) candidate sensitive values for t in 

B, including duplicates). Let D(t,B) be the distribution of the 

candidate sensitive values in B and D(t,B)[s] be the 

probability of the sensitive attributes in the distribution. 

For example, in Table D (t1, B1) = (dyspepsia: 0.5, flu: 

0.5) and therefore D (t1, B1) [dyspepsia] = 0.5. The 

probability p(s|t,B) is exactly D(t,B)[s], i.e., p(s|t,B) = 

D(t,B)[s]. ℓ-Diverse Slicing. Once we have computed p (t,B) 

a nd p(s|t,B), we are able to compute the probability p(t, s) 

based on the Equation(1). We can show when t is in the data, 

the probabilities that t takes a sensitive value sum up to 1. 

For any tuple t ∈ D, Ps p(t, s) = 1. ℓ-Diverse slicing is 

defined based on the probability p(t,s). Definition for ℓ-

diverse slicing: A tuple t satisfies ℓ-diversity iff for any 
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sensitive value s,p(t, s) ≤ 1/ℓ. A sliced table satisfies ℓ-

diversity iff every tuple in it satisfies ℓ-diversity. 

In the above example, tuple t1 has only one matching 

bucket. In general, a tuple t can have multiple matching 

buckets. We now extend the above analysis to the general 

case and introduce the notion of l-diverse slicing. Consider 

an adversary who knows all the QI values of t and attempts to 

infer t’s sensitive value from the sliced table. He first needs 

to determine which buckets t may reside in, i.e., the set of 

matching buckets of t. Tuple t can be in any one of its 

matching buckets. Let p(t,B) be the probability that t is in 

bucket B. For example, in the above example, p(t1,B1)=1 

and p(t1,B1)=0. In the second step, the adversary computes 

p(t,s), the probability that t takes a sensitive values. The 

probability for p(t,s) is calculated using the law of total 

probability. Let p(s|t,B) be the probability that t takes 

sensitive value s given that t is in bucket B according to the 

law of total probability, the probability p(t,s)is 

P(t, s) =p(t,B)p(s|t,B) 

Attacks on L-Diversity: In this section we will study two 

attacks on l-diversity: the Skewness attack and the Similarity 

attack: 

1) Skewness Attack: l-diversity cannot prevent attribute 

disclosure whenever the overall distribution is skewed 

and satisfied. 

2) Similarity Attack: When the sensitive attribute values 

are distinct but also semantically similar, an adversary 

can learn important information. 

5. Slicing 

Generally in privacy preserving, there is loss of security 

due to the presence of the adversary’s background knowledge 

in real life application. Data contains sensitive information 

about individuals. These data when published violate the 

privacy. The current practice in data publishing relies mainly 

on policies and guidelines as to what types of data can be 

published and on agreements on the use of published data. 

The approach alone may lead to excessive data distortion or 

insufficient protection. Privacy-preserving data publishing 

(PPDP) provides methods and tools for publishing useful 

information while preserving data privacy. Many algorithms 

like bucketization, generalization have tried to preserve 

privacy however they exhibit attribute disclosure. So to 

overcome this problem an algorithm called slicing is used. 

Slicing partitions the dataset both vertically and horizontally. 

Slicing preserves better data utility than generalization and 

can be used for membership disclosure protection. Here we 

are using the following sub modules: 

� Attribute partition and Columns 

� Tuple Partition and Buckets 

� Slicing 

� Column Generalization 

� Matching Buckets 

a. Slicing Formalization and Analysis 

Table 1 shows an example microdata table and its 

anonymized versions using various anonymization 

techniques. The original table is shown in Table 1(a). The 

three QI attributes are {Age, Sex, Zipcode}, and the sensitive 

attribute SA is Disease. A generalized table that satisfies 3 -

anonymity is shown in Table 1(b), a bucketized table that 

satisfies 3-diversity is shown in Table 1(c), and sliced table is 

shown in Table 1(d). First the attributes are partitioned into 

columns. The column contains subset of attributes to 

vertically partition the table. Example, the sliced table in 

Table 1(d) contains 2 columns: the first column contains 

{Age, Sex} and the second column contains {Zipcode, 

Disease}. 

Slicing partitions the tuples into buckets. Each bucket 

contains a subset of tuples to horizontally partition the table. 

Sliced table in Table 1(d) contain 2 buckets, each containing 

3 tuples. Within each bucket, values in each column are 

randomly permutated to break the linking between different 

columns. Example in the first bucket of the sliced table 

shown in Table 1(d), the values {(25, M), (32, F), (40, F)} are 

randomly permutated and the values {(600016, ulcer), 

(6000116, cholera), (47905, cancer)} are randomly 

permutated so that the linking between the two columns 

within one bucket is hidden. Overlapped sliced table in Table 

1 contains 2 buckets. Horizontal partitioning is done by 

duplicating the attributes in more than column so that the 

cross correlation between each column is break. In the first 

bucket of overlapped sliced table the original attribute in first 

column contains original values. The duplicate of the same 

attribute in the next column contains randomly permutated 

value. For example the first bucket in table 1.e values of the 

attribute sex {(25,F), (40,M), (32,F)} contains original 

values. In the nextcolumn duplicate attribute sex contains 

values {(F, 600017), (F, 600016), (M, 600017)} are randomly 

permutated. 

b. Methodology 

The key intuition that slicing provides privacy protection is 

that the slicing process ensures that for any tuple, there are 

generally multiple matching buckets. Slicing first partitions 

attributes into columns. Each column contains a subset of 

attributes. Slicing also partition tuples into buckets. Each 

bucket contains a subset of tuples. This horizontally 

partitions the table. Within each bucket, values in each 

column are randomly permutated to break the linking 

between different columns. This algorithm consists of three 

phases: attribute partitioning, column generalization, and 

tuple partitioning. 

6. Attribute Disclosure Protection 

Based on the privacy requirement of ℓ-diversity slicing 

prevent attribute disclosure. We first give an example 

illustrating how slicing satisfies ℓ-diversity where the 

sensitive attribute is “Disease”. 

Real table on database:- 
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Figure 3. Real Table image on Database. 

Table 1. Original/Anonymous Tables (Example of 

Generalization/Bucketization/Slicing). 

a. Original Table 

AGE SEX ZIPCODE DISEASE 

25 F 600016 Ulcer 

32 F 600016 Cholera 

40 F 600017 Cancer 

49 M 600108 Cholera 

57 M 600108 Flu 

64 F 600093 Cancer 

b. Generalized Table 

AGE SEX ZIPCODE DISEASE 

[25-40] * 60001* Ulcer 

[25-40] * 60001* Cholera 

[25-40] * 60001* Cancer 

[45-64] * 60010* Cholera 

[45-64] * 60010* Flu 

[45-64] * 60009* Cancer 

c. Bucketized Table 

AGE SEX ZIPCODE DISEASE 

25 F 600016 Cancer 

32 F 600016 Ulcer 

40 F 600017 Cholera 

49 M 600108 Cancer 

57 M 600108 Cholera 

64 F 600093 Flu 

d. Sliced Table 

(AGE,SEX) (ZIPCODE,DISEASE) 

(25,M) (600016,cholera) 

(32,F) (600016,cancer) 

(40,F) (600017,ulcer) 

(49,M) (600093,cancer) 

(57,M) (600108,flu) 

(64,M) (600108,cholera) 

e. Overlapped Sliced table 

(AGE,SEX) (SEX,ZIPCODE) (ZIPCODE,DISEASE) 

(25,M) (F,600017) (600016,cholera) 

(40,M) (F,600016) (600017,ulcer) 

(32,F) (M,600016) (600016,cancer) 

(57,F) (M,600093) (600108,flu) 

(64,M) (F,600108) (600093,cancer) 

(49,M) (M,600108) (600108,cholera) 

The sliced table shown in Table 1(d) satisfies 2-diversity. 

Consider tuple t1 with QI values (22, M, 60016). In order to 

determine t1’s sensitive value, one has to examine t1’s 

matching buckets. By examining the first column (Age, Sex) 

in Table 1(d), we know that t1 must be in the first bucket B1 

because there are no matches of (22, M) in bucket B2. 

Therefore, one can conclude that t1 cannot be in bucket B2 

and t1must be in bucket B1. Then, by examining the Zipcode 

attribute of the second column (Zipcode, Disease) in bucket 

B1. we know that the column value for t1 must be either 

(600016, cancer) or (600016, cholera) because they are the 

only values that match t1’s zipcode 600017. Note that the 

other two column values have zipcode 600016. Without 

additional knowledge, both cholera and flu are equally 

possible to be the sensitive value of t1. Therefore, the 

probability of learning the correct sensitive value of t1 is 

bounded by 0.5. Similarly, we can verify that 2-diversity is 

satisfied for all other tuples in Table 1(d). 

 

Figure 4. Tuple-partition algorithm. 

The algorithm maintains two data structures: 

1) a queue of buckets Q and 

2) a set of sliced buckets SB. In the starting Q contains 

only one bucket which includes all tuples and SB is 

empty (line 1). 

In each iteration (lines 2 to7), the algorithm removes a 

bucket from Q and splits the bucket into two buckets. If the 

sliced table after the split satisfies l-diversity (line 5), then 

the algorithm puts the two buckets at the end of the queue Q 

(for more splits, line 6). Otherwise, we cannot split the 

bucket anymore and the algorithm puts the bucket into SB 
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(line 7). When Q becomes empty, we have computed the 

sliced table. The set of sliced buckets is SB (line 8). The 

main part of the tuple-partition algorithm is to check whether 

a sliced table satisfies l-diversity (line 5). Figure. 2 gives a 

description of the diversity-check algorithm. For each tuple t 

the algorithm maintains a list of statistics L[t] about t’s 

matching buckets. 

7. Attribute Partitioning 

Highly correlated attributes are grouped together into one 

column in this attribute partitioning technique. There are 

three steps: 

� Equal Width Partitioning 

There are two types of attribute: continuous and 

categorical. So, in this step, continuous attribute are 

converted into categorical attribute. In equal width 

partitioning, we first divide the range into N intervals of 

equal size: uniform grid if A and B are the lowest and highest 

values of the attribute. Width of intervals will be W=(B-A)/N 

� Measures of Correlation 

Here, we calculate relation between two attributes. Let two 

attributes A₁ and A₂ with domains {V₁₁,V₁₂,……….V₁n₁} 

and {V₂₁,V₂₂,………V₂n₂} respectively. Their domain sizes 

are thus n₁ and n₂. Therefore, Mean square contingency 

coefficient formula is used. 

� Attribute Clustering 

In this step, k-medoid clustering algorithm is used to 

partition attribute into columns as follows:- 

The most common realization of k-medoid clustering is the 

Partitioning Around Medoids (PAM) algorithm: 

Algorithm 1.1 

1. Initialize: randomly select (without replacement) k of 

the n data points as the medoids 

2. Associate each data point to the closest medoid. 

("closest" here is defined using any valid distance 

metric, most commonly Euclidean distance, Manhattan 

distance or Minkowski distance) 

3. For each medoid m 

For each non-medoid data point o 

Swap m and o and compute the total cost of the 

configuration 

4. Select the configuration with the lowest cost. 

5. Repeat steps 2 to 4 until there is no change in the 

medoid. 

There can be a cluster based attribute slicing algorithm 

also as in existing systems, equal width discretization is used 

so it cannot handle skew data properly. So, to solve this 

problem, we proposed a new algorithm in proposed method, 

we use cluster based attribute algorithm for converting the 

continuous attribute into categorical attribute. This algorithm 

shows: 

Input: Vector of real valued data a=(a₁,a₂…….a₁₁) and 

number of clusters to be determined k. 

Goal: To find partition of data in k distinct clusters. 

Output: The set of cut points tₒ, t₁……...tk with 

tₒ<t₁<……..tn that defines discretization of adom(A). 

Algorithm 1.2 

1. Compute amax=max{a₁,a₂,…….an} and 

amin=min{a₁,a₂………..an} 

2. Choose the centres as the first k distinct values of the 

attribute A. 

3. Arrange them in increasing order i.e. 

c[1]<c[2]<………c[k]. 

4. Define boundary points bo=amin, 

bj = (c[j]+c[j+1]) /2 for j=1 to k-1, bk=amax 

5. Find the closest cluster to ai. 

6. Recompute the centres of the cluster as the average of 

the values in each cluster. 

7. Find the closest cluster to ai from the possible clusters 

{j-1,j,j+1} 

8. Determination of cut points:-tₒ = amin 

fori= 1to k-1 do 

ti=(c[i]+c[i+1]) /2 

9. end for 

10. tk=amax 

11. Apply formula of measures of correlation 

12. Apply attribute clustering algorithm 

13. Apply attribute partitioning algorithm 

Algorithm 1.3 

Data slicing (QI, SA, B) 

1. Add the Database T 

2. Q={T};DSB=¢; 

3. B, S={T*};QI={T-T*-key} 

4. While Q is not empty 

Split Q into buckets B 

If total no. of records are <=100 Add fake tuples Else No 

need to add fake tuples 

5. Q=Q- {B} 

6. Sanitization of tuples by rule based id 

7. Return DSB 

� Comparison with Bucketization 

To compare slicing with bucketization, we first note that 

bucketization can be viewed as a special case of slicing, 

where there are exactly two columns: one column contains 

only the SA, and the other contains all the QIs. The 

advantages of slicing over bucketization can be understood as 

follows. First, by partitioning attributes into more than two 

columns, slicing can be used to prevent membership 

disclosure. Our empirical evaluation on a real dataset shows 

that bucketization does not prevent membership disclosure. 

Second, unlike bucketization, which requires a clear 

separation of QI attributes and the sensitive attribute, 

slicingcan be used without such a separation. For dataset 

such as the census data, one often cannot clearly separate QIs 

from SAs because there is no single external public database 

that one can use to determine which attributes the adversary 

already knows. Slicing can be useful for such data. Finally, 

by allowing a column to contain both some QI attributes and 

the sensitive attribute, attribute correlations between the 

sensitive attribute and the QI attributes are preserved. For 

example, in table, Zipcode and Disease form one column, 

enabling inferences about their correlations. Attribute 
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correlations are important utility in data publishing. For 

workloads that consider attributes in isolation, one can 

simply publish two tables, one containing all QI attributes 

and one containing the sensitive attribute. 

8. Experimental Results Membership 

Disclosure Protection 

Slicing protects against membership disclosure. We 

introduce a novel technique called overlapping slicing. 

Overlapping slicing duplicates an attribute in more than one 

column. This releases more attribute correlations within each 

column. Overlapped sliced table in Table 1.e contains 2 

buckets. Horizontal partitioning is done by duplicating the 

attributes in more than column so that the cross correlation 

between each column is broke down. In the first bucket of 

overlapped sliced table the original attribute in first column 

contains original values. The duplicate of the same attribute in 

the next column contains randomly permutated value. Random 

permutation is implemented using Top-down refinement 

algorithm. For example the first bucket in Table 1.e values of 

the attribute sex {(25, F), (40, M), (32, F)} contains original 

values. In the next column duplicate attribute sex contains 

values {(F, 600017), (F, 600016), (M, 600017)} are randomly 

permutated. Let D be the set of tuples in the original data and 

let D1 be the set of tuples that are in the duplicate attribute. 

Example consider the tuples in the attribute (Age, Sex) as D 

the original attribute and tuples in the attribute (Sex, Zipcode) 

are fake tuple because the tuples in the attribute Sex are 

duplicate of the original attribute. Let Ds be the sliced data∈. 

Goal∈of membership disclosure is to determine whether t D 

or t D1. In order to distinguish tuples ∈ in D from tuples in D1, 

we examine their differences. If t D, t must have at least one 

matching buckets in Ds. To protect membership information, 

we must ensure that at least some tuples in D should also have 

matching buckets ∈. Otherwise, ∈ the adversary can 

differentiate between t D and t D 1 by examining the number of 

matching buckets. We call a tuple an original tuple if it is in D. 

We call a tuple a fake tuple if it is in D1 and it matches at least 

one bucket in the overlapped sliced data. 

When the number of fake tuples is 0, the membership 

information of every tuple can be determined. Membership 

information is protected because the adversary cannot 

distinguish original tuples from fake tuples. Slicing is an 

effective technique for membership disclosure protection. A 

sliced bucket of size k can potentially match kc tuples. The 

existence of such tuples in D 1 hides the membership 

information of tuples in D because when the adversary finds 

a matching bucket, she or he is not certain whether this tuple 

is in D or not. 

Our results show that, even when we do random grouping, 

many fake tuples have a large number of matching buckets. 

For example, for the OCC-7 dataset, for a small p = 100 and 

c = 2, there are 5325 fake tuples that have more than 20 

matching buckets; the number is 31452 for original tuples. 

The numbers are even closer for larger p and c values. This 

means that a larger bucket size and more columns provide 

better protection against membership disclosure. Although 

many fake tuples have a large number of matching buckets, 

in general, original tuples have more matching buckets than 

fake tuples. As we can see from the figures, a large fraction 

of original tuples have more than 20 matching buckets while 

only a small fraction of fake tuples have more than 20 tuples. 

This is mainly due to the fact that we use random grouping in 

the experiments. The results of random grouping are that the 

number of fake tuples is very large but most fake tuples have 

very few matching buckets. When we aim at protecting 

membership information, we can design more effective 

grouping algorithms to ensure better protection against 

membership disclosure. The design of tuple grouping 

algorithms is left to future work. 

9. Conclusion and Future Scope 

Slicing overcomes the limitations of generalization and 

bucketization and preserves better utility while protecting 

against privacy threats. We illustrated how to use slicing to 

prevent attribute disclosure and membership disclosure. 

Protection against membership disclosure also helps to 

protect against identity disclosure and attribute disclosure. It 

is in general hard to learn sensitive information about an 

individual if you don’t even know whether this individual’s 

record is in the data or not. The general methodology 

proposed by this work is that: before anonymizing the data, 

one can analyze the data characteristics and use these 

characteristics in data anonymization. The rationale is that 

one can design better data anonymization techniques when 

we know the data better. We show that attribute correlations 

can be used for privacy attacks. We have also shown that 

cluster based attribute slicing can also be done to achieve 

attribute partitioning. 

This work motivates several directions for future 

research. First, in this paper, we consider slicing where each 

attribute is in exactly one column. An extension is the 

notion of overlapping slicing, which duplicates an attribute 

in more than one columns. This releases more attribute 

correlations. For example, in Table 1(f), one could choose 

to include the Disease attribute also in the first column. 

That is, the two columns are {Age, Sex, Disease} and 

{Zipcode, Disease}. This could provide better data utility, 

but the privacy implications need to be carefully studied 

and understood. It is interesting to study the tradeoff 

between privacy and utility. 
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