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Abstract: A recent computational study has found unique zones of stability behaviour in elastic High-strength steel tubes 
under global bending with different geometrical lengths. A situation under which the most compressed fiber approaches the 
buckling stress for uniform axial compression is the initial estimation of elastic buckling strength in bending. Cylinders with 
sufficient length develop a fully developed ovalization of the cross-section and fail by local buckling around the Brazier 
prediction. Under global bending regimes, typical buckles are fairly modest and extend across a very tiny region, accompanied 
by global bending extending the crucial value. The situation under which the major compressed fiber approaches the buckling 
stress for compression bending is the initial estimate of the elastic buckling strength in bending. In this study, the nonlinear 
behavior of short to long tubes under global bending is studied, with specific and different dimensions, radius-to-thickness ratios, 
and boundary conditions according to Europe an Standard 1993-1-6. Both the crucial buckling Eigenmode and the geometrically 
nonlinear elastic analysis are investigated. Because of a buckling stress state dominated by local harmony bending, it is 
confirmed that the cylinder length takes part in a crucial part in finding this behavior. A failure behavior of this type of material is 
then going to be investigated. 
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1. Introduction 

Structural steel was first used in the nineteenth century, then 
some tubes under global bending were also studied [1-4]. 
Because of its high strength, stable material properties, and 
rapid, high-quality construction, its potential as a structural 
material was quickly recognized [5]. The minimum yield 
strength for structural steel grades was 220 N/mm2 for bridges 
and 240 N/mm2 for buildings [6]. The growing market needs 
to be combined with advances in materials science led to the 
introduction of higher strength structural steels in the 
construction industry. The steel industry has developed 
structural steels with yield strengths exceeding 690 N/mm

2, 
commonly referred to as high-strength steels (HSS). 

This problem has been the subject of detailed analytical 
treatments for more than a century. In fact, were among the 
first to investigate the nonlinear behavior of long tiny-walled 
circular cross-sectionals in bending to describe how classic 
linear beam theory wasn’t able to reproduce the occurrence of 
ovalization [7, 8]. 

Brazier's simple analysis, which used an extremely long 
cylinder as a structural member including a presumed 
nonlinear displacement field, has demonstrated that gradual 
ovalization of the cross-sectional under deformation led 
directly to a boundary point destabilization at a crucial value, 
today identified as the Brazier moment. 

Seide and Weingarten's crucial bending moment for short 
tubes with minor ovalization is about double Brazier's 
maximum bending moment for an endlessly long cylindrical 
shell with Brazier ovalization of the cross-section [9]. 
Therefore, with in case of medium long tubes, the structure's 
reaction comprises a combination of ovalization and 
bifurcation instability. The degree of ovalization of the 
cross-section grows with increasing length, but the Brazier 
critical ovalization is not reached, and the elastic critical 
bending moment decreases slowly towards the value 
corresponding to an infinitely long cylinder. Lot of study has 
already been introduced on the connection between the 
ovalization instability and the bifurcation instability for 
cylindrical shells in bending. Axelrad first viewed the 
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interaction of the two kinds of instability [10] mentioned 
above, and then introduced the effect of ovalization as a 
pre-buckling deformation on local buckling. Local buckling 
was expected to occur when the maximum compressive stress 
at the most compressed fibres achieved the critical point for 
uniform compressed tubes with a radius equivalent to the 
global radius of the ovalized shell at the "crucial" point. 

The ABAQUS fine elements program was used in this study to 
compute and extract results for the analysis on different lengths, 
and to examine the numerical nonlinear stability analysis of elastic 
strength steel tubes under global bending's behavior. 

2. Analysis and Numerical Result 

2.1. Geometrical, Load, and Material Properties 

All incrementations and calculations analyses were 
elaborated through ABAQUS finite analysis software [11]. 
Because it is difficult to define the post-buckling deformed 
shape in a unique and repeatable manner according to its 
form changes progressively, different geometries were used 
with radius to thickness ratios with the range of R/t=10~500, 
and the length to radius ratios and a thickness of 1mm 
throughout the work [12, 13]. 

To better compare results, similar boundary conditions 
were applied to both shell ends in all analyses. The axial 
translational degrees of freedom and the global rotational 
degrees of freedom were both unconstrained, while all other 
degrees of freedom were unconstrained. Due to symmetry, 
the whole shell model was used and the boundary conditions 
were set at two edges of the shell. 

This research focuses on the strength of perfectly elastic 
cylinders subjected to global bending but also his stability. To 
reach our goal, the linear buckling mode analyses (LBA) for 
appropriate structures were first performed to obtain the 
reference buckling moment MLBA. 

The MLBA was then imposed at both ends to perform 
geometric nonlinear analysis (GNA) to determine the 
bifurcation and the limit load point for the perfect structure. 

The first dimensionless reference moment was normalized by 

1 / /GNA LBA crk M M M M= =         (1) 

The Brazier ovalization limit moment is expressed as: 
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The crucial elastic bending moment is expressed as: 
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Then the second reference dimensionless moment was 
normalized by 

2 / /GNA Braz Brazk M M M M= =        (4) 

Dimensionless length are both expressed as: 

1/2 3/2/Lt rΩ =                   (5) 

/L rtω =                    (6) 

With r as radius, t as thickness, E as modulus of elasticity, L 
as length and ν as Poisson’s ratio [4, 13, 14]. The shell has 
been made of an isotropic material with E=2.0E5 MPa and 
ν=0.235. 

2.2. Model of Shell Elements 

The general S4R5 element was used. To capture the local 
bending and buckling modes, a finite element with element 
size of 0.25 Rt  length elements only was used [15]. 

 

Figure 1. The mesh division of cylindrical shell. 

2.3. Buckling Strength Predictions 

Here are studied tubes with a constant r/t = 10 with various 
linear measure. The dimensionless moment-curvature curves 
for tubes with the same ratio r/t = 10 are visible in Figure 2. 
The value of the moment in Figure 2a is normalized by Mcr 
(Eq. (7)) as k1 = M/Mcr. The curvature is expressed as k = 

φ/φcr, whit φ as the main curvature along the tube and φcr is 
obtained based on the linear bending theory: 
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Regarding very tiny tubes (L/r = 1.2), the buckle is well 
restrained by the boundary conditions at two ends, and the 
crucial bending moment may exceed Mcr, and the 
dimensionless moment parameter m can reach a large value at 
the limit point. 

When L/r becomes bigger, as L/R=1.55 and 2 for instance, 
bifurcation buckling occurs at a moment of 0.94 Mcr and 0.81 
Mcr individually. The strength is limited by bifurcation 
buckling with a steep post-buckling fall, quickly followed by a 
recovery (in Figure 2a). The value of the limit moment is close 
to Mcr, suggesting that the critical bending stress for a 
cylinder under a uniform bending moment is close to the 
crucial stress for a tube. The buckling strength is unaffected by 
the border condition. According to linear bending theory, the 
curvature at the critical load is the same. According to Seide 
and Weingarten's approach, the critical bending moment for a 
tube with dimensional characteristics in a proper scope may be 
approximated. With a gradual increase of L/r (Figure 2a), the 
crucial bending moment appear to be less compare to Mcr, 
suggesting that the ovalization of the cross-sectional begins to 
considerably impact the buckling strength. Because of that 
ovalization, the local radius of curvature of the material 
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increases, as a result of a decrease in critical bending moment. 

 

(a) 

 

(b) 

Figure 2. Dimensionless moment curvature-curves (R/t=10). 

As L/r increases, the impact of ovalization of 
cross-sectional on the buckling strength becomes much 
valuable. The buckling behavior is a coupling among the 
ovalization of the cross-sectional and the formation of 
thin-wavelength bifurcation buckles. For bigger values of L/r, 
bifurcation buckling yields a more abrupt post-buckling falls 
(Figure 5), and determining that the post-buckling way is far 
more difficult to detect. While L/r ‘s value is more sufficient 
(Figure 3), the crucial bending moment is extremely near to an 
extremely long tube.. The bifurcation buckling point appears 
right before the snap-through buckling point in these cylinders. 
Buckling happens relatively locally, and the buckle's half 
wavelength is rather short, making the post-buckling path 
difficult to follow. The same moment-curvature curves can 
alternatively be shown in Figure 2b. Here the value of the 
moment is normalized by the Brazier moment as k2 (Eq. (4)). 
The curvature is normalized as k’=φ /φBraz, where φBraz is 
When MBraz is achieved, the curvature is obtained using the 

linear bending hypothesis as: 
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According to Figure 2b, at the moment k2 almost equal to 1, 
meaning critical moment approaches MBraz and so the 
bifurcation buckling occurs with Brazier critical ovalization of 
the cross-section. When k2 > 1, it means the critical moment is 
larger than the Brazier moment due to the restraint of 
ovalization by the boundary conditions. It can also be noted 
that for long cylinders with Brazier critical ovalization, the 
dimensionless curvature k' at critical load is larger than 1, 
which is due to the reduced tangential modulus during 
deformation caused by geometric nonlinearity, but φBraz is 
obtained regarding the linear bending hypothesis. 

 

Figure 3. The buckling mode for short cylindrical shells. 

 

Figure 4. The buckling mode for medium long cylindrical shells L/R=5. 

 

Figure 5. The buckling mode for long cylindrical shells L/R=18. 

2.4. Maximum Critical Bending Moment Prediction 

The results of this method are shown in Figures 6 and 7. The 
results can be divided into a range. When the shell is relatively 
short, there is minimal ovalization of the shells as the bending 
moment increases, and there is local buckling at the end. The 
shorter the shell, the easier it is for local buckling to occur. 

As a result, the dimensionless moment k1 decreases as the 
shell length increases to the extent shown in Figure 6. When 
the radius shrinks, the dimensionless moment also decreases. 
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Figure 3 shows the buckling mode when the shell is relatively 
short. 

 

Figure 6. Relation between dimensionless moment k1 and dimensionless 

length. 

 

Figure 7. Relation between dimensionless moment k2 and dimensionless 

length. 

The ovalization and buckling of the shell both have an 
effect on critical strength. With increasing length, the 
ovalization rises at the point of local buckling, and the 
boundary moment gradually shifts toward the Brazier 
moment. The local buckling point is moved to the shell's 
center. Buckling strength is reduced when the shell is very 
thick, for example, R/t=10 and 50, but almost the same when 
R/t is equal to 200 and 500 (maybe longer). Figure 4. depicts 
a buckling mode for medium-length shells. 

Finally, the limiting moment slowly decreases toward a 
minimum value. When the shell is longer than the limiting 
moment, the dimensionless moment becomes somewhat 
longer owing to the change in buckling mode and the local 
buckling point is shifted from the center of the shell to the two 
ends. The thinner shells have a lower buckling strength rating. 
The buckling mode for long shells is illustrated in Figure 5. 

Figure 6 describes the connection and the behaviour among 
the dimensionless crucial moment k1 and dimensionless length 
for medium and long tubes. A mixture of ovalization and 
bifurcation uncertainty happens in a range of 0.5 ≤ Ω ≤ 1 on 
R/t=10. With increasing Ω, the elastic critical moment 
decreases progressively, and the number of ovalization of the 
cross-sectional in the region where the buckle occurs as well. 
The crucial moment decreases continuously as Ω increases 
towards a persistent value to an indefinitely long cylinder. 
Meanwhile, at R/t=50, the same range is constant. 

At the critical bending moment, the limit among 
medium-length tubes with incomplete ovalization of the 
cross-section and long tubes with Brazier crucial ovalization of 
cross-sectional can be defined approximately at 0≤ Ω ≤ 0.1 for 
R/t =200 and 500, then at 0.1≤ Ω ≤ 0.2 for R/t=50, and Ω= 0.5 
for R/t =10. Details of the curves are illustrated in Figure 7, 
where k2 replaces the dimensionless moment parameter k1. For 
long tubes with Brazier crucial ovalization, k2’s value is less 
than 2.1, suggesting that the Mcr is somewhat small compare to 
MBraz. The dimensionless moment k2 with Brazier critical 
ovalization stabilizes between 1.7 and 1.9 for R/t ≥ 50. 
Comparable number for thicker tubes is somewhat less than 
1.5 (1.42 for R/t =10). This is because of two factors; Firstly, 
the MGNA determined is the crucial value at the bifurcation 
buckling point, which usually happens after MBraz. Secondly, k2 
is a bit affected by R/t. It is actually because of the influence of 
geometrical nonlinearity in the pre-buckling stage which varies 
somewhat with R/t. 

The bending effect towards the ends soon decays with a 
minor increase in L/R (Figure 3b). The most compressed 
fiber is at the center of the material, resulting in local 
bifurcation buckling, which influences the buckle behavior. 
However, the half wavelength of the axial buckling remains 
lengthy, and bifurcation buckling is still limited by the 
boundaries. The buckling stress necessite to generate an axial 
compressive buckle which is a little more than the normal 
value for medium-length tubes under pure bending that is self 
reliant of the boundary conditions. The center of the shell 
experiences bifurcation buckling for L/R=2.6. 

 

(a) 
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(b) 

Figure 8. Relationship between the dimensionless moment k1 (a) then k2 (b) 

and the length parameter ω. 

Figure 8 illustrate the details for short cylinders. When the 
extent lengthwise is represented according to the dimensionless 
length parameter ω, the relation of the critical moment-length 
curves for short cylinders with varied r/t values are similar. k1 
and k2’s value grow rapidly with decreasing length for 
exceedingly short cylinders. This is due to the limits 
considerably restricting the buckling formations on the tubes, 
hence increasing the crucial bending moment dramatically. 

When the tube’s extend lengthwise is not too tiny then falls 
into an average range, k1’s value approaches one, indicating 
that the geometrical nonlinear elastic analysis critical bending 
moment is near Mcr (critical buckling moment) [16]. In this 
analysis, cylinders with a range of 100<r/t<1000 were 
examined and the conclusion that the essential bending stress 
for quite tiny cylinders is not more than 10% more than that 
for pure compression was made. 

The fluctuating connection among the size of the 
cylindrical shell and the wavelength’s buckle is responsible 
for this phenomenon. Most values of k1 are significantly less 
than 1 for thin cylindrical shell with r/t≥50 on an interval of 6< 
ω < 10 (Figure 8a). This decrease is due to the minor effect of 
geometric nonlinearity generated by bending on the buckling 
strength MGNA because Mcr is computed using the linear 
bending theory of shells without taking geometric nonlinearity 
into account. As L/r increases, the value at which the 
ovalization of the cross-section begins to affect buckling 
behavior varies according to r/t. 

From a fairly modest value of ω on short tubes with r/t =10, 
the buckling strength start changing. The value of ω where the 
oval distortion begins to impact on the buckling behavior of 
tubes subjected to global bending is specified here as a border 
among tiny and medium extent lengthwise tubes. 

3. Conclusion 

The numerical nonlinear stability analysis of elastic 

strength steel tubes under global bending with various 
dimension was investigated. And we realized that in the tiny 
tubes mostly in their center, some bifurcation occurred more 
on the bending location. We also observed negligible 
ovalization, and GNA analysis critical bending moment is 
near to Mcr. Because of the constraint provided by the 
boundary conditions, local snap-through buckling along the 
borders occurs for extremely short cylinders, causing the 
critical bending moment to climb to several times Mcr. Then 
for medium-length tubes, it was observed that both 
ovalization and bifurcation instability occurred. The 
importance of cross-sectional ovalization should be stressed 
since its result could be significant to a reduction in elastic 
buckling stress under values of homogeneous axial 
compression. Longer tubes exhibit more evident ovalization 
during pre-buckling stage, resulting in an interesting 
depletion in critical bending moment. Bifurcation buckling 
occurs soon before snap-through buckling in long tubes, and 
the two buckling points are nearly indistinguishable. With 
Brazier critical ovalization of the cross sectional, the critical 
moment is 64, which is almost equivalent to the Brazier 
moment. 
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