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Abstract : The quotients of Fermat curves Cr,s(p) are studied by SALL who extends the work of Gross and Rohlich. Among
these studies are the cases Cr,s(11) for r = s = 1. COLY and Sall have explicitly determined the algebraic points of degree at
most 3 onQ for the cases Cr,s(11) for r = s = 2. Our work focuses we determine explicitly the algebraic points of a given degree
over on the curve C4,4(11) of affine equation y11 = x4(x − 1)4 which is a special case of Fermat quotient curves. Our study
concerns the cases Cr,s(11) for r = s = 4. This note completes pevious work of Gassama and Sall who explicitly determined
the algebraic points of degree at most three on the even curve. It seems that the finiteness of the Mordell-Weil group of rational
points of the Jacobien J4,4(11)(Q) is an essential condition. So to determine the algebraic points on the curve C4,4(11) we need
a finiteness of the Mordeill-Weill group of rational points of the Jacobien J4,4(11)(Q). The Mordell-Weil group J4,4(11)(Q) of
rational points of the Jacobien is finite according to Faddev. Our note is in this framework. Our essential tools in this note are the
Mordell-Weil group J4,4(11)(Q) of the Jacobien of C4,4(11) the Abel-Jacobi theorem and the study of linear systems on the curve
C4,4(11). The result obtained concerns some quotients of Fermat curves. Indeed, the curve of affine equation y11 = x4(x − 1)4,
we made an extension of the work of work of Gassama and Sall by explicitly determining the algebraic points of given degree
on the curve C4,4(11) and this is what makes this note very interesting.
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1. Introduction
Let C be a smooth algebraic curve defined on Q. Let K be

a field of numbers we note C(K) the set of points on C with
coordinates in K, and

⋃
[K : Q] 6 d C(K) the set of points on

C with coordinates in K of degree at most d on Q. The degree
of a point R of C algebraic on Q is defined as the degree of its
defining field on Q ; in other words deg(R) = [Q(R) : Q].

When C is of genus g ≥ 2, we know since Faltings [5] that
the set of rational points C(Q) is finite. A generalization of this
theorem to subvarieties of abelian varieties obtained by Vojta
and Faltings [4, 16] can also be used to qualitatively describe⋃

[K : Q] 6 d C(K).
In this note, our work will consist in the study of

some particular cases, where particular cases, where
we can determine explicitly the algebraic points of
any degree on the curve of affine equation C4,4(11) :
y11 = x4(x − 1)4. C corresponds to the curve C4,4(11).

Our curve C4,4(11) with affine equation y11 = x4(x − 1)4

is a special case of the quotients of Fermat curves
Cr,s(p) : yp = xr(x − 1)s, 1 ≤ r, s ; r + s ≤ p− 1
studied in [10− 12 ].

The cases Cr,s(11) for r = s = 2 are studied in [1 ].
See [2, 3, 5, 8, 13] for other explicit examples. Indeed,
C corresponds to the curve C4,4(11). The curves Cr,s(p) are
quotients of Fp [7, 16 ].

We denote by J4,4(11) the Jacobien of C4,4(11) and by
j(P ) the class denoted [P − P∞] of P − P∞, that is
to say j is the Jacobien fold C4,4(11) −→ J4,4(11). The
Mordell-Weil group J4,4(11)(Q) of the rational points of the
Jacobien is finite [6, 7, 14 ]. The curve C4,4(11) in projective
is C4,4(11) : Y 11 = X4Z7(X − Z)4. Let us note P0, P1

and P∞ the points defined by : P0 = (0, 0, 1);P1 = (1, 0, 1)
and P∞ = (1, 0, 0).

Gassama and Sall [9], determined the set of algebraic points
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of degree at most 3 on Q of the curve with affine equation
y11 = x4(x − 1)4. We extend this result, giving an explicit
description of the points of any degree on Q on the curve

C4,4(11).
In this note we determine the set :

⋃
[K : Q] 6 l

C4,4(11)(K)

Our main result is the following :
Théorème 1. The set of algebraic points of at most any degree l on Q on the curve C4,4(11) is given by :

⋃
[K : Q] 6 l

C4,4(11)(K) = G0
⋃  ⋃

1≤n610

Gn


where :

G0 =



−
l
2∑

i = 0

αiy
i
2

l−11
2∑

j = 0

βjy
j
2

, y



∣∣∣∣∣∣∣∣∣∣∣∣

(α0 ∧ β0) 6= 0, α l
2
6= 0 if l is even, β l−11

2
6= 0 if l is odd and

y solution of the equation

y11

 l−11
2∑

j = 0

βjy
j
2

4

=

 l
2∑

i = 0

αiy
i
2

2 l
2∑

i = 0

αiy
i
2 +

l−11
2∑

j = 0

βjy
j
2

2



Gn =



−
l
2∑

i = 0

αiy
i
2

l−11
2∑

j = 0

βjy
j
2

, y



∣∣∣∣∣∣∣∣∣∣∣∣

β0 6= 0, α l+11−n
2

6= 0 if l is even, β l−n
2
6= 0 if l is odd and

y solution of the equation

yn

 l−n
2∑

j = 0

β′jy
j
2

4

=

 l+11−n
2∑

i = 11−n
αiy

i+n−11
2

2 l+11−n
2∑

i = 11−n
αiy

i
2 +

l−n
2∑

j = 0

βjy
j
2

2



2. Auxiliary Results

For a divisor D on C, we denote L(D) the Q̄-vector space of rational functions f defined on Q such that f = 0 or
div(f) ≥ −D ; l(D) denotes the Q̄-dimension of L(D).

Lemma 1. we have : J4,4(11)(Q) ∼= Z/11Z
Demonstration : According Gross and Rohrlich ([7], page. 219), we have : J4,4(11)(Q)torsion ∼= Z/11Z and According to

Faddeev [6], we have : J4,4(11)(Q)torsion ∼= J4,4(11)(Q).
Lemma 2. For the curve C4,4(11) : y11 = x4(x − 1)4, we have :
1. div(x) = 11P0 − 11P∞,
2. div(x− 1) = 11P1 − 11P∞,
3. div(y) = 4P0 + 4P1 − 8P∞.

Demonstration : (see [11], Lemme 1)
Corollary 1. The following results are the consequences of Lemma 2.
1. 4j(P0) = − 4j(P1),
2. 11j(P0) = 11j(P1) = 0

So j(P0) and j(P1) generate the same subgroup J4,4(11)(Q) isomorphic to Z/11Z. Thus we have :

J4,4(11)(Q) ∼= Z/11Z = {nj(P0), 0 ≤ n ≤ 10} .

Lemma 3. A Q-base of L(mP∞) is given by :

Bm =

{(
y3

x(x − 1)

)i

, 0 ≤ i ≤ m

2

} ⋃ {
x

((
y3

x(x − 1)

)j
)
, 0 ≤ j ≤ m− 11

2

}
Demonstration :
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It is easy to show that Bm is a free family, it then remains to show that card Bm = dimL(mP∞). We know that the genus

of C is g =
11− 1

2
= 5. Since the curve has genus 5, by the Riemann-Roch theorem, we have dimL(mP∞) = m − g +

1 = m − 4 as soon as m ≥ 2g − 1 = 9. For m < 9, dimL(mP∞) is given by Clifford’s theorem, which says that

dimL(mP∞) ≥ 1

2
deg(mP∞) + 1 =

1

2
m + 1. Two cases are possible :

1. 1st case : suppose that m is even, then m = 2h, we obtain :
i ≤ m

2 ⇔ i ≤ 2h
2 = h in the same way j ≤ m−11

2 ⇔ j ≤ 2h−11
2 ⇔ j ≤ h − 11

2
=⇒ j < h − 10

2 = h − 5 =⇒ j 6 h − 6. So we have :

Bm =

{
1,

(
y3

x(x − 1)

)
, . . . ,

(
y3

x(x − 1)

)h
}⋃{

x, x

(
y3

x(x − 1)

)
, . . . , x

(
y3

x(x − 1)

)h−6}
.

We deduce that : card Bm = h+ 1 + h− 6 + 1 = 2h− 4 = m− 4 = dimL(mP∞).
2. 2nd case : suppose that m is odd, then m = 2h+ 1, we obtain :
i ≤ m

2 ⇔ i ≤ 2h+1
2 ⇔ i ≤ h + 1

2 =⇒ i < h + 1 =⇒ i 6 h in the same way
j ≤ m−11

2 ⇔ j ≤ 2h−10
2 = h − 5. So we have :

Bm =

{
1,

(
y3

x(x − 1)

)
, . . . ,

(
y3

x(x − 1)

)h
}⋃{

x, x

(
y3

x(x − 1)

)
, . . . , x

(
y3

x(x − 1)

)h−6}
.

We deduce that : card Bm = h+ 1 + h− 5 + 1 = 2h− 3 = m− 4 = dimL(mP∞).

3. Demonstration of the Theorem

Let R ∈ C4,4(11)(Q̄) with [Q(R) : Q] = l. Notons R1, . . . . . . , Rl Let R and l be the conjugates of R, and work with
t = [R1 + . . . . . . + Rl − lP∞] which is a point of J4,4(11)(Q) = {nj(P0), 0 ≤ n ≤ 10} ; donc t = nj(P0) with
0 ≤ n ≤ 10, ainsi

[R1 + . . . . . . + Rl − lP∞] = nj(P0) with 0 ≤ n ≤ 10 (i)

We discuss according to the values of n ∈ {0, . . . . . . , 10} :
1. case : n = 0. Th formula (i) becomes : [R1 + . . . . . . + Rl − lP∞] = 0.

According to the Abel-Jacobi theorem there exists then a rational function f defined on Q such that
div(f) = R1 + . . . . . . + Rl − lP∞, donc f ∈ L(lP∞).
According to Lemma 3, we have, :

f =

l
2∑

i = 0

ai

(
y3

x(x − 1)

)i

+

l−11
2∑

j = 0

bjx

(
y3

x(x − 1)

)j

with a0 6= 0 ( otherwise one of the Ri should be equal to P0, which would be absurd ), a l
2
6= 0 if l is even (otherwise

one of Ri would be equal to P∞, which would be absurd) and b l−11
2
6= 0 if l is odd (otherwise one of Ri would be equal

to P∞, which would be absurd).
At the points Ri, we have :

l
2∑

i = 0

ai

(
y3

x(x − 1)

)i

+

l−11
2∑

j = 0

bjx

(
y3

x(x − 1)

)j

= 0

Hence x = −

l
2∑

i = 0

ai

(
y3

x(x − 1)

)i

l−11
2∑

j = 0

bj

(
y3

x(x − 1)

)j
.
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The relation y11 = x4(x − 1)4, involves y3

x(x − 1) = ±y 1
4 . Thus we have :

x = −

l
2∑

i = 0

αiy
i
4

l−11
2∑

j = 0

βjy
j
4

where
{
αi = ±ai
βj = ±bj

.

And as a result :

y11 = x4(x − 1)4 ⇐⇒ y11 =

−
l
2∑

i = 0

αiy
i
4

l−11
2∑

j = 0

βjy
j
4



4−
l
2∑

i = 0

αiy
i
4

l−11
2∑

j = 0

βjy
j
4

− 1



4

⇐⇒ y11

 l−11
2∑

j = 0

βjy
j
4

8

=

 l
2∑

i = 0

αiy
i
4

4 l
2∑

i = 0

αiy
i
4 +

l−11
2∑

j = 0

βjy
j
4

4

The expression :

y11

 l−11
2∑

j = 0

βjy
j
4

8

=

 l
2∑

i = 0

αiy
i
4

4 l
2∑

i = 0

αiy
i
4 +

l−11
2∑

j = 0

βjy
j
4

4

is an equation of degree l in y ; indeed

The first member of the equation is of degree at most equal to 11 + 8

(
l − 11

2

4

)
= l and the second member of the

equation is of degree equal to 2× 4

(
l
2

4

)
= l.

We thus obtain a family of points of degree l :

G0 =



−
l
2∑

i = 0

αiy
i
4

l−11
2∑

j = 0

βjy
j
4

, y



∣∣∣∣∣∣∣∣∣∣∣∣

α0 6= 0, α l
2
6= 0 if l is even, β l−11

2
6= 0 if l is odd and

y solution of the equation

y11

 l−11
2∑

j = 0

βjy
j
4

8

=

 l
2∑

i = 0

αiy
i
4

4 l
2∑

i = 0

αiy
i
4 +

l−11
2∑

j = 0

βjy
j
4

4


2. case : n ∈ {1, . . . , 10} . Formula (i) becomes : [R1 + . . . . . . + Rl − lP∞] = nj(P0), we deduce that

[R1 + . . . . . . + Rl + (11 − n)P0 − (l + 11− n)P∞] = 0.
According to the Abel-Jacobi theorem, there exists then a rational function f defined on Q such that :

div(f) = R1 + . . . . . . + Rl + (11 − n)P0 − (l + 11 − n)P∞,
so f ∈ L((l + 11− n)P∞).
According to Lemma 3, we have :

f =

l+11−n
2∑

i = 0

ai

(
y6

x(x − 1)

)i

+

l−n
2∑

j = 0

bjx

(
y6

x(x − 1)

)j

with b0 6= 0 ( otherwise one of Ri should be equal to P0, which would be absurd ), a l
2
6= 0 if l is even (otherwise one of

Ri would be equal to P∞, which would be absurd) and b l−n
2
6= 0 if l is odd (otherwise one of Ri would be equal to P∞,

which would be absurd).
At points Ri, we have :
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l+11−n
2∑

i = 11−n
ai

(
y6

x(x − 1)

)i

+

l−n
2∑

j = 0

bjx

(
y6

x(x − 1)

)j

= 0

Hence x = −

l+11−n
2∑

i = 11−n
ai

(
y6

x(x − 1)

)i

l−n
2∑

j = 0

bj

(
y6

x(x − 1)

)j
.

In addition
y6

x(x − 1)
= ±y 1

2 , we deduce that :

x = −

l+11−n
2∑

i = 0

α′iy
i
2

l−n
2∑

j = 0

β′jy
j
2

where
{
α′i = ±ai
β′j = ±bi

From the relation y11 = x2(x − 1)2, we deduce, using the same procedure as the previous case, the following equation
in y :

y11

 l−n
2∑

j = 0

β′jy
j
2

4

=

 l+11−n
2∑

i = 11−n
αiy

i
2

2 l+11−n
2∑

i = 11−n
αiy

i
2 +

l−n
2∑

j = 0

βjy
j
2

2

This equation becomes :

yn

 l−n
2∑

j = 0

β′jy
j
2

4

=

 l+11−n
2∑

i = 11−n
αiy

i+n−11
2

2 l+11−n
2∑

i = 11−n
αiy

i
2 +

l−n
2∑

j = 0

βjy
j
2

2

which is an equation of degree l. Indeed :

For l is even or odd, the first member of the equation is of degree equal to n+ 4

(
l − n

2

2

)
= l and the second member

of the equation is of degree equal to 2×

(
l +11 − n

2 + n − 11

2

)
+ 2×

(
l + 11 −n

2

2

)
= l.

We thus obtain a family of points of degree l :

Gn =



−
l
2∑

i = 0

αiy
i
2

l−11
2∑

j = 0

βjy
j
2

, y



∣∣∣∣∣∣∣∣∣∣∣∣

β0 6= 0, α l+11−n
2

6= 0 si l est pair, β l−n
2
6= 0 if l is odd and

y solution of the equation

yn

 l−n
2∑

j = 0

β′jy
j
2

4

=

 l+11−n
2∑

i = 11−n
αiy

i+n−11
2

2 l+11−n
2∑

i = 11−n
αiy

i
2 +

l−n
2∑

j = 0

βjy
j
2

2



4. Conclusion

Our note focuses on the determination of algebraic points
on the curve C4,4(11) of affine equation y11 = x4(x − 1)4.
The curve C4,4(11) is a special case of the quotients of Fermat
curves.

We have determined the algebraic points of any given degree
on the given curve. To be able to do it one of the bases was
determined and then the determination of given degree l of
algebraic points. The determination of the algebraic points of
degree exactly l on the given curve remains to be studied.
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