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Abstract: This study presents the application of Genetic Algorithms (GAs) for the optimum cost design of reinforced 

concrete beams and columns based on the standard specifications of the American Concrete Institute (ACI 318-11). The 

produced optimization procedure satisfies the strength, serviceability, ductility, durability, and other constraints related to good 

design and detailing practice. While most of the approaches reported in this field have considered steel reinforcement only or 

cross-sectional dimensions of the members as design variables and for the flexural aspect in general, the dimensions and 

reinforcing steel in this study were introduced as design variables, considering the axial, flexural, shear, and torsion effects on 

the members. The aim of this study is to find the effect of material’s price on the optimum cost of beams and columns 

according to the local market using the GAs, by limiting the design procedure with many constraints that control the optimum 

design variables to a certain limits. It was found that the Genetic Algorithms is a sufficient method for finding the optimum 

solution smoothly and flawless with many complicated constraints. Also, increasing the applied torsion on a beam section with 

a constant cost ratio r will increase the optimum cost by about 3.8%. 
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1. Introduction 

The Genetic Algorithms (GAs) Method was used to find 

the optimum cost design of reinforced concrete beams and 

columns, the efficiency of this method was proved before in 

many researches. In this study, it was used with many design 

constraints to include flexure, shear and torsion effect on the 

optimum cost of structural members, also a predefined 

database was used to select the optimum number and size of 

bars used in reinforcement. 

The constant parameters specified prior to the solution of 

the optimization problem included the length of spans, the 

supporting conditions, the loads, the material properties, and 

the unit costs for the used materials. The forces, the 

moments, and any information needed in the Genetic 

Algorithms (GAs) constraints were determined from the 

analysis. The optimum designed member sections were found 

as continuous variables. Then they were converted to a 

discrete form by giving nearest measurement of 25 mm as for 

the dimensions variables, while the areas of the longitudinal 

and transverse steel obtained from the design were converted 

into the nearest weight detailing of steel reinforcements that 

were available in the market. This conversion was achieved 

by generating a database of reinforcement templates 

containing different available reinforcement bar diameters in 

a pre-specified pattern satisfying the user-specified bar rules 

and other bar spacing requirements. 

Many optimization problems were solved using the GAs. 

Gorindaraj and Ramasamy 2005 [1], have used GAs to find 

the minimum total cost of reinforced concrete continuous 

beams due to concrete, steel and formwork subjected to depth 

– width constraint, flexural constraint, shear constraint and 

deflection constraint. The distinctive feature of the study is 

that the cross sectional dimensions of the beam alone are 

considered as variables, thereby considerably reducing the 

size of the optimization problem with the elimination of steel 
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reinforcement as a variable by generating a reinforcement 

templates that satisfied the constraints. 

Also, GAs was used by Sahab 2008 [2], to find the 

optimum cost of flat slab buildings including the cost of 

material and labor for concrete, reinforcement, formwork of 

floors, columns and foundations. The influence of the unit 

cost of the materials and their characteristic strength on the 

optimum design was investigated. The design variables were 

represented by the slab thickness and dimensions, and the 

reinforcing steel and its distribution, columns dimensions 

(which was assumed to be equal) with its reinforcing steel. 

This study led to 23.3% saving in the total cost component 

of concrete, reinforcement and formwork of the concrete and 

steel framed office building that has been recommended to be 

a benchmark for future studies, the major part of this saving 

can results from the cost of the floor slabs which has the 

biggest effect. 

In 2012, Awad, et. al. [3], reviewed the optimization 

techniques and their applications for the design of fiber 

composite structures of civil engineering applications. 

Verifying the importance of some of the used methods to 

optimize this kind of structures and recommending the fields 

that each method can give the best solution. The authors 

suggested an optimization procedure to link different design 

aspects to achieve an optimum design. These aspects are: 

experimental material test, FE analysis, design codes and 

standards, and optimization methods. Considering the 

limitations of the existing optimization methods, this 

approach was found to be more suitable for the design 

optimization of FRP composite structures because it takes 

into consideration the variables and constraints uncertainty in 

the design. 

2. Beam Objective Function 

For this case, the design criterion is the cost of the 

reinforced concrete beam. The objective is to minimize the 

cost without violating the constraints. The cost of the beam 

includes the cost of the concrete and the cost of the 

reinforcing steel.  The total cost of the reinforced concrete 

beam is: 

Ct = Volc Cc + Vols Cs                             (1) 

Ct = Cc × b × { (d + t) + r × ρ × d }                 (2) 

Where: 

Ct: The total material cost 

Cc: The concrete cost / unit volume 

Cs: The steel reinforcement cost / unit volume 

Volc: Volume of concrete 

Vols: Volume of steel 

r: is a cost ratio, that represents the cost of a unit volume of 

steel to a unit volume of concrete (Cs/Cc), taken to be as 

(75). 

d: Effective depth 

b: Member width 
ρ : Reinforcement ratio 

As for the cost of shear and torsion steel reinforcement, 

another separate cost function will be added to the main cost 

function, because the design variables that will be used for 

optimizing the shear and torsional reinforcement will affect 

the direction that will be taken to find the optimum values, so 

it was preferred to optimize the beam into two levels, one for 

flexure and the other for shear and torsion. 

3. Design Constraints for Beams 

A reinforced concrete beam must have a structural 

capacity greater than the factored applied loading and meet 

the specifications defined in the ACI Code [4]. The ACI 

Code has restrictions and limitations on the cross-sectional 

geometry of a beam and the position and quantity of steel 

reinforcement for all kinds of loading. 

Many researchers used the dimensions only as design 

variables, and then the reinforcement ratio was calculated 

depending on these variables, Govindaraj and Ramasamy 

2005 [1], then it was topology optimized, on the contrary, of 

this study, which used not only the reinforcement ratio as a 

design variable in addition to the dimensions as shown in 

Figure 1, (which will give the minimum cost) but also 

including the effect of shear and torsion on these optimum 

dimensions besides other constraints.  These constraints were 

used in order to specify the main variables in such a case 

where they can resist the applied loads (in many ways), and 

also to stay within the limits of the used code, in order to 

make the optimal solution more realistic and applicable. 

 

Figure 1. Reinforced concrete beams design variables. 

The first constraint eq.(3) was used to make the three 

variables ρ , b and d (reinforcement ratio, beam width and 

beam effective depth) of the section carry the smallest values 

that can resist the applied moment on that section. While eqs. 

(4) And (5) represent the constraints that were used to 

prevent the reinforcement ratio neither from exceeding the 

maximum value nor below the minimum value specified 

according to the ACI Code. 
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Where: ( ) / (0.85 )a b d f f by cρ ′= × × × × ×  

min

1 0
ρ

ρ
− ≤                                         (4) 

max

1 0
ρ

ρ
− ≤                                        (5) 

Eq. (6) was used to guarantee that the optimum section 

will not have a depth less than the depth that controls the 

elastic deflection, ACI code (9.5.2.2), Building Code 

Requirements 2012 [4], considering the effects of cracking 

and reinforcement on member stiffness, Adeli and Sarma 

2006 [5]. 

m in

1 0
h

h
− ≤                                     (6) 

In order to make the dimensions more realistic, eqs. (7) 

And (8) were used to keep the ratio of the optimum depth to 

the optimum width between (1.5) and (2.5), (specified by the 

designer). 
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05.2 ≤−
b

h
                                     (8) 

Keeping the dimensions of the optimum width in the range 

(200 mm) and (500 mm), and the optimum depth in the range 

(300 mm) and (1250 mm), have been used through the eqs. 

(9) And (10), also (specified by the designer). 

(1 0)     ( 1 0)
200 500

b b
and

mm mm
− ≤ − ≤                 (9) 

( 1 0)    (1 0)
1250 300

h h
and

mm mm
− ≤ − ≤               (10) 

To reduce unsightly cracking, and to prevent crushing of 

the surface concrete due to the inclined compressive stresses 

caused by shear and torsion, eq. (11) was used to limit the 

optimum dimensions within this condition. No more 

specifications could be achieved for the case of limiting the 

reinforcing steel for shear and torsion, since it depends on the 

section dimensions before it is found optimally, and if the 

steel area was used as a constraints, then the solution 

direction will be decided to reinforce the section with 

minimum reinforcement or without reinforcement at all. So 

this solution will not be a general optimum but an optimum 

design for a special case that was decided before starting the 

solution. Therefore, for the case of shear and torsion, the 

right decision for optimizing the section generally as much as 

it could be, should be limiting the cross section dimensions 

through the code specifications and leaving the reinforcing 

area of steel to be found by the designer, and then optimizing 

it through the bar selection procedure. 
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And finally, eqs. (12) and (13) was used for the 

reinforcement topology through the section, considering the 

minimum spacing between the chosen bars, Adeli and Sarma 

2006 [5]. 
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4. Optimum Design for Columns Under 

Axial Loading 

When a symmetrical column is subjected to a concentric 

axial load P, longitudinal strains develop uniformly across the 

section, because the steel and concrete are bonded together, 

the strain in concrete and steel are equal. For any given 

strain, it is possible to compute the stresses in the concrete 

and steel using the stress – strain curves for the two 

materials. The forces Pc and Ps in the concrete and steel are 

equal to the stresses multiplied by the corresponding areas. 

The total load P on the column is the sum of these two 

quantities. Wight and MacGregor 2009 [6]. Failure occurs 

when P reaches a maximum. For steel with well-defined 

yield strength, this occurs when: 

0.85c c cP f A′=  and s y stP f A=                      (14) 

Therefore: 

0.85 ( )o c g st y stP f A A f A′= − +                     (15) 

Where: 

Ag: The gross area of the section. 

Ast: The total area of the longitudinal reinforcement. 

Design axial strength φ Pn of compression tied members 

shall not be taken greater than φ  Pn, max, computed by eq. 

(16), according to the ACI code (10.3.6.2). 

,max 0.8 [0.85 ( ) ]n c g st y stP f A A f Aφ φ ′= − +          (16) 

where: 

φ : Strength reduction factor = 0.65, ACI code (9.3.2.2) 

The cost function of this case is represented by eq. (17), 

which represent the cost of concrete and steel materials, 

Najem, Rabi’ M. and Yousif, Salim T., 2015 [7]. 

Ct = Cc × b × h × {1 + (r × ρ )}                 (17) 
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While the design variables are the dimensions of the 

column and the reinforcement ratio, considering that the 

width and the depth of the column cross section will be 

equal, as can be shown in Figure 2. 

 

Figure 2. Reinforced concrete column design variables for axially loaded 

column. 

To achieve the optimum solution using the GAs with 

matlab [8], design constraints for the problem should be 

defined. For the axially loaded column, the used design 

constraints were: the maximum design strength of the 

section, eq. (18). 
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2 ( ( ))a f b hy ρ= × × ×  

Limiting the reinforcement ratio with maximum and 

minimum values using eqs. (19) And (20), according to the 

ACI code (10.9.1) [9] [10]. 
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And using a constraint for ensuring that the optimum 

dimensions of the column will not be less than a specified 

limit, eqs. (21) and (22). 
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Finally, a constraint to make the optimum section 

symmetrical as shown earlier to achieve the axially loaded 

column requirements, eq. (23). 

0b h− =                                        (23) 

5. Example 1: Effect of Steel and 

Concrete Unit Cost on Beams 

In this example, the prices of steel and concrete are 

changed according to each other, i.e. the ratio (r: cost of steel 

to the cost of concrete). This change is within acceptable 

limits following the market prices. A cantilever beam was 

designed optimally by the GAs, the beam was under Mu = 

600 kN.m, Vu = 150 kN, Tu = 20, 30, 40, 50 and 60 kN.m 

with fc' = 30 MPa and fy = 400 MPa. The ratio (r) was 

changed from 40 to 100, and the sections were designed 

under different values of torsion with a constant moment and 

shear, and the optimum design variables and optimum costs 

were found. 

Figure 3 shows the optimum reinforcement ratio with (r) 

for different values of Tu. The optimum values of the 

reinforcement ratio seems to have a constant value at some 

level but it begins to decrease gradually as the steel price 

become more expensive, this is because the GAs solver tend 

to use the cheapest material to fulfill the design requirements, 

so it uses concrete instead of the steel with the design 

limitations by increasing the concrete cross sectional area and 

decreasing the reinforcement ratio. Vice versa, as the steel 

price becomes cheaper, but at some level, the optimum 

design section under torsion should not have dimensions less 

than a certain limit. So the optimum cross sectional 

dimensions have a constant value, and due to this fact, the 

optimum steel reinforcement ratio is also constant according 

to these dimensions. According to that, the optimum 

dimensions behave in a way similar to the reinforcement 

ratio as shown in Figures 4 and 5. As for the optimum cost a 

linear relation can express its behavior, Figure 6. Increasing 

the applied torsion on the section from 20 to 60 kN.m with 

40 Cc as constant cost ratio r, decreases the optimum 

reinforcement ratio by 28%. But at the same time this 

increment of torsion increases the optimum dimensions by 

almost 9%, causing an increment for the optimum cost of 

about 3.8%. 

 

Figure 3. Variation of (Steel / Concrete) ratio with optimum reinforcement 

ratio. 
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Figure 4. Variation of (Steel / Concrete) ratio with optimum width. 

 

Figure 5. Variation of (Steel / Concrete) ratio with optimum effective depth. 

 

Figure 6. Variation of (Steel / Concrete) ratio with optimum cost. 

6. Optimum Design Chart 

The previous relations can be used to conduct the optimum 

design variables for any applied torsion with the same 

previous moment and shear, and for any value of the steel to 

concrete ratio (r), as shown in Figure 7. For example, to 

design the same section optimally but with applied torsion of 

55 kN.m, and (r) is equal to 45, an imaginary interpolated 

curve can be drawn between the curves of values Tu = 50 

kN.m and Tu = 60 kN.m in Figure 7 for all the optimum 

design variables and optimum costs curves. Then, the value 

of (r) can be projected on this imaginary curve to get the 

optimum design variables for this specific case, which is as 

follows: 

The optimum reinforcement ratio = 0.0177 

The optimum width = 303 mm 

The optimum effective depth = 604 mm 

The optimum cost = 0.346 ×  Cc 

Solving the same example using the GAs Matlab solver 
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with the same applied loads, the following optimum design 

variables were found. 

The optimum reinforcement ratio = 0.0175 

The optimum width = 302.8 mm 

The optimum effective depth = 603.6 mm 

The optimum cost = 0.3457 ×  Cc 

Designing another section by the same way, but this time 

with Tu = 35 kN.m and r = 90, the optimum results from 

Figure 7 and the GAs Matlab solver are shown in Table 1: 

Table 1. Design results using GAs solver and optimum design chart. 

Optimum design variables Figure 7 GAs Matlab solver 

optimum reinforcement ratio 0.01525 0.0152 

optimum width (mm) 314 314.2 

optimum effective depth (mm) 628.5 628.6 

optimum cost ×  Cc 0.4885 0.4881 

 

 

Figure 7. Optimum design variables relationship with (r). 
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7. Example 2: Effect of Steel and 

Concrete Unit Cost on Axial Columns 

To begin with, the 4.0m column shown in Figure 8, was 

designed optimally using the GAs. The concrete compressive 

strength was 25 MPa and the steel yield stress was 400 MPa. 

The column was loaded with different values of load (1000, 

1400, 1800, 2200, 2600 and 3000 kN), and it was designed 

optimally according to each value of these loads with a cost 

ratio of about 75 once and again with a cost ratio of about 15, 

in order to realize the difference between the expensive and 

cheep materials prices. The values of Mx and My were taken 

to be zero for this example. Before starting the designing 

procedure, the section was designed to be square and the 

cross sectional dimensions of the columns were limited 

between 250 mm and 400 mm, whereas the reinforcement 

ratio was limited between 0.01 and 0.08. 

 

Figure 8. Designed 4.0m axial column using the Gas. 

In Figure 9, the optimum designed height of the column 

cross section and the optimum reinforcement ratio, are drawn 

together for the case of r=75. As long as the price of the steel 

is high compared to the concrete, then the GAs optimization 

solver will tend to use the minimum value of the 

reinforcement ratio, instead of using the concrete to fulfill the 

strength of the designed section, until it reaches the limited 

value of the dimensions specified by the designer. After that, 

the solver increases the value of the reinforcement ratio and 

uses it optimally in designing the section. 

As shown in this figure, the solver used the minimum 

reinforcement ratio 0.01 for the applied load between 1000 

kN and 2000kN, but keeps increasing the dimensions of the 

designed section to provide the strength of the column. After 

2000 kN of applied load, it is noticed that the dimensions of 

the designed section reaches their maximum limitations of 

400 mm and the value of the optimum reinforcement ratio 

starts to increase instead. The same procedure was used again 

but this time the cost ratio r =15. Since the concrete price 

now is relatively higher, the solver starts the designed 

sections with the minimum value of the cross sectional 

dimensions 250 mm for the loads between 1000 kN and 2000 

kN, but keeps raising the value of the reinforcement ratio 

until it reaches its maximum limit of 0.08, as shown in Figure 

10. Then the solver starts to increase the dimensions of the 

designed sections with the same maximum value of 

reinforcement ratio. 

 

Figure 9. Optimum designed variables of columns for different values of 

applied load with cost ratio r = 75. 

 

Figure 10. Optimum designed variables of columns for different values of 

applied load with cost ratio r = 15. 

8. Conclusions and Recommendations 

It is worth considering that, the methodology of the 

solution with the (GAs) provides a robust optimum design 

approach for the challenging problems especially the 

required large constraints and the minimum time and effort 

for achieving the design requirements. This in turn, makes 

this method on the top of the available choices for any 

engineer seeking the optimum design. Also, by increasing the 

applied torsion on a beam section with a constant cost ratio r, 

the optimum reinforcement ratio will decreases by 28%, and 

this increment of torsion increases the optimum dimensions 

by almost 9%, causing an increment for the optimum cost of 

about 3.8%. 

The concrete unit cost is more effective in columns design 

than the reinforcing steel (when there is a need to increase 

the section resistance) in finding the better cost that resists 

the same applied loads and moments if the steel was used. 
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