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Abstract: The COVID-19 pandemic posed a serious threat to health and the global economy of the affected nations. Despite 

several measures to mitigate the transmission of the disease, there is a rise in the number of infections and death remain 

tremendous worldwide. This study used a deterministic model based on Susceptible-Latent-Infected-Hospitalized-Vaccinated-

Recovered (SLIHVR) model to investigate the dynamics of the disease in Ghana. Data from daily reported cases of COVID-19 

in Ghana between 15 March and 31 March 2021 were used to estimate the parameters of the model. Numerical simulations of 

the model were carried out by implementing the MATLAB ODE45 algorithm for solving non-stiff ordinary differential 

equations. The numerical simulation of the model was done to ascertain the long-run evolution of COVID-19. The findings 

indicated that the disease-free equilibrium was locally asymptotically stable whenever Rn<1 and the endemic equilibrium was 

asymptotically stable provided Rn>1. The was useful in understanding the dynamic mechanisms of the transmission and 

prevention of COVID-19 infection in Ghana. The study concluded that vaccinating a larger proportion of the populace was 

needed to control the disease. 
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1. Introduction 

COVID-19, formerly known as the novel coronavirus 

(2019-nCoV), belongs to a group of justly wrapped non-

segmental, single-stranded RNA viruses belonging to the 

Nidovirales order, the Coronavirus family and its 

Orthocoronavirus subfamily and is widely spread among 

mammals and humans [1, 2]. It is caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) [3, 4]. 

The disease was initially reported in Wuhan, Hubei province, 

China, at the end of 2019 [3, 5]. According to the World 

Health Organization (WHO), adults and people with 

cardiovascular diseases, diabetes, chronic respiratory 

diseases, and cancer are more likely to have life-threatening 

complications after contracting this disease. 

The first confirmed death from COVID-19 occurred in 

Wuhan on 9th January, 2020 [6]. The first reported death 

outside of China occurred on 1st February in the Philippines, 

and the first reported death outside Asia was in the United 

States on 6th February [7]. By 28th February 2021, more 

than 113 million cases have been confirmed, with more than 

2.52 million deaths attributed to COVID-19, making it one of 

the deadliest pandemics in history. The World Health 

Organization (WHO) declared the outbreak a public health 

emergency of international concern in January 2020 and a 

pandemic in March 2020 [8]. By 26th March 2020, 1.7 

billion people worldwide were under some form of lockdown 

which increased to 3.9 billion people by the first week of 

April, which was more than half of the world's population [9]. 

The role of the Huanan Seafood Wholesale Market in the 

spread of the disease is unclear. However, many of the initial 

COVID-19 cases were related to this market, indicating that 

COVID-19 was transmitted from animals to humans [10]. A 

genomic study on the other hand, indicated that the virus was 

introduced to the market from another unknown location, 
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whilst the person-to-person transmission may have occurred 

earlier [11]. Person-to-person transmission is believed to occur 

between close contacts, primarily through respiratory droplets 

that are produced when an infected person coughs or sneezes. 

A study by [12], found that COVID-19 aerosols, the main 

source of COVID-19 transmission could remain for up to 96 

hours on the surface, in contrast with other coronaviruses, 

which can remain for only nine hours. This makes COVID-

19 highly contagious and poses serious threats to the health 

and economies of developing countries with limited health 

infrastructure and resources to effectively contain its 

transmission. The longer people interact, the more likely they 

would transmit COVID-19. Closer distances can produce 

larger droplets and aerosols, whilst longer distances only 

involve aerosols. Larger droplets can also become aerosols 

through evaporation. However, it is unknown whether the 

virus can spread between rooms over long distances, such as 

through air ducts [13]. Airborne transmission can occur in 

high-risk indoor locations such as restaurants, choirs, 

stadiums, nightclubs, offices, and religious venues, and 

crowded or poorly ventilated areas. It can also occur in 

medical institutions, usually during aerosol-generating 

medical procedures for COVID-19 patients. 

The effects of COVID-19 vary from mild symptoms to 

serious illnesses. The time interval from the onset of COVID-

19 symptoms to death is 6 to 41 days, with a median of 14 

days [14]. The most common symptoms at the onset of 

COVID-19 include fever, cough, dyspnoea, headache, sore 

throat, rhinorrhea, sputum production, haemoptysis, 

lymphopenia, loss of sense of smell and taste, study and 

runny nose, muscle pain, diarrhea and difficulty in breathing 

[15]. Pneumonia seems to be the most common manifestation 

of serious infections, and its main characteristics are fever, 

cough, dyspnoea, and bilateral infiltration on chest imaging 

[16]. 

Three groups of common symptoms including, respiratory 

symptoms of cough, sputum, shortness of breath, and fever; 

cough, sputum, shortness of breath; and fever have been 

identified. In addition to respiratory symptoms, 

gastrointestinal symptoms (such as nausea and diarrhea) have 

also been reported, and people with the same infection may 

have different symptoms. Their symptoms may change over 

time [17]. Digestive system symptoms including abdominal 

pain, vomiting, and diarrhea [18]. 

Like any other developing country, the COVID-19 

outbreak has had seriously repercussions on people's daily 

lives, public health, and the economy of Ghana. The country 

recorded its first confirmed cases in Accra, on 12th March 

2020 from two immigrants who visited the country, one from 

Norway and the other from Turkey [19]. Following the 

episodic transmission of the virus in the country, the 

Ghanaian government adopted aggressive measures such as 

social distancing, screening and diagnostic tools, quarantine 

and isolation, and adequate clinical management of patients 

to contain the spread of the virus. By 16th March 2020 

schools and universities were closed [20], and public 

gatherings were banned, with the exception for essential 

public health and safety services. The Ministry of Health 

used every available medium including newspapers, radio, 

and TV stations to educate the public about the spread and 

prevention of COVID-19 infections [21]. 

2. Model Formulation 

To fully understand the transmission dynamics of COVID-

19 in Ghana, we formulated the Susceptible-Latent-Infected-

Hospitalized-Vaccinated-Recovered (SLIHRV) model using 

country specific data and information on the biological 

mechanism through which infections spread in a population 

(see Figure 1). We divided the population of Ghana into six 

different categories based on the known characteristics of the 

COVID-19 pandemic, and assumed that each member of the 

population could be in one of the defined compartments 

(categories) (see Table 1). 

Table 1. Definitions of state of variables used in the model. 

Variables State of Variables Definitions 

�(�) Susceptible population 

�(�) Latent population 

�(�) Infected population 

�(�) Hospitalized population 

�(�) Recovery population 

	(�) Vaccination population 

The variables �(�) , �(�) , �(�) , �(�) , �(�) , and 	(�) , 

represented the number of the individuals in each of the six 

classes at time � respectively. 

The Susceptible population S(t) was made up of 

individuals who were not yet infected but could contract the 

virus if exposed to an infected individual. After exposure to 

the COVID-19 virus, the susceptible individuals, S enter the 

latent class, L where the disease incubates. The latent class is 

also called the asymptomatic class. 

The Latent population L(t) consisted of individuals who 

have had the infection but do not show any clinical or 

noticeable symptoms even though they are infectious. They 

are capable of transmitting the coronavirus to other 

susceptible individuals. They stay in the L class before they 

become fully blown infectious with symptoms and move to 

the infectious class I, or identified through contact tracing 

and quarantined at class Q. 

The Infected population I(t) consisted of individuals who 

were infectious and symptomatic with strong infectivity but 

have not yet been quarantined. 

The Hospitalized population H(t) consisted of individuals 

who had been infected, and diagnosed and were in the 

hospitals. 

The Recovered population R(t) was made up of individuals 

who had fully recovered from the infection. 

The Vaccinated population ( )V t  was made up of 

individuals who had been vaccinated to protect themselves 

from COVID-19 infection. 

Figure 1 was formulated with α N being the recruitment 

into the susceptible population. It assumed a constant natural 

death rate of µ for all the classes. The susceptible population 
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is vaccinated at a rate of θ. The latent population increased 

by rate of probability of infection β and decreased by rate of 

progression from asymptomatic stage to infectiousness γ 

which later entered the infected class. The infected 

population became hospitalized at a rate of κ. In the 

hospitalized class, individuals died from the virus at rate of δ 

and recovered at a rate of ρ. The recovered population 

became susceptible at a rate of ω. Table 2 below shows the 

definition of the parameters used in the model. 

 

Figure 1. SLIHVR Compartmental Model of COVID-19 Transmission. 

From the model formulated above (see Figure 1), the 

following non-linear equations were obtained. 

( )

( )

β
α µ θ ω

β
γ µ

γ κ µ

κ µ δ ρ

ρ µ ω

θ µ

 +
= − − − +


 +

= − −



= − −

 = − − −

 = − −


 = −


SL SIdS
N S S R

dt N

SL SIdL
L L

dt N

dI
L I I

dt

dH
I H H H

dt

dR
H R R

dt

dV
S V

dt

             (1) 

Table 2. Model Parameters and Definitions. 

Parameters Definitions 

β Rate of probability of infection \ 

α Recruitment rate 

Parameters Definitions 

γ 
Rate of progression from asymptomatic stage 
to infectiousness 

K Rate of hospitalization 

ρ Recovery rate 

μ Natural death rate 

δ Disease induced death rate 

θ Rate of vaccination 

ω Rate of loss of immunity 

3. Model Analysis 

3.1. Positivity of the Solution 

Theorem 1 

(Positivity) Suppose that 

(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0≥ ≥ ≥ ≥ ≥ ≥S L I H R V  

Then the solution ( )( ), ( ), ( ), ( ), ( ), ( )S t L t I t H t R t V t  of model 

Equation (1), is positively invariant set. That is 

( ) 6
( ), ( ), ( ), ( ), ( ), ( ) +∈S t L t I t H t R t V t R  Proof 

We considered, 

( )β
α µ θ ω

+
= − − − −

SL SIdS
N S S S

dt N
        (2) 

From Equation (2), we let αΛ = N and 
( )

1

β
λ

+
=

SL SI

N
. 

We rewrite equation (2) further as equation (3) 

( )1λ µ θ ω+ + + = Λ +dS
S R

dt
                      (3) 

Solving Equation (3) using the method of integrating 

factors, we find the integrating factor defined by Equation (4) 

( ) ( )1 1
.

λ µ θ λ µ θ+ + + +
= =∫ ∫dt dt dt

I F e e           (4) 

We multiply through Equation (3) by (4) and simplifying 

gives Equation (5) 

( ) ( ) ( )1 1
0 0

( ) ( )
( )

λ µ θ λ µ θ
ω

+ + + + 
  ≥ Λ +
 
 

∫ ∫
t t

s ds t s ds td
S t e R e

dt
                                                         (5) 

Which implies 

( ) ( ) ( )1 1
0 0

( ) ( )

0
( ) (0)

λ µ θ λ µ θ
ω

+ + + +
− ≥ Λ +∫ ∫

∫
t t

ts ds t s ds t
S t e S R e dw                                                   (6) 

( ) ( ) ( )1 1
0 0

( ) ( )

0
( ) (0)

λ µ θ λ µ θ
ω

+ + + +
≥ + Λ +∫ ∫

∫
t t

ts ds t s ds t
S t e S R e dw                                             (7) 

Therefore, we have 
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( ) ( ) ( ) ( ) ( )1 1 1
0 0 0

( ) ( ) ( )

0
(0)

λ µ θ λ µ θ λ µ θ
ω

− + + − + + + +
≥ + Λ +∫ ∫ ∫

∫
t t t

ts ds t s ds t s ds t
S t S e e R e dw                         (8) 

Hence, ∀ ∈t J , ( )S t  is positive. Now considering the 

second equation of the system (1) gives; 

( )1λ γ µ= − +dL
S L

dt
                   (9) 

We rewrite Equation (9) as 

( ) 1γ µ λ+ + =dL
L S

dt
                  (10) 

Multiplying through equation (10) by the integrating factor, 
( )γ µ+e  and simplifying leads to (11) 

( )( ) ( )
1( )

γ µ γ µλ+ +≥t td
L t e Se

dt
               (11) 

Which implies 

( ) ( )

0
( ) (0) ( ) ( )γ µ γ µλ+ +− ≥ ∫

w
t tL t e L w S w e dw   (12) 

( ) ( )

0
( ) (0) ( ) ( )γ µ γ µλ+ +≥ + ∫

w
t tL t e L w S w e dw     (13) 

Therefore, 

( ) ( ) ( ) ( )

0
( ) (0) ( ) ( )

γ µ γ µ γ µ γ µλ+ − + − + +≥ + ∫
w

t t t t
L t e L e e w S w e dw  (14) 

Hence, ∀ ∈t J , ( )L t  is positive. Similarly, considering      

the third equation of the system (1) gives; 

( )γ κ µ= − +dI
L I

dt
                  (15) 

( )κ µ γ+ + =dI
I L

dt
                  (16) 

( )( ) ( ) ( )κ µ κ µ κ µγ+ + +≥t t td
Ie Le e

dt
                (17) 

( ) ( )
0

(0) ( )
κ µ κ µγ+ +− ≥ ∫

t
t s

Ie I L s e ds                (18) 

( ) ( ) ( )
0

(0) ( )
κ µ κ µγ+ +≥ + ∫

t
t s

I t e I L s e ds            (19) 

( ) ( ) ( )
0

( ) (0) ( )
κ µ κ µ κ µγ− + − + +≥ + ∫

t
t t s

T t I e e L s e ds         (20) 

Hence, ∀ ∈t J , ( )I t  is positive. Now considering the 

fourth equation of the system (1) gives; 

( )κ µ δ ρ= − + +dH
I H

dt
                    (21) 

( )µ δ ρ κ+ + + =dH
H I

dt
                      (22) 

( )( ) ( )µ δ ρ µ δ ρκ+ + + +≥t td
He Ie

dt
             (23) 

( ) ( ) ( )
0

(0) ( )
µ δ ρ µ δ ρκ+ + + +− ≥ ∫

t
t w

H t e H I w e dw     (24) 

( ) ( ) ( )
0

( ) (0) ( )
µ δ ρ µ δ ρ µ δ ρκ− + + − + + + +≥ + ∫

t
t t w

H t H e e I w e dw  (25) 

Hence, ∀ ∈t J , ( )H t  is positive. Now considering the 

recovered equation of the system (1) gives; 

( )ρ µ ω= − +dR
H R

dt
                         (26) 

( )µ ω ρ+ + =dR
R H

dt
                      (27) 

( )( ) ( )
Re e

µ ω µ ωρ+ +≥t td
H

dt
                    (28) 

( ) ( )
0

( )e (0) ( )e
µ ω µ ωρ+ +− ≥ ∫

t
t w

R t R H w dw           (29) 

( ) ( ) ( )
0

( ) (0)e e ( )e
µ ω µ ω µ ωρ− + − + +≥ + ∫

t
t t w

R t R H w dw   (30) 

Hence, ∀ ∈t J , ( )R t  is positive. Considering the 

Vaccination class, we have 

µ θ+ =dV
V

dt
S                                 (31) 

( )µ µθ≥t td
Ve Se

dt
                           (32) 

0
( ) (0) ( )µ µθ− ≥ ∫

w
t tV t e V S w e dw                   (33) 

0
( ) ( ) ( )µ µ µθ− −≥ + ∫

w
t t tV t V o e e S w e dw                (34) 

Hence, ∀ ∈t J , ( )V t is positive. Hence it has been shown 

that ( ) 0, ( ) 0, ( ), ( ) 0,> > >S t L t I t H t ( ) 0>R t , and ( ) 0>V t  

for all 0>t . 
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3.2. Disease-Free Equilibrium 

Disease-free equilibrium points (DFE) are steady-state 

solutions or equilibrium points where there was no infection 

of COVID-19. We set the disease-free equilibrium at 

0L I H R� � � �  in the model. 

( ) *

* *

0

0

α µ θ

θ µ

 − + =


− =

N S

S V
                        (35) 

Solving equation (35) gives Equation (36) 

( )DFE ,0,0,0,0,
α αθ
µ θ µ µ θ
 

=  
+ +  

N N
            (36) 

3.3. Disease-Endemic Equilibrium 

The endemic equilibrium state is the state where the disease 

cannot be totally eradicated but remains in the population. 

( ) ( )

( ) ( )

( )
( )
( )

* * *

* *

* * *

*

* *

* *

* *

*

0

0

0

0

0

0

β
α µ θ ω

β
γ µ

γ κ µ

κ µ δ ρ

ρ µ ω

θ µ

 +
 − − + + =



+
− + =


 − + =
 − + + =
 − + =
 − =

S L I
N S R

N

S L I
I

N

L I

I H

H R

S V

    (37) 

Solving equation (35) gives the solutions below 

* * * * * *
EE , , , , , =  S L I H R V               (38) 

where 

( )
( )

( )( )( )

( )( )

( )

( )

*

0

2 0 3*

1

2 0*

1

2 0*

1

2 0*

1

*

0

1

1

1

1

α
µ θ

η η
η

γη µ ω µ δ ρ
η

γκη µ ω
η

γκη
η

αθ
µ µ θ

 = +

 −
 =

 − + + + =



− + =

 −

=



=
+

 

 

 

 

 

 

N
S

L

I

H

R

N
V

               (39) 

3.4. Basic Reproduction Number 

Reproduction number is an important topic in 

epidemiological models which is usually denoted by R0. It is 

an important parameter that predicts whether an infection 

will spread throughout the population or not. To obtain R0, 

we used the next generation matrix technique [22]. When an 

infected person is introduced into a susceptible population, 

the total number of infectives as a result of this infected 

person during the epidemic is referred to as Basic 

Reproduction Number R0. 

( )
( )

( )
( )

0 and 

0

β
γ µ

γ κ µ
δ µ ρ κ

 +
   +   
 = = − + + 
   + + −   
 
 

  

S L I

LN

L I

H I

       (40) 

Partially differentiating with respect to , , and  gives 

, ,

0

0 0 0

0 0 0

β β 
 
 ∂ =
 
 
 

 

S S

N N

L I H               (41) 

and 

, ,

0 0

0

0

µ γ
γ κ µ

κ δ µ ρ

+ 
 ∂ = = − + 
 − + + 

 L I H V      (42) 

Substituting the Disease-Free equilibrium into Equations 

(41) and (42) produces equations (43) and (44) 

0

0 0 0

0 0 0

αβ αβ
µ θ µ θ+ +

 
 
 =
 
 
 

F                          (43) 

and 

0 0

0

0

µ γ
γ κ µ

κ δ µ ρ

+ 
 = − + 
 − + + 

V              (44) 

The inverse of  is calculated and given below. 

( )( )

( ) ( )( ) ( ) ( ) ( )

1

1
0 0

1
0

1

µ γ
γ

µ γ µ κ κ µ
γκ κ

µ γ µ κ δ µ ρ µ κ δ µ ρ δ µ ρ

−

 
 

+ 
 
 =

+ + + 
 
 
 + + + + + + + + + 

V  (45) 

Therefore, the next generation matrix,  is given as 

( )
( )( )( ) ( )( )

1

0

0 0 0

0 0 0

αβ κ µ αβγ αβ
µ γ µ θ κ µ µ γ κ µ

+ +
+ + + + +

−

 
 
 = =  
 
 
 

G FV     (46) 

Evaluating the eigenvalues of  gives 
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( )
( )( )( )1 2 30, 0 and

αβ κ µ γ
λ λ λ

µ γ µ θ κ µ
+ +

= = =
+ + +

    (47) 

Therefore, the basic reproduction number, R0 which is the 

dominant eigenvalue of the next generation matrix is found 

in Equation (48) 

( )
( ) ( ) ( )0

αβ κ µ γ
µ γ µ θ κ µ

+ +
=

+ + +
                      (48) 

3.5. Stability of the Disease-Free Equilibrium Point 

Theorem 1: 

The disease-free state DFE is locally asymptotically stable 

if ( ) 1<J DFE  and unstable if ( ) 1>J DFE  [20]. 

Proof: The Jacobian matrix of the system (1) denoted by  J  

is obtained in Equation (49) 

( )

( )

0 0

0 0 0

0 0 0 00

0 0 0 0

0 0 0 0

0 0 0 0

β β βµ θ ω

β β βγ µ

γ κ µ
κ δ µ ρ

ρ µ ω
θ µ

 +
− − − − − 
 
 +

− − 
 =
 − −
 

− − − 
 − −
  − 

L I S S

N N N

L I S S

N N N
J                             (49) 

Evaluating the Jacobian matrix (49) at the disease-free equilibrium is obtained as 

( )

0 0

0 0 0 0

DFE
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

βα βαµ θ ω
µ θ µ θ

βα βαγ µ
µ θ µ θ

γ κ µ
κ δ µ ρ

ρ µ ω
θ µ

 − − − − + + 
 

− − + + =
 − −
 − − − 
 − −
  − 

J                              (50) 

We needed to show that the eigenvalues of Equation (53) were all negative. Solving for the eigenvalues, we get. 

( ) ( )
( ) ( )

1

2

3

4

1
5 2

1
6 2

`

µ θ

µ θ

λ θ µ
λ δ µ ρ
λ µ ω
λ µ

λ

λ

+

+

= − −
 = − − −
 = − −


= −


= − −

 = − +


Y W

Y W

                                                                       (51) 

where 

22 2αβ γµ γθ κµ κθ µ µθ= − + + + + + +Y                                                        (52) 

and 

2 2

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

2 2 4

2 2

α β αβγµ αβγθ αβκµ αβκθ
µ γ µ γ µθ γ θ γκµ γκµθ

γκθ κ µ κ µθ κ θ

 + + + +
= + + + − − −
 + + +

W                                           (53) 
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It can be observed that all the eigenvalues of the Jacobian matrix were are strictly negative with the exception of 5λ . 

However, for R0< 1 all eigenvalues must be non-positive. 

Multiplying equation (52) by itself, we get gives Equation (54) 

2 2 2 2 2

2 2 2 2 2 2 3 2 2

2 2 2 2 2 3 2 2 4 3 2 2

2 2 2 2 4 4

2 2 4 2 4 8 4

2 4 8 4 4 8 4

α β αβγµ αβγθ αβκµ αβκθ αβµ αβµθ γ µ
γ µθ γ θ γκµ γκµθ γκθ γµ γµ θ γµθ

κ µ κ µθ κ θ κµ κµ θ κµθ µ µ θ µ θ

 − − − − − − +

= + + + + + + + +

+ + + + + + + +

Y                       (54) 

2

2 2 2 3 2

2 3 2 2 4 3 2 2

4 4 4 4 4

4 4 8 4 4 8

4 4 8 4 4 8 4

αβγµ αβγθ αβκµ αβκθ αβµ
αβµθ γκµ γκµθ γκθ γµ γµ θ

γµθ κµ κµ θ κµθ µ µ θ µ θ

 + + + + +

− = − − − − −

− − − − − − −

W Y
                                           (55) 

which can be simplify as 

0 0= +Z P N                                                                                     (56) 

where 

( ) ( )2

0 4 θ µ γ κ µ= + + +p                                                                   (57) 

and 

( ) ( )( )2

0 4 θ µ µ κ γ µ= − + + +N                                                                 (58) 

and Hence, upon further simplification R0 is given by the Equation (59). 

( )
( )( )( )0

βα γ κ µ
θ µ µ κ γ µ

+ +
= −

+ + +
                                                                      (59) 

Since R0< 1, implies the disease-free equilibrium is locally asymptotically stable. 

3.6. Local Stability of the Endemic Equilibrium 

A corollary of Gershgorin circle theorem was used to 

investigate the local stability of the endemic equilibrium 

points of the model. Using the Corollary of Gershgorin Circle 

Theorem, let  be an  matrix with real entries, if the 

diagonal elements  of  satisfy; 

<ii ia r                                           (60) 

where 

1,= ≠

= ∑
n

i ii

j j i

r a                               (61) 

for 1, ,+ …i n  then the eigenvalues of are negative or have 

negative real parts. 

Theorem 2 

The Endemic equilibrium (EE) is locally asymptotically 

stable if R0< s1. 

Proof: The Jacobian matrix evaluated at the Endemic 

equilibrium (EE) is given Equation (62) 

( )( )

( )( )

0 2 3 1 1

0 0

0 2 3 1 1

0 0

1
0 0

1
0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0 0

β β βµ θ ω

β β βγ µ

γ κ µ
κ δ µ ρ

θ ρ µ ω
µ

 − +
− − − − − 
 
 − + − −
 
 

− − 
 − − −
 

− − 
 − 

 

  

 

  

h h h h

N N N

h h h h

N N N
                           (62) 
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where ( )
2 3 2 3

2 3
1 1

,
η η η η
η η κ µ

= − = −
+

h h  

The matrix can be reduced to matrix (63) below since µ−  is an eigenvalue. 

( )( )

( )( )

0 2 3 1 1

0 0

0 2 3 1 1

0 0

1
0

1
0 0

0 0 0

0 0

0 0 0

 − +
− − − − − 
 
 − + − −
 
 

− − 
 − − −
  − − 

h h h h

N N N

h h h h

N N N

β β βµ θ ω

β β βγ µ

γ κ µ
θ κ δ µ ρ

ρ µ ω

 

  

 

                       (63) 

The matrix (63) satisfies the corollary of Gershgorin’s circle theorem, if the following inequalities hold; 

( )( ) ( ) ( )

( ) ( ) ( )( )

0 2 3 0 2 31 1

0 0

0 2 3 0 2 31 1 1

0 0 0

1 12 2

1 12 2

β ββ βµ θ µ θ

β ββ β βγ µ γ µ

κ µ γ
δ µ ρ κ
µ ω ρ

 − + − +
− − − < ⇔ + + >

 − + − +
 − − < − − ⇔ < − + +

− − < −
− − − < −


− − < −





  

  

  

   

h h h hh h

N N N N

h h h hh h h

N N N N N

                          (64) 

From Equation (64) substituting the second equation into the first equation yields Equation (65) 

                                          (65) 

Simplifying (65) gives 

( )( )
0 2 3

2 1 h h

N

β
µ θ γ µ

− +
+ + > +

R
                                                                 (66) 

Equation (66) can only hold if and only if 

0
1 0− >R                                                                                          (67) 

which implies that 

0
1>R                                                                                               (68) 

Since R0> 1, it implied that the endemic equilibrium (EE) was locally asymptotically stable. 

3.7. Simulation of the Model 

We carried out some numerical simulations for the 

model and studied the dynamics of the COVID-19 

outbreak disease model in Ghana. Although the disease 

was not yet fully understood, the Government of Ghana 

had collected much data during the COVID-19 epidemic 

which was useful in the simulation. Based on the 

cumulative number of confirmed cases in Ghana, we 

derived the following parameters in Table 3. 

Table 3. Values and Source of Parameters Used. 

Parameter Value Source 

β 0.071649 per day Estimated 

α 0.000079452 per day Estimated 

γ 0.125 per day Estimated 

K 0.1 per day Estimated 

ρ 0.07143 per day Estimated 

μ 0.000019726 per day Estimated 

δ 0.008145 per day Estimated 
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Parameter Value Source 

θ 0.000014 per day Estimated 

ω 0.004464 per day Estimated 

4. Discussion 

4.1. Susceptible Population 

There was a rapid decrease in the Susceptible population 

due to the occurrence of the disease in Ghana (Figure 2). 

However, with the introduction of containment measures such 

as social distancing and isolation, coupled with improved 

treatment, the susceptible population began to increase. This 

increase can also be attributed to the increased immunity of the 

recovered individuals from the first wave of infections. 

However, as the Susceptible Population increased, many 

people felt they were free from infection and hence failed to 

adequately follow preventive measures. Hence the number of 

infections began to surge rapidly leading to a decrease in the 

Susceptible population. This was followed by an increase in 

the Susceptible population due to a decrease in infections 

which could be attributed to the introduction of vaccines which 

moved individuals to the vaccinated class. This oscillatory 

behavior repeats until the disease becomes extinct or endemic, 

meaning the disease has now come to stay. 

 

Figure 2. Susceptible Population. 

 

Figure 3. Latent Population. 

4.2. Latent Population 

Individuals who left the susceptible population entered the 

latent class because of exposure to the virus. This is where 

the virus begins to incubate inside them. This increases the 

population as seen in Figure 3. It oscillated due to tightening 

measures to control the disease. 

4.3. Infected Population 

As individuals in the population became symptomatic, 

they progressed to the infected class, thereby increasing the 

infected population. Figure 4 shows a sharp increase by entry 

of the latent class individuals into the infected population. 

This population increased until containment measures were 

implemented. The introduction of containment measures, and 

the movement of individuals into the hospitalized class 

caused the infected population to fall. 

 

Figure 4. Infected Population. 

4.4. Hospitalized Population 

The increase in the number of infected individuals led to a 

drastic increase in the hospitalized population as seen in 

Figure 5. The population of this classes decreases afterwards 

due to the recovery of individuals in the class. 

 

Figure 5. Hospitalized Population. 
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4.5. Recovered Population 

As people recovered and left the hospitals, the recovered 

class increased. Ghana recorded about 98 percent recovery 

rate, resulting from effective implementation of containment 

measures which resulted in a steady increase in COVID-19 

cases (see Figure 6). 

 

Figure 6. Recovered Population. 

4.6. Vaccinated Population 

The introduction of vaccines led to an exponential growth 

of the vaccinated population, even though the vaccines 

received in Ghana were woefully inadequate (see Figure 7). 

 

Figure 7. Vaccinated Population. 

5. Conclusion 

The Susceptible-Latent-Infected-Hospitalized-Recovered-

Vaccinated (SLIHRV) was useful in understanding the 

dynamic mechanisms of the transmission and prevention of 

COVID-19 infection in Ghana. The model confirmed the 

stability of the endemic equilibrium, indicating that COVID-

19 would persist in the Ghanaian population. The model also 

manifested that the disease-free equilibrium was stable, 

which means a reduction of COVID-19 infection among the 

population due to the introduction of strict containment 

measures. The findings of the study indicated that if the 

Ghanaian government continued with measures to keep the 

basic reproduction number below 1, it is highly likely that 

they would be able to effectively control the virus and 

possibly eliminate COVID-19 from the population in the 

future. The achieve this goal, the government must make 

every effort to vaccinate more people to immunize the 

population and move most of the people into the vaccinated 

class. The education and awareness about COVID-19 

transmission and prevention must be ongoing to keep the 

population constantly informed to follow preventive 

measures to avoid infection from the virus. 
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