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Abstract: Heavy alcohol consumption is known to be a major risk factor for disease and death globally. Various studies
have related transmission of alcohol drinking habits with social contacts and peer pressure. Researchers have attempted to
model this contact process through dynamical systems. Departing from this approach, this paper adopts a game theory model
to study the transmission and prevalence of alcohol drinking habits, based on the concept of an evolutionarily stable population
state. The proposed game theoretic model takes into account two scenarios. One deals with populations aged 15+ having two
types of individuals: nondrinkers (N) and drinkers (D) whereas the other divides the same populations into nondrinkers (N),
moderate drinkers (M) and heavy drinkers (H). In the former case, three types of pairwise interactions are possible between these
individuals whereas in the latter, six types. The different possibilities inherent in these types are explained and the payoff matrices
representing the interactions and the resulting gain expressions are presented. The game theoretic models are then analyzed and
evolutionarily stable population states are computed for a few sets of parameter values. The advantage of this model is that
it is found to be beneficial to understand the large time proportions of nondrinkers and drinkers in the population in a simpler
manner than the dynamic system models. The work may be further expanded by dividing the existing classes of non-drinking
and drinking populations on the basis of other critical aspects also.
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1. Introduction

Mathematical models have been widely used to study the
evolution and spread of various infectious diseases. These
models are built mainly based on the contact process and
other underlying phenomena that are inherent in an infectious
disease. With the advancement of mathematical modeling,
researchers have also attempted to model even habits and
phenomena whose acquisition does not usually follow the
patterns of typical epidemiologic contact process, but which
result from some kind of human ‘contact’ process, which can
even be ‘conversion’ contact social process. Models have been
constructed for spread of fanatic behavior [7], smoking habits
[33], transmission of rumors [20], crowd violence [28], the
eating disorder disease ‘bulimia nervosa’ [13], drug use [38],
alcohol drinking habits [4], ‘music fever’ [34], etc.

Alcohol is widely known as a psychoactive substance with
dependence-producing properties whose harmful use ranks
globally among the top five risk factors for disease, disability
and death. The global alcohol per capita annual consumption
among individuals aged 15+ is 6.2 liters of pure alcohol,
whereas the same among drinking population is 17.2 liters.
Worldwide 38.3% of the total population aged 15+ are current
drinkers out of whom 16% are Heavy Episodic Drinkers
(HED)1 [39]. The influence of the family and friends is
central, especially for adolescents and young adults, when
analyzing the onset of alcohol use of an individual [8, 14, 27].
Various studies [1, 2, 11, 29, 30, 37] have found that a
substantial part of the variance in regular drinking habits of
individuals was explained by the drinking habits of family
members and friends and the influence in most cases came
from the closest friend [3, 5, 35, 36]. The very fact that

1 Heavy Episodic Drinking is defined as 60 or more grams of pure alcohol on at least one single occasion at least monthly
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alcohol use is often initiated at a young age [12, 17, 18]
and early onset of alcohol use increases the risk of alcohol
abuse and life time dependence [15, 16] underlines the critical
significance of the above findings. For most of the drinkers
it is observed that inter-personal contacts and peer pressure
play a major role in the onset of alcohol use. These findings
lead one to the conclusion that alcohol drinking habits are
‘transmitted’ through social contacts. Dynamical models [4,
21, 22, 25, 26, 32] have been proposed previously for studying
the effect of social contacts on transmission of alcohol drinking
habits. In this paper a game theoretic approach to explain the
transmission and prevalence of alcohol drinking habits in the
population is introduced. This approach uses the concept of
an evolutionarily stable population state introduced in [23, 24]
and is motivated by earlier successful applications of game
theory in various biological settings [6]. The objective in
this paper is to initiate the use of game models in explaining
transmission and prevalence of ‘social contact habits’ like
alcohol consumption.

2. Description of the Game Theoretic
Model

The proposed game theoretic model takes into account two
scenarios. The first one (2.1) deals with populations aged 15+
having two types of individuals: nondrinkers (N) and drinkers
(D) whereas the other scenario (2.2) divides populations aged
15+ into nondrinkers (N), moderate drinkers (M)2 and heavy
drinkers (H).

2.1. The 2 × 2 Model

A population aged 15+ consisting of two types of
individuals is considered: nondrinkers (N) and drinkers (D).
Three types of pairwise interactions are possible between these
individuals, namely those of nondrinkers with nondrinkers
(NN), nondrinkers with drinkers (ND) and drinkers with
drinkers (DD). In each such interaction the gain of an
individual is assumed to be a combination of complete
cessation of drinking habits, the advantages (health, monetary,
etc.) of being a nondrinker, or the subjective pleasure of being
a drinker. On the other hand, the loss of an individual is
perceived to be the disadvantages of being a drinker. When
a nondrinker interacts with a nondrinker (NN interaction)
no gain/loss is expected through reduction/acquisition of
drinking levels; but there is a reinforced health and monetary
advantage to these individuals which is quantified as bn. In DD
interactions, though the cessation of drinking habit is unlikely,
both drinkers have other disadvantages such as health and
monetary decline, which will be quantified as `d. If a drinker
assigns more weight to the pleasure aspects of drinking than
health/monetary aspects, then `d will be taken to be negative.

As a result of ND interaction, there are four possibilities
respectively occurring with probabilities pi, i = 1, 2, 3, 4. In
each case the average gain of nondrinkers and drinkers are

denoted by gind(n) and gind(d), i = 1, 2, 3, 4 respectively.
In the first case, nondrinker will have no change while the
drinker would start behaving as nondrinker (ND → NN).
The average gain for nondrinker in this case is g1nd(n) =
1
2 (bn + cdn), which is the average of the benefit bn of being
a nondrinker and the gain cdn of a drinker behaving as a
nondrinker. Clearly as no drinker remains after this type
of interaction, the gain of a drinker g1nd(d) is taken to be
0. Similarly in the second case where drinker will have no
change while nondrinker becomes a drinker (ND → DD),
g2nd(n) = 0, and g2nd(d) = 1

2 (−`d − dnd), where dnd denotes
the loss of a nondrinker when becoming a drinker. The third
case corresponds to the situation where both nondrinker and
drinker getting changed (ND → DN). Here g3nd(n) = cdn
and g3nd(d) = −dnd. In the last case no change occurs for both
nondrinker and drinker (ND → ND). Here g4nd(n) = bn and
g4nd(d) = −`d. Therefore the average gains of nondrinkers and

drinkers resulting from ND interactions are
4∑

i=1

pig
i
nd(n) and

4∑
i=1

pig
i
nd(d) respectively.

The above mentioned types of interactions and the resulting
gains can be represented using the following payoff matrix:

A =

N D


N bn

4∑
i=1

pig
i
nd(n)

D

4∑
i=1

pig
i
nd(d) −`d

2.2. The 3 × 3 Model

In the scenario of this subsection, the population aged
15+ consists of three types of individuals: nondrinkers (N),
moderate drinkers (M) and heavy drinkers (H). As a result,
six types of pairwise interactions are possible. In each such
interaction the gain of an individual is assumed to be a
combination of reduction in his/her drinking levels, complete
cessation of drinking habits, the advantages (health, monetary,
etc.) of being a nondrinker, or the subjective pleasure of being
a drinker. As in the 2× 2 model (2.1), the loss of an individual
is the increase in drinking levels or the disadvantages of being a
drinker. In the NN interaction no gain/loss is expected through
reduction/acquisition of drinking levels; however there is a
reinforced health and monetary advantage bn. In MM(HH)
interactions, though the reduction/increase in drinking levels
are unlikely, both drinkers have other disadvantages such as
health and monetary decline, which are denoted by `m(`h).As
in the previous subsection, if a drinker assigns more weight to
the pleasure aspects of drinking than health/monetary aspects,
then `m and `h will be taken to be negative.

There are four possibilities in NM interaction, respectively
occurring with probabilities pi, i = 1, 2, 3, 4. In each case the

2 For women(men), moderate drinking is usually defined as no more than 3(4) drinks on any single day and no more than 7(14) drinks per week.
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average gain of nondrinkers and moderate drinkers is denoted
by ginm(n) and ginm(m), i = 1, ..., 4 respectively. In the
first possibility, nondrinker will have no change while the
moderate drinker would behave as nondrinker (NM → NN).
The average gain for nondrinker in this case is g1nm(n) =
1
2 (bn + cmn), which is the average of the benefit bn of being
a nondrinker and the gain cmn of a moderate drinker behaving
as a nondrinker. As in the 2× 2 model, as no moderate drinker
remains after this type of interaction, the gain of moderate
drinker g1nm(m) is taken to be 0. Similarly in the second case
where moderate drinker will have no change while nondrinker
assumes the drinking role of moderate drinkers (NM →
MM), g2nm(n) = 0, and g2nm(m) = 1

2 (−`m − dnm),
where dnm denotes the loss of a nondrinker when becoming
a moderate drinker. The third possibility corresponds to the
situation where both nondrinker and moderate drinker getting
changed (NM →MN).Here g3nm(n) = cmn and g3nm(m) =
−dnm. In the last case both nondrinker and moderate drinker
remain unchanged (NM → NM). Here g4nm(n) = bn and
g4nm(m) = −`m. This leads the average gain expressions

of nondrinkers and moderate drinkers as
4∑

i=1

pig
i
nm(n) and

4∑
i=1

pig
i
nm(m) respectively.

Similarly as in the previous paragraph, in NH interaction
also, there are four possibilities respectively occurring with
probabilities qi, i = 1, 2, 3, 4. In each case the average
gain of nondrinker and heavy drinker are denoted by
ginh(n) and ginh(m), i = 1, 2, 3, 4. respectively. In the
first type of transition, nondrinker will have no change while
the heavy drinker behaves as a nondrinker (NH → NN).
The average gain for nondrinker in this case is g1nh(n) =
1
2 (bn + chn), which is the average of the benefit bn of being a
nondrinker and the gain chn of a heavy drinker behaving as a
nondrinker and g1nh(h) is taken to be 0. In the second case
where heavy drinker will have no change while nondrinker
assumes the drinking behavior of heavy drinker (NH →
HH), g2nh(n) = 0, and g2nh(h) = 1

2 (−`h − dnh), where dnh
denotes the loss of a nondrinker when behaving as a heavy
drinker. Corresponding to the case where both nondrinker
and heavy drinker getting changed (NH → HN), g3nh(n) =
chn and g3nh(h) = −dnh. When no change occurs for both
nondrinker and heavy drinker, (NH → NH), g4nh(n) =
bn and g4nh(h) = −`h. In this possibility, the average

gain of nondrinkers and heavy drinkers is
4∑

i=1

qig
i
nh(n) and

4∑
i=1

qig
i
nh(h) respectively.

In the final type of interactions (MH), four possibilities
respectively occurring with probabilities ri, i = 1, 2, 3, 4 are
considered. In each case the average gain of moderate drinkers
and heavy drinkers is denoted by gimh(m) and gimh(h), i =
1, 2, 3, 4, respectively. As in the above types of interactions,
the gain expressions as obtained as follows:

g1mh(m) =
1

2
(−`m + chm),

g1mh(h) = 0, g2mh(m) = 0,

g2mh(h) =
1

2
(−`h − dmh),

g3mh(m) = chm, g
3
mh(h) = −dmh,

g4mh(m) = −`m,

g4mh(h) = −`h,

4∑
i=1

rig
i
mh(m)

and
4∑

i=1

rig
i
mh(h).

These interactions and the resulting gain expressions can be
represented using the following payoff matrix:

A =

N M H



N bn

4∑
i=1

pig
i
nm(n)

4∑
i=1

qig
i
nh(n)

M

4∑
i=1

pig
i
nm(m) −`m

4∑
i=1

rig
i
mh(m)

H

4∑
i=1

qig
i
nh(h)

4∑
i=1

rig
i
mh(h) −`h

In the next section an evolutionarily stable state (ESS) of a
matrix game is defined and its relevance to the game models
depicted above is explained.

3. ESS and Its Computation

3.1. Description of ESS

A population state x = (x1, x2, ..., xk) in a k by k matrix
game represents the proportions of k types of individuals in
the whole population. One is interested in finding population
states which are “evolutionarily stable” in the following sense:

Definition 3.1. [23, 24] A population state x∗ =
(x∗1, x

∗
2, ..., x

∗
k) in the matrix game A is said to be an

evolutionarily stable state (ESS) if for every mutant state x 6=
x∗, there is ε∗ ∈ (0, 1) such that

x∗A(εx+ (1− ε)x∗)T > xA(εx+ (1− ε)x∗)T , 0 < ε < ε∗.
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It may be noted that a population state x∗ is an ESS exactly
when it can withstand mutations arising in small proportions.
The concept of ESS may also be considered as a refinement
of Nash equilibria [10, 31]. The next theorem gives a set of
necessary and sufficient conditions for a population state to be
an ESS.

Theorem 3.1. [9, 19] A population state x∗ is an ESS if and
only if the following two conditions are satisfied:
(E1) (Ax∗

T

)i ≤ x∗Ax∗
T

; i = 1, 2, ..., k,

(E2) x∗AyT > yAyT whenever y 6= x∗ and x∗Ax∗
T

=

yAx∗
T

.
The next theorem [9, 19] is more useful in analyzing the 2
× 2 model:

Theorem 3.2. Let k=2 and A = [aij ] be the payoff matrix.
Assume that a11a22 6= 0. Then exactly one of the following
holds true:
(F1) If a11 > a21 and a22 > a12, then the game has exactly

two ESS, namely (1,0), (0,1).
(F2) If a11 < a21 and a22 < a12, then the game has exactly

a unique ESS given by

(
a22 − a12

a11 − a21 + a22 − a12
,

a11 − a21
a11 − a21 + a22 − a12

).

(F3) If a11 > a21 and a22 < a12, then (1,0) is the only ESS.
(F4) If a11 < a21 and a22 > a12, then (0,1) is the only ESS.

Using Theorems 3.1 and 3.2 the above game theoretic
models are analyzed and evolutionarily stable population states

for a few sets of parameter values are found:

3.2. Computation of ESS

To apply Theorem 3.2 in the context of 2 × 2 model, it may
be noted that

a11 = bn,

a12 = bn(
p1
2

+ p4) + cdn(
p1
2

+ p3),

a21 = −`d(
p2
2

+ p4)− dnd(
p2
2

+ p3), (1)

a22 = −`d.

Example 3.1.
In this example, the 2 × 2 model where the benefits of

being a nondrinker (bn), the loss of being a drinker (`d), the
gain of a drinker becoming nondrinker (cdn) and the loss of
a nondrinker becoming a drinker (dnd) are all positive, is
considered. This indicates that the health/monetary decline
due to drinking is given more importance than the pleasure
benefits due to drinking. From (1) clearly a11 > a21 and
a22 < a12, which, by theorem 3.2 imply that the only ESS
is x∗ = (1, 0). This is consistent with the reality that all
individuals in the population tend to be nondrinkers when
drinking is realized as harmful.

Example 3.2.
In the 2 × 2 model where

bn < −
(
`d(

p2
2

+ p4) + dnd(
p2
2

+ p3)
)

and
−`d <

(
bn(

p1
2

+ p4) + cdn(
p1
2

+ p3)
)
,

From theorem 3.2 one has the unique ESS,

x∗ = (x∗1, 1− x∗1),

x∗1 =
−
(
`d + bn(p1

2 + p4) + cdn(p1

2 + p3)
)

(
bn + `d(p2

2 + p4) + dnd(p2

2 + p3)
)
−
(
`d + bn(p1

2 + p4) + cdn(p1

2 + p3)
) .

For instance, one obtains x∗ = (0.6054, 0.3946) when
bn = 1, `d = −2, cdn = 20, dnd = −5.5, p1 = 0.25, p2 =
0.35, p3 = 0.05, p4 = 0.35. This means that the stable
population state x∗ consists of 61% nondrinkers and 39%
drinkers approximately , which is very close to the global
proportions of nondrinkers and drinkers [39].

In the next three examples the 3 × 3 model using Theorem
3.1 is illustrated.

Example 3.3.
It is assumed bn = 1. The loss of being a moderate drinker

is assumed to be higher in magnitude than the gain of being a
nondrinker, and hence `m = 2 is taken. By a similar reasoning
`h = 4 is taken. The probabilities of various cases occurring
in NM interactions are taken to be p1 = 0.2, p2 = 0.3, p3 =

0.1, and p4 = 0.4. In this example, the probabilities qi, ri
are also taken to be the same as pi. As the assumption is that
the benefit of a moderate drinker becoming a nondrinker does
not exceed the same for an already nondrinker, cmn = 0.7
is taken. Likewise, chn = 0.6 and chm = 0.4 are also
taken. Analogous arguments lead us to the choices of dnm =
1.5, dnh = 3, and dmh = 2.5. Thus our pay off matrix
becomes

A =

 1 0.64 0.50
−1.475 −2 −0.92
−2.95 −2.825 −4

 .
It can be verified that the only ESS for this set of parameter

values is x∗ = (1, 0, 0). This means that in a population of
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nondrinkers, moderate and heavy drinkers appearing in small
proportions gain less than that of nondrinkers.

Example 3.4.
In this example also, take bn = 1. The scenario wherein

individuals give more weight to pleasure arising out of
drinking than its health/monetary disadvantages is considered,
and hence `m and `h are taken to be -3 and -4 respectively.
The probabilities of various cases occurring in NM, NH and
MH interactions are assumed to be p1 = 0.4, p2 = 0.3, p3 =
0.05, p4 = 0.25, q1 = 0.3, q2 = 0.2, q3 = 0.1, q4 =
0.4, r1 = 0.3, r2 = 0.2, r3 = 0.15, and r4 = 0.35.

The remaining parameters are cmn = 20, chn =
28, chm = 26, dnm = −9.5, dnh = −10, and dmh =
−12.

Note that relatively higher values for cmn, chn, chm indicate
that individuals are influenced by various means to curtail their
drinking habits even while they seek pleasure in the same. The
negative values of dnm, dnh and dmh point to the prevalent
assumption of drinkers about the inherent pleasure attached to
drinking. These parameters yield the payoff matrix as

A =

 1 5.45 7.55
3.1 3 9.3
4 4.8 4

 .
Using Theorem 3.1 it can be shown that the only ESS is

x∗ = (0.3448, 0.4454, 0.2098). This stable population state
consists of approximately 34% nondrinkers, 45% moderate
drinkers and 21% heavy drinkers.

Remark 3.1. Even though the above two 3 × 3 examples
may not reflect the actual proportions of nondrinkers and
drinkers, they serve the purpose of illustrating the game
theoretic model explained in the previous section. The next
example captures the social drinking scenario in a more
realistic way.

Example 3.5.
This example is obtained by slightly changing some of

the parameter values given in the previous example. More
precisely,
bn = 1, `m = −2.8, `h = −3.9, p1 = 0.5, p2 =

0.2, p3 = 0.05, p4 = 0.25, q1 = 0.45, q2 = 0.25, q3 =
0.1, q4 = 0.2, r1 = 0.55, r2 = 0.1, r3 = 0.05, r4 =
0.3, cmn = 20, chn = 28, chm = 27, dnm = −9.5, dnh =
−10, and dmh = −14.5.

The payoff matrix is

A =

 1 6.5 9.525
2.4050 2.8 10.385
3.5175 2.815 3.9


and the unique ESS is x∗ = (0.6280, 0.2637, 0.1083).
Here it is observed that the stable population state contains
approximately 63% nondrinkers, 26% moderate drinkers and
11% heavy drinkers which closely resembles the actual
proportions mentioned in the introduction [39]. In the next
section the replicator dynamics associated with the game is
dealt with and ESS as limit of its trajectories is obtained.

4. ESS as Limit of Replicator
Trajectories

The replicator dynamics corresponding to the matrix game
A is given by

ẋi = xi[(Ax
T )i − xAxT ], i = 1, 2, · · · , k. (2)

The next result is helpful to interpret ESS as limit of
replicator trajectories:

Theorem 4.1. [9, 19] For the replicator dynamics 2, one has
the following:

1. The simplex of all population states and its faces are
forward invariant.

2. If x∗ is an ESS, then it is an asymptotically stable state
of 2. If in addition xi(0) > 0 for i = 1, 2, · · · , k, then
the basin of attraction of x∗ is the interior of the simplex
of populations states.

5. Concluding Remarks
It is a known phenomenon that alcohol drinking habits

are to a great extent transmitted through social contacts and
peer pressure. Motivated by this observation, different from
the existing dynamic models based on diferential/difference
equations, in this paper our objective has been to introduce
a game theoretic model to explain the prevalence and
transmission of alcohol drinking habits. The concept of ESS
is used to identify the stable population states in our game
theoretic model. For two general classes of 2 × 2 model, the
proposed game approach has been illustrated. Furthermore,
for three sets of specific parameter values, after computations
using Theorem 3.1, stable population states for the 3 × 3
model are obtained. In particular the stable population states
x∗ = (0.6054, 0.3946) and x∗ = (0.6280, 0.2637, 0.1083)
in examples 3.2 and 3.5 reflect the proportions, available in
global reports [39], of nondrinking and drinking classes in
the population very closely. Other examples point out how
the proportions of nondrinking and drinking classes vary with
the changes in the model parameters. Parameters used in
these examples are hypothetical and their accurate estimation
is essential for the more realistic predictions using this model.
An obvious advantage of this game theoretic approach is that
it is comparatively much simpler than its dynamic model
counterparts in understanding the large time population state.
An interesting future work is to introduce more explicit
dynamic models into this game theoretic approach using
various game dynamics. Furthermore, one can divide the
existing classes of non-drinking and drinking populations on
the basis of other critical aspects such as sex and age to explain
the transmission and prevalence of drinking habits at a finer
level.
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