

American Journal of Data Mining and Knowledge Discovery
2017; 2(2): 54-61
http://www.sciencepublishinggroup.com/j/ajdmkd
doi: 10.11648/j.ajdmkd.20170202.13

Efficient Anonymization Algorithms to Prevent Generalized
Losses and Membership Disclosure in Microdata

Shivani Rohilla
1, *

, Manish Bhardwaj
2

1Department of Computer Science and Engineering, HRIT, Ghaziabad, India
2Department of Computer Science and Engineering, SRM University, Modinagar, India

Email address:

shivani.engineer@gmail.com (S. Rohilla), aapkaapna13@gmail.com (M. Bhardwaj)
*Corresponding author

To cite this article:
Shivani Rohilla, Manish Bhardwaj. Efficient Anonymization Algorithms to Prevent Generalized Losses and Membership Disclosure in

Microdata. American Journal of Data Mining and Knowledge Discovery. Vol. 2, No. 2, 2017, pp. 54-61. doi: 10.11648/j.ajdmkd.20170202.13

Received: January 11, 2017; Accepted: January 25, 2017; Published: February 22, 2017

Abstract: Nowadays, data and knowledge extracted by data mining techniques represent a key asset driving research,

innovation, and policy-making activities. Many agencies and organizations have recognized the need of accelerating such

trends and are therefore willing to release the data they collected to other parties, for purposes such as research and the

formulation of public policies. However, the data publication processes are today still very difficult. Data often contains

personally identifiable information and therefore releasing such data may result privacy breaches, this is the case for the

examples of micro-data, e.g., census data and medical data. This thesis studies how we can publish and share micro data in

privacy-preserving manner. This present a next ensive study of this problem along three dimensions: Designing a simple,

intuitive, and robust privacy model, designing an effective anonymization technique that works on sparse and high-

dimensional data and developing a methodology for evaluating privacy and utility tradeoffs. Here, we present a novel

technique called slicing which partitions the data both horizontally and vertically. It preserves better data utility than

generalization and is more effective than bucketization in terms of sensitive attribute.

Keywords: Data Anonymization, Micro Data, PPDP, Slicing

1. Introduction

Data Anonymization is a technology that converts clear

text into a non-human readable form. Data anonymization

technique for privacy-preserving data publishing has received

a lot of attention in recent years. Detailed data (alsocalledas

micro-data) contains information about a person, a household

or an organization. Most popular anonymization techniques

are Generalization and Bucketization. There are number of

attributes in each record which canbecategorized as 1)

Identifiers such as Name or Social Security Number are the

attributes that can be uniquely identify the individuals. 2)

some attributes may be Sensitive Attributes (SAs) such as

diseasend salary and 3) some may be Quasi-Identifiers(QI)

such as pin code, age, and sex whose values, when taken

together, can potentially identify an individual. Data

anonymization enables the transfer of information acrossa

boundary, such as between two departments with in an

agency or between two agencies, while reducing the risk of

unintended disclosure, and in certain environment inamanner

that enables evaluation and analytics post-anonymization.

Figure 1. A Simple Model of PPDP.

2. Various Anonymization Techniques

Two widely studied data anonymization techniques are

generalization and bucketization. The main difference

55 Shivani Rohilla and Manish Bhardwaj: Efficient Anonymization Algorithms to Prevent Generalized
Losses and Membership Disclosure in Microdata

between the two anonymization techniques lie in that

bucketization does not generalize the QI attributes.

2.1. Generalization

Generalization is one of the commonly anonymized

approaches, which replaces quasi-identifier values with

values that are less-specific but semantically consistent.

Then, all quasi-identifier values in a group would be

generalized to the entire group extent in the QID space. If at

least two transactions in a group have distinct values in a

certain column (i.e. one contains an item and the other does

not), then all information about that item in the current group

is lost. The QID used in this process includes all possible

items in the log. Due to the high-dimensionality of the quasi-

identifier, with the number of possible items in the order of

thousands, it is likely that any generalization method would

incur extremely high information loss, rendering the data

useless. In order for generalization to be effective, records in

the same bucket must be close to each other so that

generalizing the records would not lose too much

information. However, in high-dimensional data, most data

points have similar distances with each other. To perform

data analysis or data miningtasks on the generalized table, the

data analyst has to make the uniform distribution assumption

that every value inageneralized interval/set is equally

possible, as no other distribution assumption can be justified.

This significantly reduces the data utility of the generalized

data. And also because each attribute is generalized

separately, correlations between different attributes are lost.

2.2. Bucketization

Bucketization is used to partition the tuples in T into

buckets, and then to separate the sensitive attributes from

then on-sensitive ones by randomly permuting the sensitive

attribute values within each bucket. The sanitized data then

consists of the buckets with permuted sensitive values. In this

paper, we use bucketization as a method of constructing the

published data from the original table T, although all our

results hold for full-domain generalization as well. We now

specify our notion of bucketization more formally.

Partitioning the tuples into buckets (i.e., horizontally partition

the tablet according to some scheme), and with in each

bucket, we apply an independent an domper mutation to the

column containing S values. The resulting e to buckets,

denoted by B, is the published. For example, if the

underlying tableis T, then the publisher might publish

bucketization B. Of course, foradded privacy, the publisher

can completely mask the identifying attribute (Name) and

may partially mask some of the othernon-sensitive attributes

(Age, Sex, Zipcode). While bucketization has better data

utility than generalization, it has several limitations. First,

bucketization does not prevent membership disclosure.

Because bucketization publishes the QI values in the

iroriginal forms, an adversary can findout whether an

individual has are cord in the published data ornot. 87

percent of the individuals in the United States can be

uniquely identified using only three attributes (Birthdate,

Sex, and Zipcode). A micro-data (e.g., census data) usually

contains many other attributes besides those three attributes.

This means that he membership information of most

individual scan be inferred from the bucketized table.

Second, bucketization requires a clear separation between

QIs and SAs. However, in many data sets, it is unclear which

attributes are QIs and which are SAs. Third, by separating the

sensitive attribute from the QI attributes, bucketization

breaks the attribute correlations between the QIs and the SAs.

Bucketization first partition stuples in the table in to buckets

and then separates the quasi identifiers with the sensitive

attribute by randomly permuting the sensitive attribute values

in each bucket. The anonymized data consist of asset of

buckets with permuted sensitive attribute values. There are

some principles of privacy preserving as follows:-

3. K-Anonymity

Samarati and Sweeney introduced k-anonymity as the

property that each record is indistinguishable with at least k-1

other records with respect to the quasi-identifier. In other

words, k-anonymity requires that each QI group contains at

least k records. k-anonymity is one of the most classic

models, which prevents joining attacks by generalizing or

suppressing portions of the released micro data so that no

individual can be uniquely distinguished from a group of size

k. k-Anonymity attributes are suppressed or generalized until

each row is identical with at least k-1 other rows.

3.1. K-Anonymity Using Generalization

The generalization hierarchy transforms the k-anonymity

problem into a partitioning problem. Specifically, this

approach consists of two steps. The first step is to find a

partitioning of the dimensional space, where n is the number

of attributes in the quasi identifier, such that each partition

contains at least k records. Then the records in each partition

are generalized so that they all share the same quasi-identifier

value. The generalization method substitutes the values of a

given attribute with more general values. Generalization can

be applied at the following levels:-

Figure 2. Privacy preserving model for microdata.

K-anonymity model for multiple sensitive attributes

mentioned that there are three kinds of information

disclosures:-

1) Identity Disclosure: When an individual is linked to a

particular record in the published data called as identity

disclosure.

2) Attribute Disclosure: When sensitive information

regarding individual is disclosed called as attribute

 American Journal of Data Mining and Knowledge Discovery 2017; 2(2): 54-61 56

disclosure.

3) Membership Disclosure: When information regarding

individual’s information belongs from data set is present

or not is disclosed is said to be membership disclosure.

3.2. Attacks on K-Anonymity

Here, we will study two attacks on k-anonymity: the

homogeneity attack and the background knowledge attack:-

1) Homogeneity Attack:

Sensitive information may be revealed based on the known

information if the non sensitive information of an individual

is known to the attacker. If there is no diversity in the

sensitive attributes for a particular block then it occurs. To

get sensitive information, this method is also known as

positive disclosure.

2) Background Knowledge Attack:

If the user has some extra demographic information which

can be linked to the released data which helps in neglecting

some of the sensitive attributes, then some sensitive

information about an individual might be revealing

information. Such a method of revealing information is

known as negative disclosure.

3.3. Limitations of K-Anonymity

1) K-anonymity cannot hide whether a given individual is

in the database,

2) K-anonymity reveals individuals' sensitive attributes,

3) K-anonymity cannot protect against attacks based on

background knowledge,

4) Mere knowledge of the k-anonymization algorithm can

be violated by the privacy,

5) K-anonymity can notbe applied to high-dimensional

data without complete loss of utility.

4. ℓ-Diverse Slicing

In the example given below, tuple t1 has only one

matching bucket. In general, a tuple t can have multiple

matching buckets. We now extend the above analysis to the

general case and introduce the notion of ℓ-diverse slicing.

Consider an adversary who knows all the QI values of t and

attempts to infer t’s sensitive value from the sliced table. He

first needs to determine which buckets t may reside in, i.e.,

the set of matching buckets of t. Tuple t can be in any one of

its matching buckets. Let p(t,B) is the probability that t is in

bucket B (the procedure for computing p(t,B) will be

described later in this section). For example, in the above

example, p(t1,B1) = 1 and p(t1,B2) = 0. In the second step,

the adversary computes p(t, s), the probability that t takes a

sensitive value s. p(t, s) is calculated using the law of total

probability. Specifically, let p(s|t,B) be the probability that t

takes sensitive value s given that t is in bucket B, then

according to the law of total probability, the probability p(t,

s) is:

p(t, s) =∑b p(t,B)p(s|t,B) (1)

In the rest of this section, we will show how to compute

the two probabilities: p(t,B) an d p(s|t,B). Computing

p(t,B):Given a tuple t and a sliced bucket B, the probability

that t is in B depends on the fraction of t’s column values that

match the column values in B. If some column value of t

does not appear in the corresponding column of B, it is

certain that t is not in B. In general, bucket B can potentially

match |B|c tuples, where |B| is the number of tuples in B.

Without additional knowledge, one has to assume that the

column values are independent; therefore each of the |B|c

tuples is equally likely to be an original tuple. The

probability that t is in B depends on the fraction of the |B|c

tuples that match t.

We formalize the above analysis. We consider the match

between t’s column values {t[C 1], t[C2], · · ·, t[Cc]} and B’s

column values {B[C1],B[C2], · · ·,B[Cc]}. Let fi(t,B) (1 ≤ i ≤

c − 1) be the fraction of occurrences of t[Ci] in B[Ci] and let

fc(t,B) be the fraction of occurrences of t[Cc −{S}] in B[Cc −

{S}]). Note that, Cc − {S} is the set of QI attributes in the

sensitive column. For example, in Table, f1(t1,B1) = 1/4 =

0.25 and f2(t1,B1) = 2/4 = 0.5. Similarly, f1(t1,B2) = 0 and

f2(t1,B2) = 0. Intuitively, fi(t,B) measures the matching

degree on column Ci, between tuple t and bucket B. Because

each possible candidate tuple is equally likely to be an

original tuple, the matching degree between t and B is the

product of the matching degree on each column, i.e., f(t,B) =

Q1_i_c fi(t,B). Note that Ptf(t,B) = 1 and when B is not a

matching bucket of t, f(t,B) = 0. Tuple t may have multiple

matching buckets, t’s total matching degree in the whole data

is f(t) = PB f(t,B).

The probability that t is in bucket B is: p(t,B)

=f(t,B)/f(t)Computing p(s|t,B). Suppose that t is in bucket B,

to determine t’s sensitive value, one needs to examine the

sensitive column of bucket B. Since the sensitive column

contains the QI attributes, not all sensitive values can be t’s

sensitive value. Only those sensitive values whose QI values

match t’s QI values are t’scandidate sensitive values. Without

additional knowledge, all candidate sensitive values

(including duplicates) in a bucket are equally possible. Let

D(t,B) be the distribution of t’s candidate sensitive values in

bucket B.

Definition of (D(t,B)). Any sensitive value that is

associated with t[Cc − {S}] in B is a candidate sensitive

value for t (there are fc(t,B) candidate sensitive values for t in

B, including duplicates). Let D(t,B) be the distribution of the

candidate sensitive values in B and D(t,B)[s] be the

probability of the sensitive attributes in the distribution.

For example, in Table D (t1, B1) = (dyspepsia: 0.5, flu:

0.5) and therefore D (t1, B1) [dyspepsia] = 0.5. The

probability p(s|t,B) is exactly D(t,B)[s], i.e., p(s|t,B) =

D(t,B)[s]. ℓ-Diverse Slicing. Once we have computed p (t,B)

a nd p(s|t,B), we are able to compute the probability p(t, s)

based on the Equation(1). We can show when t is in the data,

the probabilities that t takes a sensitive value sum up to 1.

For any tuple t ∈ D, Ps p(t, s) = 1. ℓ-Diverse slicing is

defined based on the probability p(t,s). Definition for ℓ-

diverse slicing: A tuple t satisfies ℓ-diversity iff for any

57 Shivani Rohilla and Manish Bhardwaj: Efficient Anonymization Algorithms to Prevent Generalized
Losses and Membership Disclosure in Microdata

sensitive value s,p(t, s) ≤ 1/ℓ. A sliced table satisfies ℓ-

diversity iff every tuple in it satisfies ℓ-diversity.

In the above example, tuple t1 has only one matching

bucket. In general, a tuple t can have multiple matching

buckets. We now extend the above analysis to the general

case and introduce the notion of l-diverse slicing. Consider

an adversary who knows all the QI values of t and attempts to

infer t’s sensitive value from the sliced table. He first needs

to determine which buckets t may reside in, i.e., the set of

matching buckets of t. Tuple t can be in any one of its

matching buckets. Let p(t,B) be the probability that t is in

bucket B. For example, in the above example, p(t1,B1)=1

and p(t1,B1)=0. In the second step, the adversary computes

p(t,s), the probability that t takes a sensitive values. The

probability for p(t,s) is calculated using the law of total

probability. Let p(s|t,B) be the probability that t takes

sensitive value s given that t is in bucket B according to the

law of total probability, the probability p(t,s)is

P(t, s) =p(t,B)p(s|t,B)

Attacks on L-Diversity: In this section we will study two

attacks on l-diversity: the Skewness attack and the Similarity

attack:

1) Skewness Attack: l-diversity cannot prevent attribute

disclosure whenever the overall distribution is skewed

and satisfied.

2) Similarity Attack: When the sensitive attribute values

are distinct but also semantically similar, an adversary

can learn important information.

5. Slicing

Generally in privacy preserving, there is loss of security

due to the presence of the adversary’s background knowledge

in real life application. Data contains sensitive information

about individuals. These data when published violate the

privacy. The current practice in data publishing relies mainly

on policies and guidelines as to what types of data can be

published and on agreements on the use of published data.

The approach alone may lead to excessive data distortion or

insufficient protection. Privacy-preserving data publishing

(PPDP) provides methods and tools for publishing useful

information while preserving data privacy. Many algorithms

like bucketization, generalization have tried to preserve

privacy however they exhibit attribute disclosure. So to

overcome this problem an algorithm called slicing is used.

Slicing partitions the dataset both vertically and horizontally.

Slicing preserves better data utility than generalization and

can be used for membership disclosure protection. Here we

are using the following sub modules:

� Attribute partition and Columns

� Tuple Partition and Buckets

� Slicing

� Column Generalization

� Matching Buckets

a. Slicing Formalization and Analysis

Table 1 shows an example microdata table and its

anonymized versions using various anonymization

techniques. The original table is shown in Table 1(a). The

three QI attributes are {Age, Sex, Zipcode}, and the sensitive

attribute SA is Disease. A generalized table that satisfies 3 -

anonymity is shown in Table 1(b), a bucketized table that

satisfies 3-diversity is shown in Table 1(c), and sliced table is

shown in Table 1(d). First the attributes are partitioned into

columns. The column contains subset of attributes to

vertically partition the table. Example, the sliced table in

Table 1(d) contains 2 columns: the first column contains

{Age, Sex} and the second column contains {Zipcode,

Disease}.

Slicing partitions the tuples into buckets. Each bucket

contains a subset of tuples to horizontally partition the table.

Sliced table in Table 1(d) contain 2 buckets, each containing

3 tuples. Within each bucket, values in each column are

randomly permutated to break the linking between different

columns. Example in the first bucket of the sliced table

shown in Table 1(d), the values {(25, M), (32, F), (40, F)} are

randomly permutated and the values {(600016, ulcer),

(6000116, cholera), (47905, cancer)} are randomly

permutated so that the linking between the two columns

within one bucket is hidden. Overlapped sliced table in Table

1 contains 2 buckets. Horizontal partitioning is done by

duplicating the attributes in more than column so that the

cross correlation between each column is break. In the first

bucket of overlapped sliced table the original attribute in first

column contains original values. The duplicate of the same

attribute in the next column contains randomly permutated

value. For example the first bucket in table 1.e values of the

attribute sex {(25,F), (40,M), (32,F)} contains original

values. In the nextcolumn duplicate attribute sex contains

values {(F, 600017), (F, 600016), (M, 600017)} are randomly

permutated.

b. Methodology

The key intuition that slicing provides privacy protection is

that the slicing process ensures that for any tuple, there are

generally multiple matching buckets. Slicing first partitions

attributes into columns. Each column contains a subset of

attributes. Slicing also partition tuples into buckets. Each

bucket contains a subset of tuples. This horizontally

partitions the table. Within each bucket, values in each

column are randomly permutated to break the linking

between different columns. This algorithm consists of three

phases: attribute partitioning, column generalization, and

tuple partitioning.

6. Attribute Disclosure Protection

Based on the privacy requirement of ℓ-diversity slicing

prevent attribute disclosure. We first give an example

illustrating how slicing satisfies ℓ-diversity where the

sensitive attribute is “Disease”.

Real table on database:-

 American Journal of Data Mining and Knowledge Discovery 2017; 2(2): 54-61 58

Figure 3. Real Table image on Database.

Table 1. Original/Anonymous Tables (Example of

Generalization/Bucketization/Slicing).

a. Original Table

AGE SEX ZIPCODE DISEASE

25 F 600016 Ulcer

32 F 600016 Cholera

40 F 600017 Cancer

49 M 600108 Cholera

57 M 600108 Flu

64 F 600093 Cancer

b. Generalized Table

AGE SEX ZIPCODE DISEASE

[25-40] * 60001* Ulcer

[25-40] * 60001* Cholera

[25-40] * 60001* Cancer

[45-64] * 60010* Cholera

[45-64] * 60010* Flu

[45-64] * 60009* Cancer

c. Bucketized Table

AGE SEX ZIPCODE DISEASE

25 F 600016 Cancer

32 F 600016 Ulcer

40 F 600017 Cholera

49 M 600108 Cancer

57 M 600108 Cholera

64 F 600093 Flu

d. Sliced Table

(AGE,SEX) (ZIPCODE,DISEASE)

(25,M) (600016,cholera)

(32,F) (600016,cancer)

(40,F) (600017,ulcer)

(49,M) (600093,cancer)

(57,M) (600108,flu)

(64,M) (600108,cholera)

e. Overlapped Sliced table

(AGE,SEX) (SEX,ZIPCODE) (ZIPCODE,DISEASE)

(25,M) (F,600017) (600016,cholera)

(40,M) (F,600016) (600017,ulcer)

(32,F) (M,600016) (600016,cancer)

(57,F) (M,600093) (600108,flu)

(64,M) (F,600108) (600093,cancer)

(49,M) (M,600108) (600108,cholera)

The sliced table shown in Table 1(d) satisfies 2-diversity.

Consider tuple t1 with QI values (22, M, 60016). In order to

determine t1’s sensitive value, one has to examine t1’s

matching buckets. By examining the first column (Age, Sex)

in Table 1(d), we know that t1 must be in the first bucket B1

because there are no matches of (22, M) in bucket B2.

Therefore, one can conclude that t1 cannot be in bucket B2

and t1must be in bucket B1. Then, by examining the Zipcode

attribute of the second column (Zipcode, Disease) in bucket

B1. we know that the column value for t1 must be either

(600016, cancer) or (600016, cholera) because they are the

only values that match t1’s zipcode 600017. Note that the

other two column values have zipcode 600016. Without

additional knowledge, both cholera and flu are equally

possible to be the sensitive value of t1. Therefore, the

probability of learning the correct sensitive value of t1 is

bounded by 0.5. Similarly, we can verify that 2-diversity is

satisfied for all other tuples in Table 1(d).

Figure 4. Tuple-partition algorithm.

The algorithm maintains two data structures:

1) a queue of buckets Q and

2) a set of sliced buckets SB. In the starting Q contains

only one bucket which includes all tuples and SB is

empty (line 1).

In each iteration (lines 2 to7), the algorithm removes a

bucket from Q and splits the bucket into two buckets. If the

sliced table after the split satisfies l-diversity (line 5), then

the algorithm puts the two buckets at the end of the queue Q

(for more splits, line 6). Otherwise, we cannot split the

bucket anymore and the algorithm puts the bucket into SB

59 Shivani Rohilla and Manish Bhardwaj: Efficient Anonymization Algorithms to Prevent Generalized
Losses and Membership Disclosure in Microdata

(line 7). When Q becomes empty, we have computed the

sliced table. The set of sliced buckets is SB (line 8). The

main part of the tuple-partition algorithm is to check whether

a sliced table satisfies l-diversity (line 5). Figure. 2 gives a

description of the diversity-check algorithm. For each tuple t

the algorithm maintains a list of statistics L[t] about t’s

matching buckets.

7. Attribute Partitioning

Highly correlated attributes are grouped together into one

column in this attribute partitioning technique. There are

three steps:

� Equal Width Partitioning

There are two types of attribute: continuous and

categorical. So, in this step, continuous attribute are

converted into categorical attribute. In equal width

partitioning, we first divide the range into N intervals of

equal size: uniform grid if A and B are the lowest and highest

values of the attribute. Width of intervals will be W=(B-A)/N

� Measures of Correlation

Here, we calculate relation between two attributes. Let two

attributes A₁ and A₂ with domains {V₁₁,V₁₂,……….V₁n₁}

and {V₂₁,V₂₂,………V₂n₂} respectively. Their domain sizes

are thus n₁ and n₂. Therefore, Mean square contingency

coefficient formula is used.

� Attribute Clustering

In this step, k-medoid clustering algorithm is used to

partition attribute into columns as follows:-

The most common realization of k-medoid clustering is the

Partitioning Around Medoids (PAM) algorithm:

Algorithm 1.1

1. Initialize: randomly select (without replacement) k of

the n data points as the medoids

2. Associate each data point to the closest medoid.

("closest" here is defined using any valid distance

metric, most commonly Euclidean distance, Manhattan

distance or Minkowski distance)

3. For each medoid m

For each non-medoid data point o

Swap m and o and compute the total cost of the

configuration

4. Select the configuration with the lowest cost.

5. Repeat steps 2 to 4 until there is no change in the

medoid.

There can be a cluster based attribute slicing algorithm

also as in existing systems, equal width discretization is used

so it cannot handle skew data properly. So, to solve this

problem, we proposed a new algorithm in proposed method,

we use cluster based attribute algorithm for converting the

continuous attribute into categorical attribute. This algorithm

shows:

Input: Vector of real valued data a=(a₁,a₂…….a₁₁) and

number of clusters to be determined k.

Goal: To find partition of data in k distinct clusters.

Output: The set of cut points tₒ, t₁……...tk with

tₒ<t₁<……..tn that defines discretization of adom(A).

Algorithm 1.2

1. Compute amax=max{a₁,a₂,…….an} and

amin=min{a₁,a₂………..an}

2. Choose the centres as the first k distinct values of the

attribute A.

3. Arrange them in increasing order i.e.

c[1]<c[2]<………c[k].

4. Define boundary points bo=amin,

bj = (c[j]+c[j+1]) /2 for j=1 to k-1, bk=amax

5. Find the closest cluster to ai.

6. Recompute the centres of the cluster as the average of

the values in each cluster.

7. Find the closest cluster to ai from the possible clusters

{j-1,j,j+1}

8. Determination of cut points:-tₒ = amin

fori= 1to k-1 do

ti=(c[i]+c[i+1]) /2

9. end for

10. tk=amax

11. Apply formula of measures of correlation

12. Apply attribute clustering algorithm

13. Apply attribute partitioning algorithm

Algorithm 1.3

Data slicing (QI, SA, B)

1. Add the Database T

2. Q={T};DSB=¢;

3. B, S={T*};QI={T-T*-key}

4. While Q is not empty

Split Q into buckets B

If total no. of records are <=100 Add fake tuples Else No

need to add fake tuples

5. Q=Q- {B}

6. Sanitization of tuples by rule based id

7. Return DSB

� Comparison with Bucketization

To compare slicing with bucketization, we first note that

bucketization can be viewed as a special case of slicing,

where there are exactly two columns: one column contains

only the SA, and the other contains all the QIs. The

advantages of slicing over bucketization can be understood as

follows. First, by partitioning attributes into more than two

columns, slicing can be used to prevent membership

disclosure. Our empirical evaluation on a real dataset shows

that bucketization does not prevent membership disclosure.

Second, unlike bucketization, which requires a clear

separation of QI attributes and the sensitive attribute,

slicingcan be used without such a separation. For dataset

such as the census data, one often cannot clearly separate QIs

from SAs because there is no single external public database

that one can use to determine which attributes the adversary

already knows. Slicing can be useful for such data. Finally,

by allowing a column to contain both some QI attributes and

the sensitive attribute, attribute correlations between the

sensitive attribute and the QI attributes are preserved. For

example, in table, Zipcode and Disease form one column,

enabling inferences about their correlations. Attribute

 American Journal of Data Mining and Knowledge Discovery 2017; 2(2): 54-61 60

correlations are important utility in data publishing. For

workloads that consider attributes in isolation, one can

simply publish two tables, one containing all QI attributes

and one containing the sensitive attribute.

8. Experimental Results Membership

Disclosure Protection

Slicing protects against membership disclosure. We

introduce a novel technique called overlapping slicing.

Overlapping slicing duplicates an attribute in more than one

column. This releases more attribute correlations within each

column. Overlapped sliced table in Table 1.e contains 2

buckets. Horizontal partitioning is done by duplicating the

attributes in more than column so that the cross correlation

between each column is broke down. In the first bucket of

overlapped sliced table the original attribute in first column

contains original values. The duplicate of the same attribute in

the next column contains randomly permutated value. Random

permutation is implemented using Top-down refinement

algorithm. For example the first bucket in Table 1.e values of

the attribute sex {(25, F), (40, M), (32, F)} contains original

values. In the next column duplicate attribute sex contains

values {(F, 600017), (F, 600016), (M, 600017)} are randomly

permutated. Let D be the set of tuples in the original data and

let D1 be the set of tuples that are in the duplicate attribute.

Example consider the tuples in the attribute (Age, Sex) as D

the original attribute and tuples in the attribute (Sex, Zipcode)

are fake tuple because the tuples in the attribute Sex are

duplicate of the original attribute. Let Ds be the sliced data∈.

Goal∈of membership disclosure is to determine whether t D

or t D1. In order to distinguish tuples ∈ in D from tuples in D1,

we examine their differences. If t D, t must have at least one

matching buckets in Ds. To protect membership information,

we must ensure that at least some tuples in D should also have

matching buckets ∈. Otherwise, ∈ the adversary can

differentiate between t D and t D 1 by examining the number of

matching buckets. We call a tuple an original tuple if it is in D.

We call a tuple a fake tuple if it is in D1 and it matches at least

one bucket in the overlapped sliced data.

When the number of fake tuples is 0, the membership

information of every tuple can be determined. Membership

information is protected because the adversary cannot

distinguish original tuples from fake tuples. Slicing is an

effective technique for membership disclosure protection. A

sliced bucket of size k can potentially match kc tuples. The

existence of such tuples in D 1 hides the membership

information of tuples in D because when the adversary finds

a matching bucket, she or he is not certain whether this tuple

is in D or not.

Our results show that, even when we do random grouping,

many fake tuples have a large number of matching buckets.

For example, for the OCC-7 dataset, for a small p = 100 and

c = 2, there are 5325 fake tuples that have more than 20

matching buckets; the number is 31452 for original tuples.

The numbers are even closer for larger p and c values. This

means that a larger bucket size and more columns provide

better protection against membership disclosure. Although

many fake tuples have a large number of matching buckets,

in general, original tuples have more matching buckets than

fake tuples. As we can see from the figures, a large fraction

of original tuples have more than 20 matching buckets while

only a small fraction of fake tuples have more than 20 tuples.

This is mainly due to the fact that we use random grouping in

the experiments. The results of random grouping are that the

number of fake tuples is very large but most fake tuples have

very few matching buckets. When we aim at protecting

membership information, we can design more effective

grouping algorithms to ensure better protection against

membership disclosure. The design of tuple grouping

algorithms is left to future work.

9. Conclusion and Future Scope

Slicing overcomes the limitations of generalization and

bucketization and preserves better utility while protecting

against privacy threats. We illustrated how to use slicing to

prevent attribute disclosure and membership disclosure.

Protection against membership disclosure also helps to

protect against identity disclosure and attribute disclosure. It

is in general hard to learn sensitive information about an

individual if you don’t even know whether this individual’s

record is in the data or not. The general methodology

proposed by this work is that: before anonymizing the data,

one can analyze the data characteristics and use these

characteristics in data anonymization. The rationale is that

one can design better data anonymization techniques when

we know the data better. We show that attribute correlations

can be used for privacy attacks. We have also shown that

cluster based attribute slicing can also be done to achieve

attribute partitioning.

This work motivates several directions for future

research. First, in this paper, we consider slicing where each

attribute is in exactly one column. An extension is the

notion of overlapping slicing, which duplicates an attribute

in more than one columns. This releases more attribute

correlations. For example, in Table 1(f), one could choose

to include the Disease attribute also in the first column.

That is, the two columns are {Age, Sex, Disease} and

{Zipcode, Disease}. This could provide better data utility,

but the privacy implications need to be carefully studied

and understood. It is interesting to study the tradeoff

between privacy and utility.

References

[1] C. Aggarwal, "On k -Anonymity and the Curse of
Dimensionality," Proc. Int'l Conf. Very Large Data Bases
(VLDB), pp. 901-909, 2005.

[2] A. Blum, C. Dwork, F. McSherry, and K. Nissim, "Practical
Privacy: The SULQ Framework," Proc. ACM Symp.
Principles of Database Systems (PODS), pp. 128-138, 2005.

61 Shivani Rohilla and Manish Bhardwaj: Efficient Anonymization Algorithms to Prevent Generalized
Losses and Membership Disclosure in Microdata

[3] J. Brickell and V. Shmatikov, "The Cost of Privacy:
Destruction of Data-Mining Utility in Anonymized Data
Publishing," Proc. ACM SIGKDD Int'l Conf. Knowledge
Discovery and Data Mining (KDD), pp. 70-78, 2008.

[4] B.-C. Chen, K. LeFevre, and R. Ramakrishnan, "Privacy
Skyline: Privacy with Multidimensional Adversarial
Knowledge," Proc. Int'l Conf. Very Large Data Bases
(VLDB), pp. 770-781, 2007.

[5] H. Cramt'er, Mathematical Methods of Statistics. Princeton
Univ. Press, 1948.

[6] I. Dinur and K. Nissim, "Revealing Information while
Preserving Privacy," Proc. ACM Symp. Principles of Database
Systems (PODS), pp. 202-210, 2003.

[7] C. Dwork, "Differential Privacy," Proc. Int'l Colloquium
Automata, Languages and Programming (ICALP), pp. 1-12,
2006.

[8] C. Dwork, "Differential Privacy: A Survey of Results," Proc.
Fifth Int'l Conf. Theory and Applications of Models of
Computation (TAMC), pp. 1-19, 2008.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith, "Calibrating
Noise to Sensitivity in Private Data Analysis," Proc. Theory of
Cryptography Conf. (TCC), pp. 265-284, 2006.

[10] J. H. Friedman, J. L. Bentley, and R. A. Finkel, "An
Algorithm for Finding Best Matches in Logarithmic Expected
Time," ACM Trans. Math. Software, vol. 3, no. 3, pp. 209-
226, 1977.

[11] B. C. M. Fung, K. Wang, and P. S. Yu, "Top-Down
Specialization for Information and Privacy Preservation,"
Proc. Int'l Conf. Data Eng. (ICDE), pp. 205-216, 2005.

[12] G. Ghinita, Y. Tao, and P. Kalnis, "On the Anonymization of
Sparse High-Dimensional Data," Proc. IEEE 24th Int'l Conf.
Data Eng. (ICDE), pp. 715-724, 2008.

[13] Y. He and J. Naughton, "Anonymization of Set-Valued Data
via Top-Down, Local Generalization," Proc. Int'l Conf. Very
Large Data Bases (VLDB), pp. 934-945, 2009.

[14] A. Inan, M. Kantarcioglu, and E. Bertino, "Using Anonymized
Data for Classification," Proc. IEEE 25th Int'l Conf. Data Eng.
(ICDE), pp. 429-440, 2009.

[15] L. Kaufman and P. Rousueeuw, "Finding Groups in Data: An
Introduction to Cluster Analysis," John Wiley & Sons, 1990.

[16] D. Kifer and J. Gehrke, "Injecting Utility into Anonymized
Data Sets," Proc. ACM SIGMOD Int'l Conf. Management of
Data (SIGMOD), pp. 217-228, 2006.

[17] N. Koudas, D. Srivastava, T. Yu, and Q. Zhang, "Aggregate
Query Answering on Anonymized Tables," Proc. IEEE 23rd
Int'l Conf. Data Eng. (ICDE), pp. 116-125, 2007.

[18] K. LeFevre, D. DeWitt, and R. Ramakrishnan, "Incognito:
Efficient Full-Domain k -Anonymity," Proc. ACM
SIGMOD Int'l Conf. Management of Data (SIGMOD), pp.
49-60, 2005.

[19] K. LeFevre, D. DeWitt, and R. Ramakrishnan, "Mondrian
Multidimensional k -Anonymity," Proc. Int'l Conf. Data
Eng. (ICDE), p. 25, 2006.

[20] K. LeFevre, D. DeWitt, and R. Ramakrishnan, "Workload-
Aware Anonymization," Proc. ACM SIGKDD Int'l Conf.

Knowledge Discovery and Data Mining (KDD), pp. 277-286,
2006.

[21] N. Li, T. Li, and S. Venkatasubramanian, "t -Closeness:
Privacy Beyond k -Anonymity and ℓ -Diversity," Proc.
IEEE 23rd Int'l Conf. Data Eng. (ICDE), pp. 106-115, 2007.

[22] T. Li and N. Li, "Injector: Mining Background Knowledge for
Data Anonymization," Proc. IEEE 24th Int'l Conf. Data Eng.
(ICDE), pp. 446-455, 2008.

[23] T. Li and N. Li, "On the Tradeoff between Privacy and Utility
in Data Publishing," Proc. ACM SIGKDD Int'l Conf.
Knowledge Discovery and Data Mining (KDD), pp. 517-526,
2009.

[24] T. Li, N. Li, and J. Zhang, "Modeling and Integrating
Background Knowledge in Data Anonymization," Proc. IEEE
25th Int'l Conf. Data Eng. (ICDE), pp. 6-17, 2009.

[25] A. Machanavajjhala, J. Gehrke, D. Kifer, and M.
Venkitasubramaniam, "ℓ -Diversity: Privacy Beyond
k -Anonymity," Proc. Int'l Conf. Data Eng. (ICDE), p. 24,
2006.

[26] D. J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and J.
Y. Halpern, "Worst-Case Background Knowledge for Privacy-
Preserving Data Publishing," Proc. IEEE 23rd Int'l Conf. Data
Eng. (ICDE), pp. 126-135, 2007.

[27] M. E. Nergiz, M. Atzori, and C. Clifton, "Hiding the Presence
of Individuals from Shared Databases," Proc. ACM SIGMOD
Int'l Conf. Management of Data (SIGMOD), pp. 665-676,
2007.

[28] P. Samarati, "Protecting Respondent's Privacy in Microdata
Release," IEEE Trans. Knowledge and Data Eng., vol. 13, no.
6, pp. 1010-1027, Nov./Dec. 2001.

[29] L. Sweeney, "Achieving k -Anonymity Privacy Protection
Using Generalization and Suppression," Int'l J. Uncertainty
Fuzziness and Knowledge-Based Systems, vol. 10, no. 6, pp.
571-588, 2002.

[30] L. Sweeney, "k -Anonymity: A Model for Protecting
Privacy," Int'l J. Uncertainty Fuzziness and Knowledge-Based
Systems, vol. 10, no. 5, pp. 557-570, 2002.

[31] M. Terrovitis, N. Mamoulis, and P. Kalnis, "Privacy-
Preserving Anonymization of Set-Valued Data," Proc. Int'l
Conf. Very Large Data Bases (VLDB), pp. 115-125, 2008.

[32] R.C.-W. Wong, A.W.-C. Fu, K. Wang, and J. Pei, "Minimality
Attack in Privacy Preserving Data Publishing," Proc. Int'l
Conf. Very Large Data Bases (VLDB), pp. 543-554, 2007.

[33] R.C.-W. Wong, J. Li, A.W.-C. Fu, and K. Wang, "(α,
k)-Anonymity: An Enhanced k -Anonymity Model for
Privacy Preserving Data Publishing," Proc. ACM SIGKDD
Int'l Conf. Knowledge Discovery and Data Mining (KDD),
pp. 754-759, 2006.

[34] X. Xiao and Y. Tao, "Anatomy: Simple and Effective Privacy
Preservation," Proc. Int'l Conf. Very Large Data Bases
(VLDB), pp. 139-150, 2006.

[35] Y. Xu, K. Wang, A.W.-C. Fu, and P. S. Yu, "Anonymizing
Transaction Databases for Publication," Proc. ACM SIGKDD
Int'l Conf. Knowledge Discovery and Data Mining (KDD),
pp. 767-775, 2008.

