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Abstract: The convergence of numerical solution based on two nodded beam finite element require considerable number of 

iterations and time; and is also plagued with shear locking. To address these deficiencies a three nodded beam element is 

proposed in this study to simulate the behavior of beams on elastic foundation. The analytical formulation of the model and 

development of shape functions are achieved with assumption of Winkler hypothesis for beam on elastic foundation A Matlab 

programme was developed to determine the combined beam and foundation stiffness as well as the load vector. The proposed 

model reliably simulates the deformations and stress resultants of beam on elastic foundation under general loading conditions. 

The result showed faster convergence devoid of shear locking. The maximum deflection and bending moment differ from the 

classical solution by about 5 percent.  
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1.    Introduction 

Recent environmental changes have resulted in frequent 

flooding of towns and cities, hurricanes, tsunamis, landslides 

and earthquakes etc around the world with attendant damages 

to infrastructure, causing economic damages as well as 

displacement of persons. One of the effects of such incidents 

is the distortion of the original stability of the foundation 

supporting structures. Most structures subject to these kinds 

of loading rely on raft and pile foundations for which the 

fundamental principle of analysis is based on the beam of 

elastic foundation. Beams on elastic foundation enjoy wide 

application in the field of railway engineering, harbor works, 

building frames and constructions, buried gas pipeline 

systems, machine foundation among others. Therefore, to 

reduce the economic impact of failures and collapses on 

investment, there is need for continuous improvement in 

solutions for the analysis and design of beams of elastic 

foundation.  

The problem of beam on elastic foundation has been 

treated by many authors, including [1-7] and [8] among 

others. However, analytical solutions are appropriate only for 

a few cases of beams with simple geometry and loading. For 

other more realistic cases, the finite element method provides 

better solutions [9]. These numerous studies have shown that 

the stiffness of the beam and elasticity of the foundation 

depend largely on the modulus of the foundation soil which 

is modeled as a great number of springs such that the 

foundation reaction is directly proportional to local 

deflection of the beam.  

 A review of numerical methods for solution of beams and 

frames on elastic foundation subjected to static load using a 

linear element (two nodded element) is presented in [10]. 

Earlier, Hudson and Hutchinson had suggested that elastic 

foundation can be approximated by springs of equal stiffness, 

making it possible to account for system nonlinearities and to 

model and solve the practical soil-structure interaction 

problem [11] 

From the above, it is clear that the simulation of the 

behavior of the beam on elastic foundation critically depends 

on the accuracy of determination of the deflection of the 

foundation structure. From simple beam theory the elastic 

curve is at least a parabola of the second order, which will 

require at least three points to plot. Incidentally, numerical 

solutions have always been considered for a two nodded 
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beam (first order linear element) having its shape function 

defined by a third degree polynomial in a bid to achieve 

convergence. It is clear that such an element can only 

produce a segmented line representation of the elastic curve 

and will therefore rely on a great number of elements for 

convergence. To improve on the performance of the two 

nodded element, higher order interpolation functions have 

been suggested. The application of these functions in terms 

of equal order polynomials resulted to shear locking [12]. 

Several attempts to solving this problem include the reduced 

integration Element (RIE), the Consistent Interpolation 

Element (CIE), and the Interdependent interpolation Element 

(IIE), all described in [13] and [14]. 

The two nodded beam finite element is ill conditioned as it 

cannot supply the boundary conditions required to determine 

the constants of integration. This means that a fully 

integrated linear element (two nodded beam element), with 

an overly inflexible set of shape functions is not able to 

capture the kinematics of deformations and reproduce the 

differential equations of the deformed shape of the beam on 

elastic foundation. This basic contradiction leads to shear 

locking as the beam is not able to recover its thin beam 

solution. Based on their extensive reviews, Prathap [15] and 

Eric [16] concluded that fully integrated first order solid 

linear element (2 nodded) such as Timoshenko beam 

elements, Mindlin plate elements may suffer from shear 

locking which therefore could give false results.  

In order to resolve these contradictions, higher order beam 

elements of the third and fourth order have been proposed 

and shown to be locking free. However, these have not been 

extended to the study of beams on elastic foundation. 

Therefore, this paper is an attempt to address the problem of 

beam on elastic foundation by the stiffness matrix 

formulation of a three nodded beam finite element with a 

view to improving accuracy and resolving the shear lock 

problem. The classical Euler-Bernoulli beam theory is 

assumed and the deflection simulated with the quadratic 

beam element. By virtue of possession of additional degrees 

of freedom, the three nodded element as formulated in the 

present study is expected to more realistically simulate the 

deformations of the beam and therefore eliminate shear 

locking.  

2. Method 

The method applied is the finite element approach. It 

comprises the derivation of the beam and foundation 

stiffnesses as well as the force vector. The strain energy and 

virtual work methods are used in combination with Winkler 

foundation model. A computer programme in Matlab is 

developed to ease the matrix inversion and solution of the 

derived equations.  

Consider the three nodded beam with nodal displacements 

and forces as shown in Figure 1.  

 
Figure 1. The displacement and force components of 3-nodded beam 

element. 

The element possesses six degrees of freedom, represented 

by the nodal displacement vector 

q = [y1 θ1, y2 θ2, y3 θ3]
T
 

The corresponding nodal force vector 

P = [P1 M1, P2 M2, P3 M3]
T
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Using the boundary conditions of Figure 1, the nodal values can be represented as Nqy =  where N is the shape function, q 

is the nodal displacement and the y is the displacement field. 

The boundary values are 
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The displacement can be represented in terms of the nodal 

displacement vector q in the form Nqy =  where N is the 

shape function. 

2.1. Element Mode Function 

The beam local coordinates, node numbering and nodal 

forces and displacements are as shown in Figure 1. In order 

to formulate the shape functions, the displacement is 

represented in the form of a quintic polynomial as follows: 
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2.2. Beam Element Stiffness Kb 

For a conservative homogeneous system of constant 

stiffness EI, subjected to a bending moment M, the strain 

energy U is given by the expression  

∫= dxM
EI2

1
U 2

                               (4) 

Expressing M in terms of displacement y, equation 1 

becomes 
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Thus, the beam element stiffness kb is given by  
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2.3. Foundation Element Stiffness Kf 

Using the expression from Winkler as reported in [17], the 

strain energy U of the elastic foundation in the domain (0, 

2L) is 

U = dxbyk
2
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Where ko is the stiffness of the spring and b is the width of 

the beam under a vertical displacement y. 

Substituting Nqy =  from Equ (1), we have 
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2.4. Combined Beam Elastic Foundation Stiffness Kc 

The total stiffness Kc of the beam on elastic foundation is 

taken as the sum of the beam stiffness Kb and foundation 

stiffness Kf. In order to ease the calculations, a computer 

programme was set up in Matlab for the inversion of the 

matrices and computation of the combined stiffness. The Mat 

lab routine is shown in Appendix 1. The programme yielded 

the combined stiffness matrix shown in Appendix 2. 

2.5. Nodal Load Vector 

The nodal load vector is determined by the virtual work 
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principle using the Lagrangian interpolation.  

For number of nodes, n = 3, f (x) is the quadratic 

polynomial that passes through the three data points. 

Considering a three node element with six bending degrees 

of freedom and a total length of 2L. This element has nodes 

at x= (0, ℓ , ℓ2 ). The axial degree of freedom is omitted 

from this element. Shape function for this degree of freedom 

is the Lagrangian polynomial of order 2. 
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Equation (9), (10) and (11) are the Lagrangian 

interpolation Shape function for the 3 nodded beam 

Using the technique of work equivalence method to 

replace a distributed load by a set of Discrete loads 

derived in [18], the various loads can be decomposed as 

follows: 
Similarly, nodal load vector for distributed load  
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(i) For point load P, the load is decomposed into 
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(ii) Uniformly distributed load 
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Where uF  is the nodal point load vector for a uniformly 

distributed load w on the three nodal points. 

(iii) For the moment, a direct application of the value is 

imputed as decomposition is not required. 

2.6. Equilibrium Equation 

The stiffness matrices and the load P are assembled in the 

equilibrium equation 

dkkP cb +=  

Where d is the nodal displacement 

The solution was achieved through Matlab program 

composed specially for this purpose. 

3. Result 

Then results of the computations using the proposed model 

were tested for convergence and validated with numerical 

examples from other authors. 

3.1. The Assessment of the Convergence 

The assessment of convergence of solutions with various 

beam models was carried out for a beam supporting 

uniformly distributed load across span with end shear load. 

This example was solved in 

http://autofem.com/examples/beam_on_elastic_foundation.ht

ml 
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The length of the beam is 5m. The beam cross-section is a 

rectangle of width 0.02m and height 0.05m. The details of 

the beam are shown in Figure 2 

 

Figure 2. Beam model with point load and uniformly distributed load. 

This example sought to determine the maximum end 

deflection of a beam on elastic foundation supporting 

uniformly distributed load of q=200 kN/m across the span 

and an end shear load P=1000 kN. The solution of the 

problem was repeated in this present research using the 

proposed three nodded finite beam model. The results of the 

computations of the maximum deflection according to the 

various models as a function of the number of finite elements 

used are presented in Table 1 and plotted in Figure. 3  

These results show that the value of end deflection 

obtained for the two nodded Euler-Bernoulli beam element is 

several orders of magnitude less than the theoretical value of 

0.01895147m. This shows that the greater discretization did 

not reflect in any significant changes in deflection even as 

the number of elements was increased. This cannot be 

explained by the Timoshenko beam theory and expressly 

demonstrates the phenomenon of shear locking characteristic 

of the linear element (two nodded element). Several authors, 

including [19] have observed that this phenomenon is caused 

by an induced shear/strain energy constraint which dominates 

over the bending behavior of the beam.  

The performance of the proposed model was assessed on 

the basis of the deflection profile and speed of convergence. 

The response of the three nodded model and that for the 2-

nodded Timoshenko shear deformable beam as shown in 

Table 2 and Figure 3 from which it can be seen that 

convergence is attain faster with the 3-nodded beam element 

model. 

 
Figure 3. Convergence of solution based on linear and quadratic beam element. 



 American Journal of Civil Engineering 2018; 6(2): 68-77 73 

 

 

The Results further show that the maximum deflection by 

the Euler-Bernoulli and Timoshenko beam appears to 

diverge as the number of elements is increased beyond 8 

where as the result from the proposed three nodded element 

model rapidly converged to the classical solution with just 

8 element. 

3.2. Numerical Validation of the Model 

As a further check on the adequacy of the 3-nodded finite 

element to reproduce the structural behavior of beam on elastic 

under general loading and boundary conditions, a numerical 

problem abstracted from Parvanova [18] was considered.  

 

Figure 4. Beam on Elastic Foundation under Combined Load: Courtesy Parvanova [20]). 

The system is a beam on elastic springs loaded by all 

known load parameters namely point load, uniformly 

distributed load and a concentrated moment. The value of the 

flexural rigidity EI = 343750 KN/m
2
 and the characteristic 

length = 4.472. The beam is supported on soil of subgrade 

modulus Ko = 50,000 KN/m
2
/m. The analysis of this beam 

was carried out with the 3-nodded element without shear and 

the 2-nodded element with shear and implemented using 

Matlab. The uniformly distributed load was converted to 

nodal loads for the program convenience 

{ }22u 066.0342.0007.1066.0479.0WF ℓℓℓℓℓ −=  The 

beam was divided into 20 elements, 41 nodes and 82 degrees 

of freedom. The internal displacements obtained in both 

scenarios are shown in Appendix 3 and Figure 5. These were 

compared with the exact result obtained in [20]. 

The results show that the deflections were all within 

expected values on comparison with the three nodded beam 

element model as implemented using Math Lab codes and 

Midas Civil analysis software. 

 
Figure 5. Deflection under combined actions of load. 
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Figure 6. Rotation under combined actions of load. 

 
Figure 7. Shear Force under combined actions of load. 

 
Figure 8. Bending Moment under combined actions of load. 



 American Journal of Civil Engineering 2018; 6(2): 68-77 75 

 

 
Figure 9. Deflection under combined actions of load in comparison with Midas Civil Software. 

The model was seen to exhibit an elastic response under 

combined load action tracing the elastic line as computed by 

Parvanova [20] with recoverable deformations.  

The three nodded beam element exhibits the true 

deformation response and is in agreement with the similar 

model implemented in Midas Civil software.  

4. Discussion 

The beam is modeled using 20 elements and implemented 

in Matlab environment. The results of deflection, rotation, 

shear force and bending moment are plotted with results of 

Parvanova [20] as shown in Appendix 3 and Figure 5 to 

Figure 8. The Figures shows acceptable agreement for 

deflection, rotation, Shear Force and bending Moment. The 

percentage of difference between the maximum deflection, 

Maximum rotation, Maximum Shear, Maximum bending 

moment from [20] and the present study are 5.263%, 

7.183%, 11.51% and 5.58% respectively.  

Also as evident from Appendix 4 and Figure 3, the 

deformation profile of the linear element with shear modulus 

changes repeatedly from linear to curved configuration and 

back to linear in a double curvature manner while the three 

nodded beam element model maintained a deformation 

pattern devoid of spurious energy levels as the element 

discretization was increased.  

The convergence to exact value of maximum deflection 

of 0.018951m was achieved by using 8 finite 3-nodded 

elements while convergence was not achieved even with 16 

finite elements for the 2-nodded Euler-Bernoulli beam. This 

confirms the ability of the proposed 3-nodded beam 

element to attain fast convergence with associated economy 

in computing time and resources. The lack of convergence 

for the Euler Bernoulli beam is suggestive of excessive 

rigidity in bending resulting in additional stiffening effect 

described as shear locking. These results of analysis with 

the proposed three nodded beam element further confirm 

that the shear lock problem can be eliminated by 

appropriately increasing the degree of approximation for 

finite element formulation. 

5. Conclusion 

A very important and challenging issue with beam on 

elastic foundation is the effect of soil-structure interaction on 

its structural behavior. The modeling concept of the soil as a 

bed of springs is often used while the beam is modeled as a 

two nodded beam element with or without a shear stiffness, 

the latter being intended for shear correction against shear 

locking. This research recommends the possibility of using a 

three nodded beam element to obtain locking free behavior 

of beam on elastic foundation.  

The three nodded Finite element model provides better 

formulation of the beam finite element because it meets 

the requirement of a minimum of three points to generate 

the deflection curve given by the simple beam bending 

theory.  

Also by virtue of possessing additional boundary 

conditions, the three nodded element permits a more realistic 

application of the quintic polynomial approximation thereby 

improving convergence, reducing computational time and 

eliminating shear lock.  

The solution from the three-nodded beam model converges 

about three times faster to the exact solution for beam on 

elastic foundation than the fully integrated two nodded linear 

element in common practice. 



76 Maurice Eyo Ephraim et al.:  Application of Three Nodded Finite Element Beam Model to Beam on Elastic Foundation  

 

Finally the maximum deflection differs from that given by 

[20] by 5.21% while the maximum moment differs by about 

3.0%. 

Appendix 

Appendix 1: Computer Program for a Quintic Beam 

Element Stiffness Matrix Formation  

% EULER-BERNOULLI 

%% EULER-BERNOULLI BEAM 

clear all 

close all 

clc 

syms E I L kw x 

A=[1 0 0 0 0 0 

0 1 0 0 0 0 

1 L L^2 L^3 L^4 L^5 

0 1 2*L 3*L^2 4*L^3 5*L^4 

1 2*L 4*L^2 8*L^3 16*L^4 32*L^5 

0 1 4*L 12*L^2 32*L^3 80*L^4]; 

B=eye (6); 

C=A\B; 

psi=[1, x, x^2, x^3, x^4, x^5]; 

H=psi*C; 

Kb=int (E*I*diff (transpose (H), 2)*diff (H, 2), 0, 2*L) 

Kf=int (kw*transpose (H)*H, 0, 2*L) 

disp ('EULER-BERNOULLI BEAM') 

disp ('--------------------------------------------------------------') 

disp (' ') 

disp ('Kb =') 

disp (Kb) 

Appendix 2: Total Stiffness Matrix for the 3 Nodded Beam Element Model 
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Appendix 3: Displacements Resultants of Beam on Elastic Foundation under Combined Load Actions 

Table 1.Nodal Displacement 

Distance x 

along Beam 

Deflection (m) Rotation rad Shear Force KN Bending Moment KNm 

3 Nodded Beam 

element Model 

Parvanova 

(2011) 

3 Nodded Beam 

element Model 

Parvanova 

(2011) 

3 Nodded Beam 

element Model 

Parvanova 

(2011) 

3 Nodded Beam 

element Model 

Parvanova 

(2011) 

0 -0.0017 -0.00172 -2.69E-04 -0.000304 0 0 3.4277 0 

1 -0.0014 -0.0014 -3.18E-04 -0.000348 -106.161 -164.078 7.0751 44.395 

2 -0.0011 -0.00106 -2.87E-04 -0.000273 -44.2849 -96.754 -103.924 -84.426 

3 -0.0009 -0.00095 -4.88E-05 -0.0000862 -44.2849 -43.162 -158.467 -153.863 

4 -0.0012 -0.00127 1.99E-04 0.00057 -37.9948 15.748 -57.7376 -69.054 

5 -0.0018 -0.00193 6.59E-04 0.00071 91.25253 103.125 -10.2623 -12.696 

6 -0.0025 -0.00262 6.11E-04 0.000637 -39.4459 28.431 52.728 49.981 

7 -0.003 -0.00317 5.04E-04 0.0004716 -46.0135 -11.386 50.1621 55.849 

8 -0.0034 -0.00357 3.85E-04 0.0003378 -49.4831 -25.386 28.6649 35.53 

9 -0.0036 -0.00387 3.18E-04 0.0002709 -50.523 -20.275 6.8396 11.337 

10 -0.0039 -0.00414 3.07E-04 0.000259 -46.0184 0 0.2731 0 

Appendix 4: End Deflection of Thin Beam on Elastic Foundation (Span/Depth Ratio=250) 

Table 2.Comparison of Nodal deflection with other beam model 

No. of elements Euler-Ber-noulli beam (m) Timo-shenko beam (m) Present study (m) Analytical Model (m) 

1 4.16E-04 -2.28E-04 1.25E-02 1.89E-02 

2 1.39E-03 5.63E-03 1.75E-02 - 

4 3.77E-03 1.31E-02 1.86E-02 - 

8 4.34E-03 2.79E-02 1.89E-02 - 

16 4.47E-03 5.82E-02 0.018951 - 
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