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Abstract: As shade adapted organisms the conchocelis of Pyropia contain high concentrations of photosynthetic pigments, 

making the conchocelis a potential source for the extraction of bioactive pigments such as phycoerythrin, phycocyanin and 

carotenoids. The pigment content of Pyropia conchocelis in response to environmental factors is poorly known. Investigations 

were performed on the production of carotenoid pigments as a function of environmental variables by the conchocelis phase of 

Alaskan Pyropia species: Pyropia abbottiae, P. hiberna,P. tortaandP. sp. Conchocelis fragments were cultured under different 

irradiance, and nutrient concentrations for up to 60 days. Results indicate that carotenoid pigments were significantly affected by 

irradiance, nutrient concentrations and culture age, with some interactions of these factors. Carotenoid pigment content varied in 

a similar manner for each species. Light had the most obvious influence on carotenoid content. For all four species, the highest 

carotenoid content (3.4-7.0mg�gdw-1) generally occurred at 0-10µmol photons�m-2
�s-1. Higher irradiances, low nutrients and 

longer culture age generally caused a decline of carotenoid pigment content. There were significant differences in carotenoid 

pigment content for different species. P. abbottiae and P. sp. produced higher pigment content than the other two species. 

Maximal carotenoid content for P. abbottiae was 7.0mg�gdw-1. P. torta contained the least carotenoid pigment under all culture 

conditions. Carotenoid pigments remained highest under continuous darkness for as long as 60 days for all tested species. The 

present study investigated the effects of environmental variables on the carotenoid content of Porphyra conchocelis and 

determined the optimal cultural conditions, which would helpful for obtaining algal material with higher pigment content and 

extraction of high value pigment. 
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1. Introduction 

Carotenoids are light-harvesting accessory pigments in the 

plastids of marine red algae (Schubert et al. 2006, Graham et al. 

2008, Sangha et al. 2013，Indriatmoko et al. 2015).These 

accessory pigments (including phycobilins) transfer light 

energy to the reaction centers responsible for converting the 

absorbed light energy into chemical energy in the form of ATP 

and NADPH for carbondioxide fixation(Nurachman et al. 

2015). The amounts of these pigments are crucial in 

determining physiological responses of marine red algae to 

environmental change. One potentially useful indicator of the 

quality of the conchocelis stage can be the photosynthetic 

pigment content (Amano and Noda 1978, Figueroa et al. 1995). 

The importance of marine algae as sources of bioactive 

compounds has been well recognized due to their health and 

pharmacological benefits. Isolation and investigation of 

biochemicals with biological activities from marine algae 

have attracted much attention recently (Lanfer-Marquez et al. 

2005, Maeda et al. 2008, Cornish and Garbary 2010, Yabuta 

et al. 2010, Holdt and Kraan 2011, Pangestutia and Kim 2011, 

Borowitzka 2013，Herrero et al. 2015, Kellogg et al. 2015, 

Yen et al. 2015). Recent studies have demonstrated that the 

carotenoids are natural bioactives that have antioxidant, 

anti-inflammatory and anti-cancer properties. It has also 

been found that these pigments are strong superoxide radical 

scavengers, inhibit growth of tumor cells and can prevent 

negative effects of UV radiation exposure (Okuzumi et al. 

1990, Kotake et al. 2001, Maeda et al. 2005, Sachindra et al. 

2007, Sangha et al. 2013),  

The physiology and biochemistry of the conchocelis stage 

of Porphyra and Pyropia species have received little attention 

(Korbee et al. 2005a, 2005b, Sampath-Wiley et al. 2008). 
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From an applied phycological standpoint,

culture conditions for the optimal production of 

of Pyropia conchocelis is helpful for the lar

preparation and production of these high 

(Lin and Stekoll 2011).Studies are need

information concerning how environmenta

pigment content of the Pyropia conchocelis s

here how the carotenoid content of Al

conchocelis responds to variations of 

variables and the potential for high v

pigment extraction from cultured conchocelis.

2. Materials and Methods 

2.1. Culture of Pyropia Conchocelis 

Unialgal cultures of each Pyropia spec

from zygotospore release. Species collected were 

abbottiae Krishnamurthy- strain PaSGS01, P. hiberna S. C. 

Lindstrom et K. M. Cole, strain - 

Krishnamurthy-strain PtCH13a and P. sp., strain PiSC14. 

(Note: the species we identify as P. sp. is morphologically 

indistinct from Porphyr apseudolinearis Ueda, and it will be 

described as a distinct species as per S. Lindstrom, personal 

communication.). Mature blades of the gametop

each species were collected from the field. 

washed and scrubbed with sterile seawater to 

contamination. The cleaned blades were pla

seawater in petri dishes for zygotospore re

hours the blades were removed and the d

Provasoli's enriched seawater (McLachlan 1973) 

16L:8D photoperiod at 11°C. Concho

(around110-250 µm ) of each species were pl

well plates (one piece per 3 mL well)and incub

salinity and 11°C(100-120 µmol photons·m

the culture of pure genotypes. These clones were 

generation of bulk amounts of conchocelis to provide material 

for specific experiments. Bulk conchocelis w

11°C and 25 µmol photons·m-2·s-1irradianc

medium (Guillard and Ryther 1962). 

2.2. Experimental Procedure 

Pigment experiments of conchocelis w

11°C illuminated with cool-white fluor

Irradiance gradients were obtained by wra

containers with varying layers of white pap

using a Li-Cor Radiation Sensor (Li-190SB Qu

The pH of the culture medium was adjusted to 7.8

ambient pH of the seawater in the inside 

Alaska)using6 MHCl or 6 M NaOH. T

experimental seawater was set at 30 psu. Cultu

changedevery7 days. Longday(16L: 8D)phot

used. Nutrients were added as an f 

concentration, which has a nitrogen concent

Therefore, nutrient levels of 0, f/4, f/2 and f 

represented 0.02, 1.47, 2.94 and 5.87 mM nitro

concentration, respectively (conchocelis at 0 nutri
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2.3. Measurement and Analysis of Pig

Pyropia conchocelis were gro

different culture conditions. Af

30,60 days, about 4-6 mg fresh weight

used for carotenoid measur

conchocelis samples from ea

conditions were used for ca

corresponding sample was used for 

ratio of dry weight to fresh we

sterile seawater and ground at low temp

conchocelis samples were e

containing one drop of saturated 

12 h and then centrifuged at 14,00

supernatant was used for carot

Gilford spectrophotometer 250. The 

hEocha (1971) was used to e

conchocelis samples: carotenoid (mg·
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2.4. Statistical Analyses 

Data (including potential factor int

using a three-way modelI AN

function of light, nutrient, cultu

windows (Statistical Sciences Inc., Seattle, Washington) .

Newman-Keuls multiple compa

performed to identify which te

determining pigment content of Pyropia 

3. Results 

3.1. Comparison of Absorption Sp

Fig. 1. Comparison of absorption spectra of carotenoids extracted from the 

conchocelis of four species of Alaskan Pyropia. Pa: Pyropia abbottiae, Pe: P. 

hiberna, Pi: P. sp., Pt: P. torta. 
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Comparison of absorption spectra of carotenoids extracted from the 

conchocelis of four species of Alaskan Pyropia. Pa: Pyropia abbottiae, Pe: P. 
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Absorption spectra of conchocelis extracts for four species 

of Pyropia show only slight variations (Fig. 1). The peak 

absorption of chlorophylla occurred at 670 nm and carotenoids 

had maximal absorption at 445 nm with a shoulder absorption 

at 475 nm. Pigments extracted from the conchocelis of all four 

species of Pyropia tested showed virtually identical spectra 

and had uniform peak absorptions at corresponding 

wavelengths. 

3.2. Carotenoid Content of P. Abbottiae 

The carotenoid content of the conchocelis of P. abbottiae 

was significantly influenced by all three factors (Table 1). 

Higher irradiance levels and longer days of culture correlated 

with a general decrease in carotenoid content of the 

conchocelis. Conchocelis cultures with no nutrients added 

showed a decline in carotenoids after 10 days of culture 

compared to cultures with added nutrients (Fig. 2). At high 

irradiances (40-160µmol photons·m-2·s-1)cultures with no 

nutrients added usually had the lowest carotenoid content 

(Figs. 2 & 3). Cultures in the darkness had the highest 

carotenoid content. Irradiances of greater than40 

µmolphotons·m-2·s-1 resultedin a remarkable decline in 

carotenoid content. Carotenoid content remained highest for 

the first 10-20 days of cultures and then declined subsequently. 

The maximal carotenoid content (6.8-7.0 mg·gdw-1) were 

achieved at 0µmolphotons·m-2·s-1, f/4-f/2nutrient 

concentration and 10-20dayscultureage. 

Table 1. ANOVA table for carotenoid content of the conchocelis of four Pyropia species grown under various combinations of nutrient 

concentration(NC),irradiance (Light) and culture age(Day).a0, f/4,f/2, f; b0,10, 40,160µmolphotons m-2.s-1; c 10, 20, 30, 60 days. (*P<0.05; **P<0.01). 

Source of variation df Sum of squares Mean square F 

P. abbottiae     

Nutrient Conc.a
 

3 26.8694 8.9565 5.424** 

Lightb 
3 389.5719 129.8573 78.639** 

Dayc 3 57.8462 19.2821 11.677** 

NC x Light 9 12.4006 1.3778 0.834 

NC x Day 9 14.6073 1.6230 0.983 

Light x Day 9 8.8640 0.9849 0.596 

NC x Light x Day 27 7.3458 0.2721 0.165 

Residuals 192 317.0494 1.6513  

P. hiberna     

Nutrient Conc.a
 

3 20.6513 6.8838 14.544** 

Lightb 
3 3.4866 1.1622 2.455 

Dayc 3 23.9163 7.9721 16.843** 

NC x Light 9 4.8898 0.5433 1.148 

NC x Day 9 2.2420 0.2491 0.526 

Light x Day 9 11.6384 1.2932 2.732** 

NC x Light x Day 27 7.8932 0.2923 0.618 

Residuals 192 90.8746 0.4733  

P. sp.     

Nutrient Conc. a
 

3 74.6694 24.8898 46.391** 

Lightb 
3 72.4945 24.1648 45.040** 

Dayc 3 5.4269 1.8090 3.372* 

NC x Light 9 23.4517 2.6057 4.857** 

NC x Day 9 16.6328 1.8481 3.445** 

Light x Day 9 16.1365 1.7929 3.342** 

NC x Light x Day 27 20.0840 0.7439 1.386 

Residuals 192 103.0122 0.5365  

P. torta     

Nutrient Conc. a
 

3 9.9316 3.3105 6.758** 

Lightb 
3 58.2839 19.4280 39.661** 

Dayc 3 10.1840 3.3947 6.930** 

NC x Light 9 5.9471 0.6608 1.349 

NC x Day 9 0.5849 0.0650 0.133 

Light x Day 9 4.4003 0.4889 0.998 

NC x Light x Day 27 6.5450 0.2424 0.495 

Residuals 192 94.0521 0.4899  
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Fig. 2. P. abbottiae (Pa). Carotenoid content of the conchocelis as a function of irradiance, nutrient concentration (◆, 0; □, f/4; △, f/2; ○, f ) and culture 

duration. Error bars are ± S.E. Data points are slightly offset (dithered) in order to see the error bars. 
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Fig. 3. Comparison of pooled carotenoid (Ca) content of Pyropia conchocelis for each parameter tested. Error bars are ± S.E. Different letters above the bars 

indicate significant difference (P<0.01) based on multiple comparisons using the Newman-Keuls test. Letter comparisons are relevant within a species (for left 

figures) and relevant between species (for right figures). Units of parameters tested are: irradiance (µmol photons·m-2·s-1), nutrient concentration (expressed as 

the f fraction) and culture duration (day). 

3.3. Carotenoid Content of P. Hiberna 

The carotenoid content of conchocelis ofP. Hiberna was 

affected by nutrients and culture age but not by light. However, 

there was an interaction between light and culture age (Table1). 

Generally speaking, this species contained low carotenoid 
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Fig. 5. P. sp. (Pi). Carotenoid content of the conchocelis as a function of irradiance, nutrient concentration (
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Fig. 6. P. torta (Pt). Carotenoid content of the conchocelis as a function of irradiance, nutrient concentration (

Error bars are ± S.E. Data points are slightly offset (dithered) in order to see the error bars.

3.6. Comparisons Among Species 

Results from pooled data analyses show
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carotenoid content. 
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conchocelis appears to be sensitive to environmental change 

and could be used to indicate the physiological state of the 

sporophytic stage of Pyropia. 

Sampath-Wiley et al..(2008) reported that the highest 

carotenoid content in Porphyra umbilicalis thalli was about 

0.4mg·gfw-1(~4mg·gdw-1). In this paper we report levels of 

carotenoid pigments (6.8-7.0 mg·gdw-1) as much as 75% 

greater. However, the main finding here is that levels of these 

pigments can vary widely depending on the culture 

conditions.  

4.2. Light and Nutrient Are Important Factors Related to 

Pigment Variation 

It has been well documented that changes in light intensity 

could resul tin a large change in the photosynthetic pigment 

content of algae(Beach and Smith 1996, Figueroa et al. 1997, 

Khoyi et al. 2009, Chaloub et al. 2015 )and that lower 

irradiance levels require greater amounts of light harvesting 

molecules to perform photosynthesis (Lüning 1990). From our 

results, carotenoid content of the conchocelis was found to 

vary inversely with the amount of available light. Moreover, 

carotenoid content was observed to be higher in complete 

darkness or at low irradiances and significantly declined at 

higher irradiances. This result mirrors that found with 

phycobilins in these same species (Lin and Stekoll 2011). It 

appears that these species in the conchocelis stage are shade 

adapted plants in an environment that rarely receives high 

light irradiance. In fact, both P. abbottiae and P. torta exhibit 

photoinhibition at higher light irradiances (Lin et al.2008).  

It is interesting that the conchocelis tufts maintain very 

high levels of carotenoid pigments even when kept in the 

dark for as long as 60 days. Although there is no carbon 

fixation happening in the dark, there is measurable 

respiration occurring (Lin et al. 2008), and thus, energy 

reserves must become depleted. In spite of the decrease in 

energy reserves, the photosynthetic pigments remain high, 

suggesting that these algae must be ready for light harvesting 

at anytime when light becomes available.  

It is well known that the conchocelis of Porphyra/Pyropia 

burrow into shells or barnacle tests in nature. It is not known 

how long the conchocelis can persist in these environments. In 

Alaska, the gametophytes of P. abbottiae and P. torta first 

appear in late winter and early spring and are gone by 

mid-summer. The conchocelis of these species, in order to 

produce the next generation of gametophytes, must live 

throughout the summer when temperatures are high but 

nutrients are low and through the winter when there is very 

little sunlight. It is reasonable to conclude that the 

environmental constraints in the Alaskan waters have 

contributed to the fact that these algae can maintain their 

photosynthetic pigments in conditions of low nutrients and/or 

low light for several months.  

Many studies have shown that nutrients, especially nitrogen 

affect both growth, development and pigment content of algae 

(Lapointe and Ryther 1979, Meiqin et al. 1979, Wheeler and 

North 1980, Hannach 1989, Grobe et al. 1998, Korbee et al. 

2005a, 2010, Kim et al. 2007, Xie et al. 2013, Imaizumi et al. 

2014, Chaloub et al. 2015). Our experimental results also 

indicate that nutrients are very important for the sporophytic 

stage of Pyropia. Under the culture conditions tested, 

especially under higher light irradiances, conchocelis grown 

in media with nutrients added usually had much higher 

content of photosynthetic pigments in contrast to cultures with 

no nutrients. Nitrogen source and supply in coastal waters can 

take place with large seasonal fluctuations. Shortage of 

nutrients would exert a potentially negative effect on the 

growth, development and survival of the natural populations 

of Porphyra/Pyropia sporophytes. 

Sufficient nutrient supply is necessary to promote higher 

pigment content for Pyropia conchocelis. However, different 

species exhibited differences in nutrient requirements. For 

example, higher nutrient concentration (f concentration)was 

favorable for carotenoid production in P. hiberna. For the other 

threes pecies, intermediate nutrient concentrations (f/4-f/2) 

were sufficient for high pigment content. Culture age was also 

a factor in the production of pigments. P. abbottiae tended to 

synthesize significantly less photosynthetic pigments with 

prolonged culture age, in contrast to the other three species 

which had relatively constant amount of pigment production 

throughout the entire period of culture. 

4.3. Conchocelis: Good Algal Source for Highly-Valued 

Pigment Extracts 

There are three basic classes of natural pigments found in 

marine red algae, i.e. chlorophylls, carotenoids and 

phycobilins. Besides their roles in photosynthetic and 

photoprotective functions, it has been reported that these 

natural pigments exhibit various biological properties such as 

antioxidant, anticancer, anti-inflammatory, anti-obesity, 

anti-angiogenic and neuroprotective activities. These 

properties provide health benefits and have potential 

applications in foods, cosmetics and pharmaceuticals(Okaiet 

al. 1996, Shetty et al. 2005, Yabutae t al. 2010, Pangestutia 

and Kim 2011, Sangha et al.2013, Wang et al. 2015). It has 

been shown that extracts from Porphyra/Pyropia contain 

important bioactive compounds. For instance, certain low 

molecular weight peptides containing Asp, Ala and Glu 

possess immunosuppressive, antioxidant and antihypertensive 

capacities (Qu et al. 2010，Cian et al. 2012). It is worthwhile 

to explore the use of these high-value bioactive properties. Of 

interest in this respect is that the carotenoids are not only 

photosynthetic accessory pigments but also possess important 

bioactive properties that can be beneficial to human health in 

many different ways(Okuzumi et al. 1990, Schubert et al. 

2006, Sachindra et al. 2007). 

The carotenoids are not only beneficial to human health, but 

also valuable as a commodity. The current price of carotenoids 

has been as high as $5-400 per microgram depending on 

different types, purities and sources (Sigma Chemical, St 

Louis, MO). For commercial production, there are several 

advantages in using Porphyra/Pyropia conchocelis material 

for the preparation and production of high-value phycological 

extracts: (i)the conchocelis stage can be grown relatively 

quickly using standard culture apparatus, (ii) the cultures of 
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the conchocelis stage can be maintained indefinitely in a 

nonreproductive state under the proper culture conditions,(iii) 

conchocelis grown under the proper conditions have relatively 

high concentrations of phycobiliproteins, carotenoids (Lin and 

Stekoll 2011),(iv) high-quality and high purity extracts can be 

obtained from cultures of the conchocelis stage using simple 

extraction procedures and (v) target products can be acquired 

at any time, year-round, without relying on the availability of 

wild algal material(Stekoll et al. 1999, Lin and Stekoll 

2011).Furthermore, it is possible to produce multiple kinds of 

high-value components such as carotenoids , phycoerythrin 

and phycocyanin simultaneously from conchocelis material. 

Based on complete combination experiment of 4 levels with 

three factors (nutrient concentration, irradiance and culture 

age), the present study investigated the effects of 

environmental variables on the carotenoid content of Porphyra 

conchocelis and determined the optimal cultural conditions, 

which would helpful for obtaining algal material with higher 

pigment content and extraction of high value pigment. The 

results presented here can contribute to creating the optimal 

culture conditions for producing the maximal yield of 

carotenoids from Pyropia conchocelis with implications for 

the commercial production of these pigments. 
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