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Abstract: Melanoma is a leading fatal illness responsible for 80% of deaths from skin cancer. It originates in the pig-

ment-producing melanocytes in the basal layer of the epidermis. Melanocytes produce the melanin, (the dark pigment), which is 

responsible for the color of skin. As all cancers, melanoma is caused by damage to the DNA of the cells, which causes the cell to 

grow out of control, leading to a tumor, which is much more dangerous, if it cannot be found or detected early. Only biopsy can 

determine exact malformation diagnose, though it can rise metastasizing. When a melanoma is suspected, the usual standard 

procedure is to perform a biopsy and to subsequently analyze the suspicious tissue under the microscope. In this Paper, we 

provide a new approach using methods known as "Imaging Spectroscopy" or "Spectral Imaging" for early detection of melanoma. 

Spectral imaging can fill this gap of the classical imaging, which carries little spectral information while spectroscopy is severely 

limited in terms of measuring (potentially) inhomogeneous samples. Three different classifiers were applied, Maximum Like-

lihood ML and Spectral Angle Mapper SAM and K-Means. SAM rests on the spectral "angular distances" and the conventional 

classifier ML rests on the spectral distance concept. SAM and ML are two methods of the supported classification routines and 

K-Means is the known unsupported classification (clustering) algorithm. 

Keywords: Melanoma; Spectral imaging; spectral spectroscopy; Maximum Likelihood; Spectral Angle Mapper, classification, 

K-Means clustering, Supported classification, unsupported classification, cancer detection 

 

1. Introduction 

Melanoma is the most serious form of skin cancer. It ori-

ginates in melanocytes, i.e. pigment cells within the skin, 

which turn malignant and develop into a tumor. Malignant 

melanoma can be diagnosed by clinical and histological 

means. The first step usually is a clinical examination, 

in-vivo and non-invasive. Here, the discrimination between 

melanoma and e.g. benign nevi is performed based on visual 

features like Asymmetry (A), Boundary (B), Color (C), and 

Depth (D), what is known as "ABCD-Diagnostic Rule" for 

melanoma detection [1], [2]. This examination is relatively 

cheap but frequently not sufficient for a reliable diagnosis. In 

many cases, the results are used as an indicator whether a 

patient should be referred to a biopsy of a suspect skin region. 

Here the application of Spectral imaging to detect the Mela-

noma has a number of advantages. First, the spectroscopic 

measurement allows to reliably contactless, non-invasive and 

in-vitro measure spectra for each pixel in the melanoma ob-

ject, second it is purely harmless optical methods, addition-

ally the spectral data contain information about the color, 

material and concentration of the tissue. Furthermore, when 

using the spectral imaging sys-tem, scanning e.g. a 2 x 5 cm² 

area of the skin takes about 30 s, with the detection-results 

being available practically instantaneously. This short detec-

tion time resolution allows monitoring the development of 

the melanoma over time, thus providing even more informa-

tion. Practically, two major Spectral Imaging (SI) principles 

have emerged wavelength scanning SI, in remote sensing 

better known as “staring imaging”, and spatial scanning SI, 

also known as “push-broom scanning imaging”  [4]5 [6] 

1.1. Wavelength Scanning S I 

This method is essentially based on acquiring a number of 

single 2D-images of an identical sample, at different wave-

lengths. Hence, both spatial dimensions are acquired simul-

taneously, while the spectral information is acquired sequen-

tially. Practically, the wavelength selection can be done either 

by a number of discrete filters, by tunable filters, namely 

acousto-optical tunable filters (AOTF) or liquid crystal tuna-
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ble filters (LCTF) or by illumination of the sample at selected, 

discrete wavelengths. This method is highly useful in partic-

ular when only a few images at char-acteristic wavelengths 

have to be recorded,   [7] [8] [9]. 

1.2. Push-broom Imaging SI 

More suitable for many high throughput applications would 

be spatial scanning SI. The frequently used term “push broom 

scanning” originates from remote sensing and implies the 

line-wise acquisition of the image data, making use of a con-

stant, relative movement (linear feed) between sample (skin) 

and imager (Camera) as it shown in Figure 1. Instead of re-

cording a two-dimensional image, a line across the sample, 

perpendicular to the direction of the relative movement, is 

projected into an imaging spectrograph. The radiation origi-

nating along this observation line is spectrally analyzed and 

the spectral information for each pixel along the investigate 

line projected along the second axis of the two-dimensional 

detector chip. The spectral encoding can be provided either by 

dispersive optics forming an imaging spectrograph5 or by 

linearly variable filters. Since the spatial information along the 

line is retained, the computerized images contain the spatial 

information along the first axis and the full spectral wave-

length information along the second axis. The spectral and the 

first spatial dimension are simultaneously acquired, while the 

second spatial dimension is recorded sequentially due to the 

movement of the sample relative to the SI sensor. By com-

bining the slices, the second spatial axis can be derived, re-

sulting in a full image.   [7] [8] [9]. 

 

Figure 1. spectral imaging system- setup 

In contrast to the stop-motion requirement of wavelength 

scanning SI, spatial scanning SI has a motion requirement, i.e. 

a continuous relative movement between imager and sample is 

a necessary pre-requisite for the operation. In case this is not 

provided as part of the process to be monitored, opting for a 

staring image may well be a better choice, as no moving me-

chanical parts would have to be added  [3]. 

 

Figure 2. Principal function of spectral imaging using the imaging spectro-

graph (push broom imaging) 

However independent on the acquiring methods (Wave-

length scanning or push prom method)  the Spectral Data 

consist of 3D-Data Matrix (Spectral Data Cube) (x, y, λ), 

where x, y are the special information and the third dimension 

λ refers to the spectral information as it shown in Error! Ref-

erence source not found. 

 

Figure 3. the spectral data cube 

2. Methodology 

The acquiring system is capable of capturing an image with 

a spatial axis of 480 pixels and a spectral axis of 480 pixels. 

Therefore, the spectral range from 380 nm to 780 nm is di-

vided to 270 locations (bands), with spectral resolution of (10 

nm). The SI system is designed so that the object table is 

moved by a linear table to implement the necessary relative 

movement between camera and sample. The region of the 

image, which will be examined, is typically traversed in 400 

lines. Theoretically, each pixel of the acquired images cor-

responds to a rectangular area of approximately 0.1 µm x 0.1 

µm. The effectively achievable spatial resolution is physically 

limited by the diffraction limitation to the order of magnitude 

of the wavelength of the transmitted light, i.e. 380- 780 nm. [3]. 

The system acquires the reflectivity of the light wave length, it 

is an indicator of the optical tissue properties in the wave-

length range (in our study in VIS wavelength range). The 

reflectivity of each pixel in the measured object R(x,y)  can be 

calculated using the following calibration equation: 
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where I(x,y) is the Intensity of measured pixel in the image, 

IBlack(x,y) and IWhite(x,y) are the intensities of black- and white 

current consequently. Black current is the intensity if zero 

illumination (lens is covered) comes into the camera chip, 

while the white current is the intensity if the maximum illu-

mination comes into the camera chip [5]. 

2.1. Skin, Melanoma and Moll Spectral Signatures 

Reflectance spectra in the wavelength region from 380 nm 

to 700 nm were measured from 200 volunteers as training data 

and from 300 volunteers as test data [8].  The spectral signa-

ture of the Melanoma, healthy skin and moll are shown in the 

following figure 

 

Figure 4. 2x2 cm-image of melanoma object (left); spectral signature of 

melanoma, Moll and Healthy skin (right) 

2.2. Detection Algorithms 

Spectral classification methods were developed specifically 

for use on hyperspectral data, but they provide an alternative 

method for classifying multispectral data, often with improved 

results that can easily be compared to spectral properties of 

materials.  In this Paper, the supervised as well as the unsu-

pervised classification were used to cluster pixels in a dataset 

into classes corresponding to user defined training classes. It 

requires, using the supported classification, a training set, 

which must be defined for use as the basis for machine 

learning to build the discrimination function (recognition 

model) . Two supervised methods are then applied in this 

study to determine if a specific pixel qualifies as a class 

member  [5]. The first one is the Maximum Likelihood (ML) 

while the other is the Spectral Angle Mapper (SAM)  [5].  

The k-means as unsupervised classification routine is used 

to order automatically each pixel in the spectral image in one 

class of different classes based on the squared Mahalanobis 

distance of each pixel to the centers of each clusters. 

              (2) 

Maximum Likelihood (ML) 

Maximum likelihood classification is a supervised classi-

fication method derived from the Bayes theorem, which as-

sumes that the statistics for each class in each band are nor-

mally distributed and calculates the probability that a given 

pixel belongs to a specific class [8]. The probability that a pixel 

with feature vector ω belongs to class i, is given by: 
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where P(ω|i) is the likelihood function, P(i) is the a priori 

information, i.e., the probability that class i occurs in the study 

area and P(ω) is the probability that ω is observed, which 

can be written as: 
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Where M is the number of classes. ML often assumes that 

the distribution of the data within a given class i obeys a 

multivariate Gaussian distribution. It is then convenient to 

define the log likelihood (or discriminant function) 
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Pixel x is assigned to class i by the rule: 
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Each pixel is assigned to the class with the highest value of 

g. Each pixel is assigned to the class with the highest like-

lihood or labelled as unclassified if the probability values are 

all below a threshold set by the user  [6]. 

2.2.1. Spectral Angle Mapper (SAM) 

Spectral Angle Mapper algorithm computes the "spectral 

angle" between the pixel spectrum and the training's pixel 

spectrum, i.e. (SAM), is a common distance metric, which 

compares an unknown pixel spectrum t to the reference spec-

tra di, i = 1, ..,K, for each of K references and assigns t to the 

material having the smallest distance: This technique is 

comparatively insensitive to illumination and albedo effects. 

Smaller angles represent closer matches to the reference 

training's spectra. The result indicates the radian of the spec-

tral angle computed using the following equation [6]. 
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Where m = the number of bands; Ti = (txi,tyi) is the i-pixel 

spectrum ; di =reference spectrum in training's data and α = 

radian of the spectral angle, (see figure 4).  

The spectral angle classifiers we applied here rests on the 

spectral "angular distances," while the conventional classifier 

maximum likelihood rests on the spectral distance concept. [5] 

If αi = min(αj,k), then xi ∈ xj,k          (8) 

where: xi the spectral angel of the pixel x in test set. xj,k 

spectral angel of the pixel x the class k in training set. 
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Figure 5. Spectral angle and spectral distance  [6] 

We can measure the similarity between two spectra x and y 

by using the Euclidean distance measure 

         (9) 

2.2.2. Training Set for the Supervised Classification 
Using the spectral date of clinical diagnosed melanoma 

objects of 200 volunteers, we built a training set to learn the 

classification machine (classification routine) the scatterplot 

of training data is shown in the following figure:  

 

Figure 6. Spectrums of the Training data  

2.2.3. k-means Unsupervised Algorithm 

K-Means unsupervised classification calculates initial class 

means evenly distributed in the data space, then iteratively 

clusters the pixels into the nearest class using a mini-

mum-distance technique. Each iteration recalculates class 

means and reclassifies pixels with respect to the new means. 

All pixels are classified to the nearest class unless a standard 

deviation or distance threshold is specified, in which case 

some pixels may be unclassified if they do not meet the se-

lected criteria. This process continues until the number of 

pixels in each class changes by less than the selected pixel 

change threshold or the maximum number of iterations is 

reached. it is clear that the probability in the equation (4) is 

large when the squared Mahalanobis in equation (2) is small. 

Suppose that we merely compute the squared Euclidean dis-

tance |xk-µi|
2
, find the center of the cluster (the mean µm ) 

nearest to xk  and approximate the probability as   

   (10) 

It is to minimize the function of the square distance in each 

iteration and compare it with its previous value up to reach the 

smallest different between the actual and previous values of 

the distance as it illustrated in the following figure 

 

Figure 7. The mean value of the centroids in each iteration 

From a statistical point of view, it may be inappropriate to 

use K-Means clustering since K-Means cannot use all the 

higher order information that PCA or ICA provides. There are 

several approaches that avoid using K-means,. However, for 

large images this algorithm fails to converge. A 2-stage 

K-means clustering strategy is developed that works particu-

larly well with skin data: 

1. Drop spectral data that contain only noise or correspond 

to artifacts. 

2. Perform K-Means clustering with 5 clusters. 

3. Those clusters that correspond to healthy skin are taken 

together into one cluster. This cluster is labelled as skin. 

4. Perform a second run of K-Means clustering on the re-

maining clusters (inflamed skin, lesion, etc.). This time 

use 3 clusters. Label the clusters that correspond to the 

mole and melanoma center as mole and melanoma. The 

remaining clusters are considered to be ‘regions of 

normal skin or unclassified regions’. 

 

Figure 8. k-means classification of melanoma object 
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Figure 9. k-means classification of melanoma object 

In table3 the confusion matrix of the classification of each 

class using the unsupervised K-means algorithm, based on the 

truth-values used in the training set (diagnosed by dermatol-

ogist). 

Table 1. confusion matrix of k-means unsupervised classification 

Confusion Matrix (Memory1) 512x512x1 

Overall Accuracy (192858/286961) 67.2070% 

 Ground Truth (Pixels) 

Clases Class1 Class2 Class3 Total 

Unclassified 0 0 0 0 

Class1 16117 2227 7 18351 

Class2 0 1288438 14738 170176 

Class3 0 50131 48303 98434 

Total 16117 180796 90048 286961 

 Ground Truth (Percent) 

Clases Class1 Class2 Class3 Total 

Unclassified 0 0 0 0 

Class1 100 1.23 0.01 6.39 

Class2 0 71.04 46.35 59.30 

Class3 0 27.73 53.64 34.30 

Total 100 100 100 100 

2.2.4. Test Set  

300 objects were tested using the Maximum Likelihood. 

(ML) , Spectral Angle Mapper (SAM) and K-means. 

The results show that the ML and SAM classifiers were for 

pixel as well as for object classification more efficient than 

K-means. However, K-means was more flexible because it 

does not need to be trained. Some result-samples shown in  

To compare the results of the applied ML, SAM and 

K-means, we build the confusion matrix of the tested classes, 

Melanoma, Moll and Healthy skin. 

 

Figure 10. Classification results using ML and SAM of melanoma object 

Table 2. confusion matrix of LM supervised classification 

Confusion Matrix (Memory1) 512x512x1 

Overall Accuracy (192858/286961) 67.2070% 

 Ground Truth (Pixels) 

Clases Class1 Class2 Class3 Total 

Unclassified 0 0 0 0 

Class1 16114 0 0 16114 

Class2 3 114798 30645 145441 

Class3 0 66003 59403 125406 

Total 16117 180796 90048 286961 

 Ground Truth (Percent) 

Clases Class1% Class2% Class3% Total % 

Unclassified 0 0 0 0 

Class1 99.98 0 0 5.62 

Class2 0.02 63.51 34.03 50.68 

Class3 0.0 36.51 65.97 43.7 

Total 100 100 100 100 

Table 3. confusion matrix of SAM supervised classification 

Confusion Matrix (Memory1) 512x512x1 

Overall Accuracy (192858/286961) 67.2070% 

 Ground Truth (Pixels) 

Classes Class1 Class2 Class3 Total 

Unclassified 1788 374 259 2421 

Class1 13252 2689 731 16672 

Class2 1058 123456 35870 160384 

Class3 1938 64023 54323 88346 
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Confusion Matrix (Memory1) 512x512x1 

Overall Accuracy (192858/286961) 67.2070% 

Total 16217 188766 96548 301531 

 Ground Truth (Percent) 

Classes Class1% Class2% Class3% Total % 

Unclassified 11.03 0.20 0.27 11.49 

Class1 81.72 1.42 0.76 83.90 

Class2 0.97 85.00 11.26 97.24 

Class3 11.95 2.13 87.34 89.47 

Total 100 100 100 100 

In table1 and table 2 the confusion matrix of the classifica-

tion of each class using the supervised LM and SAM algo-

rithms, based on the truth-values used in the training set (di-

agnosed by dermatologist). In table 3 the confusion matrix of 

k-means algorithm for pixel classification. 

In table 4 the true positive classification of ML, SAM and 

K-means for each class (Melanoma, Moll and Healthy skin) 

Table 4. Cl.ssifier true positive results using ML, SAM and K-menas 

 ML SAM Kmeans 

Melanoma 88.28% 81.83 79 

Moll 92.28% 86.98 84 

Healthy skin 93.17 % 87.92 85 

The sensitivity, specificity, positive predictive value and 

negative predictive value of each class is calculated using the 

true positive, true negative, false positive and false negative 

arguments  

Table 5. confusion matrix of ML Classification 
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 Classificationion results ML 

 Melanoma Moll Healthy skin 
Melanoma 88.28%  6.12%  5.6%  

Moll 6.49%  92.28%  1.23%  

Healthyskin 5.23 1.6%  93.17%  

Table 6. confusion matrix of SAM Classification 
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 Classification results SAM 

 Melanoma Moll Healthy skin 

Melanoma 81.72% 0.97% 0% 

Moll 1.42% 85.00% 2.13% 

Healthy skin 0.76 11.26% 87.34% 

Table 7. confusion matrix of K-means Classification 
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 Classification results K-means 

 Melanoma Moll Healthy skin 

Melanoma 79 % 8 .22%  11.95%  

Moll 14.12% 84.8% %1.2 

Healthy skin 4.5 10% 85.5% 

3. Results 

From confusion matrix of ML-, SAM K-means classifiers 

in table 4, it is clear that the ML-true-positive of Melanoma 

88.28% is higher than SAM-true-positive 81.83% and 

K-means true positive 79%. These results show that, the dif-

ference between ML, SAM and K-means is not too high. The 

value of the "false negative" using ML in table 5 (Melanoma 

classified as Moll =6.12%), and (Melanoma classified as 

healthy skin = 5.6%), while false negative using SAM in table 

6 (Melanoma classified as Moll =1.42 %) and false negative 

(Melanoma classified as healthy skin =11.95 %).  False neg-

ative, using SAM, is two wise greater than it using ML. False 

Negative ratio is a danger factor, because it very dangerous to 

classify a melanoma object as a Moll or as a healthy skin, 

"melanoma is not detected!” 

False Positive using ML (Moll classified as Melanoma = 

6.49% and Healthy skin classified as Melanoma = 1.23%), 

while False positive using SAM (Moll classified as Melanoma 

= 12.89% and Healthy skin classified as Melanoma = 0.13%). 

The False Positive using K-means is 1.2% 

The Values of confusion matrix mean that the ML- Clas-

sifier is more robust to detect and classify the skin Melanoma. 

Because the true positive of ML is higher and the false nega-

tive is lower than SAM, as it shown in Table 1, Table 2 and 

Table 3. 

Despite the quite small data set, the results are promising 

and a second follow-up study in University clinic of Damas-

cus with a larger number of patients has been started yet to 

support these results and to find, if we, using this approach, 

could also detect and evaluate other skin abnormalities like 

psoriasis or and cartisuma a.o. 

4. Conclusion 

In this report, we have proposed a new scheme that allows 

to classify melanoma as  pigmentation lesions of skin using 

multi-spectral images applying three different classification 

algorithms: ML, SAM as supervised classifiers and K-means 

as unsupervised classifier. The obtained results on 300 mela-

noma objects in clinical study tend to show that the spectral 

imaging method as new technology is robust and usable in 

Vivo and non-invasive  diagnostic method.  

The fact that the supervised classification algorithms inte-

racts at the last step of the classification can be seen as a 

benefit tool compared with the unsupported classification 

algorithms. Because it allows to both make a miss or over 

classification control and make the classification to be based 

only on machine learning techniques, which are often con-

trollable and evaluable. 

In a possible application, where the physician is assisted by 

a system which pre-screens patients, we have to take care 

about high sensitivity which is typically accompanied with a 

loss in specificity. Preliminary experiments showed that a true 

positive  of 88% using ML or 81% using SAM  is possible at 

the cost of less than 15% false-positives using MI and SAM. 

K-Means provided only 7% true positive.  
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