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Abstract: E. Michael, in 1957, proved that the pracompactness is preserved by continuous closed functions from a space onto
another. Michael’s proof is an immediate consequence of his characterization of paracompact spaces as those spaces with the
property that each open cover of the space has a closure preserving refinement. Normality and transfinite induction were used to
produce this characterization. J. M. Worrell, in 1985, proved, using the well-ordering principle, that continuous closed images
of metacompact spaces are metacompact, as a consequence of a characterization of metacompact spaces he established earlier
the same year. C. H. Dowker and R. N. Banerjee have provided the corresponding results for countable paracompactnes and
countable metacompactness. In this article we extend these results for continuous, image closed and onto multifunctions. A
result due to Joseph and Kwack that all open sets in Y have the form g(V) — g(X — V'), where V is openin X, ifg: X = Y
is continuous, closed and onto (2006), is extended to image-closed, continuous, multifunctions. Such multifunctions as well as
a characterization that a space is paracompact (metacompact) if and only if every ultrafilter of type P (M) converges, proved,
in 1918, by Joseph and Nayar, is used to give generalizations of the invariance of paracompactness and metacompactness under
continuous closed surjections to multifunctions.
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preserving refinement. A family A of subsets of a space is
said to be closure preserving if cl(Ugc g B) = Upen clB
for every subcollection M C A [8]. Normality and transfinite

1. Introduction and Preliminaries

A multifunction from a set X to a nonemty set Y is a

function from X to 2¥ — {0} where 2Y is the power set of
Y. Denote the collection of multifunctions from X to Y by
M(X,Y). The concept of a multifunction, also known as a
set-vlaued function, has been in the Iterature for long time and
has been used by several researchers to invesitigate different
topooical properties. E. Michael proved that continuous closed
images of paracompact spaces are paracompact [15]. A space
is paracompact if each open cover of the space has a locally
finite open refinement. A collection S of subsets of of a
space X is locally finite if for each x € X,V NS = 0
for some open set V' about x and all but a finite number of
S € S. Michael’s proof is an immediate consequence of his
characterization of paracompact spaces as those spaces with
the property that each open cover of the space has a closure

induction were used to produce this characterization [15]. A
space is metacompact if each open cover of the space has a
point finite open refinement. A collection S of sets of a space
X is called point finite if each x € X,z ¢ S for all but
finitely many elements S of S. J. M. Worrell proved, using
the well-ordering principle, that continuous closed images of
metacompact spaces are metacompact.[24]. This was done as
a consequence of a characterization of metacompact spaces
established in [23]. These theorems, as well as theorems of
Dowker and Banerjee are extended to multifunctions, using
a different characterization of image-closed multifunction,
without using normality, transfinite induction or the well-
ordering principle [7], [1].

Another generalization of the theorem for the preservation
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of paracompactness and metacompactness by continuous,
closed surjections is also provided here wusing a
characterization of paracompact spaces (metacompact spaces)
in terms of ultrafilters. It was proved that a space X is
paracompact (metacompact) if and only if every ultrafilter
of type P (type M) converges in X[14]. A filter is of type
P (M) if every locally ultimately dominating (l.u.d.) (point
dominating (p.d.)) subcollection of the filter has non-empty
adherence. Definitions of l.u.d. and p.d. families, ultrafilter of
type P (type M) and related concepts are given in detail later.
This result is then extended to multifunctions.

Here, basic definitions and related properties of
multifunctions are given. No particular source is cited for these
concepts here but are included for completeness and for easy
reference for the readers. The image of A C X (respectively,
inverse image of B C Y) under p € M(X,Y) is Ugeap(x)
(respectively, {z € X : p(z) N B # (0}) and will respectively
be denoted by ¢(A) and ¢~ 1(B). If X and Y are topological
spaces, and A C X, ¥ A will represent the family of open
sets which contain A. A multifunction ¢ € M(X,Y) is upper
semi-continuous (u.s.c.) (respectively, lower semi-continuous
(L.s.c.)) atz € X if foreach U € Yp(x) thereisa V € X{z}
such that (V) C U (respectively, V. C = 1(U)), where
Y {x} represents the collection of open sets containing = and
o is u.s.c.(respectively, Ls.c.) if ¢ is u.s.c. (respectively, L.s.c)
at each x € X. It is not difficult to see that ¢ € M(X,Y)
is u.s.c. (respectively, 1.s.c.) if and only if ¢ ~*(B) is closed
(respectively, open) for each closed (respectively, open) subset
B of Y. A multifunction ¢ € M(X,Y) is continuous if
@ is both u.s.c and ls.c. and ¢ € M(X,Y) is said to be
image-closed if p(A) is closed for each closed subset A of X.

The concept of f-closure of a set was introduced by Velicko
for study of H-closed spaces [21]. If A C X, the 8-closure of
A, denoted as clp(A) = {x € X : ANclU # 0} foreach U €
Y{z}. Aset Ais 0-closed if A = clyA. For a filterbase F,
0-adherence is denoted as adhgF and adhoF = Nx(clgF).
This concept has been an effective tool for investigators since
then [4], [10]. A multifunction ¢ € M(X,Y) is strongly
subclosed if adhgp(T(x)) C ¢(x) for each x € X for which
I(z) = {V — {2z} : V € ¥{z}} is a filterbase on X; ¢ is
said to be strongly closed if adhgp(X{x}) C p(z) for each
r € X [10]. It is shown that ¢ is strongly closed if and
only if it is strongly subclosed and ¢(z) is 6-closed for each
z € X [10]. A function g : X — Y has strongly subclosed
inverse, (respectively, strongly closed inverse, if the relation
g~! 1Y — X is strongly subclosed (respectively, strongly
closed). It is not difficult to show that continuous and in fact
f-continuous functions have strongly subclosed inverses [10].

2. Methods

The following concepts and methods are used to provide
alternate proofs of theorems of Michael and Worrell and then
the proofs of theorems of Dowker and Baerjee, extended to
multifunctions. One of them is based on the generalization of
the characterization of a continuous, closed and onto function

provided by Joseph and Kwack to multifunctions [11]. The
other method is based on the ultrafilter characterization of
paracompactness and metacompactness provided by Joseph
and Nayar[14]. These results are extended to multifunctions
and details of these characterizations and the extension to
multifunctions are given below.

It was shown that a function g : X — Y is a closed function
if and only if g(X) is closed in Y and g(V) — g(X — V)
is open in g(X) for each V open in X [11]. This result is
generalized to multifunctions and this generalization is used
throughout this article. These results on closed functions and
some results based on this characterization, are stated here.

Lemma 2.1. Let X and Y be spaces. Theng : X — YV
is a closed function if and only if g(X) is closed in ¥ and
g(V) —g(X — V) is openin g(X), whenever V is open in X
[11].

Corollary 2.1. Let X and Y be spaces. Then g : X — Y is
a closed function onto Y if and only if g(V) — g(X — V) is
open in Y for each open subset V' of X [11].

Corollary 2.2. Let X and Y be spacesandlet g : X — Y
be a continuous, closed function onto Y. Then the topology on
Yis{g(V)—g(X —V):Vopenin X} [11].

Proof. Note that for each W, open in Y, g~ (W) is open
in X and W = g(g= (W) — g(X — g~ 1(W)). Also for each
open subset V of X, g(V) — g(X — V) isopeninY.

Next are presented generalizations of the above results to
M(X,Y), proving that (V) — (X — V') where V is open
in X,isopeninY,if ¢ € M is u.s.c., image-closed and onto.

Theorem 2.1. If X, Y are spaces, then ¢ € M(X, Y) is
image-closed if and only if 1) ¢(X) is closed in Y and 2)
o(V) — (X — V) is open in p(X) for each V open in X.

Proof. Assume ¢ is image-closed. Clearly ¢(X) is closed
inY. If V is open in X then o(X) — [p(V) — p(X = V)] =
P(VU(X = V)~ [p(V) = p(X = V)] = (X — V). Hence
p(V)—@(X —V)is openin ¢(X). For the converse, let I be
closed in X, ¢(X) closed in Y and suppose o(V) — (X —V)
is open in ¢(X) for every open V in X. Then (X ) —(F) =
(X — F) — ¢(F) and thus ¢(F) is closed in ¢(X) and
consequently in Y.

The proof of the next result follows easily, since for a
continuous ¢ € M(X,Y), ¢~1(V) is open in X, when V
is open in Y. Also for a multifunction ¢ € M(X,Y), for
W CY,W C ¢(p tW). However, we have the following
corollary:

Corollary 2.3.If X, Y are spaces, then ¢ € M(X,Y) is
image-closed, onto and continuous, then {p(W)—p(X —-W) :
Wopen in X} is open in Y.

Theorem 1.1 may be used to give another characterization
of u.s.c multifunctions.

Corollary 2.4.1f X, Y are spaces, p € M(X, Y)is us.c.
if and only if = }(W) — ¢~ 1(Y — W) is open in X for each
W openinY.

Proof. The proof is straightforward, since ¢ € M(X, Y)
is ws.c., if and only if ¢~1(B) is closed for each closed
B C Y. Apply the Theorem 1.1 to the inverse multifunction
el Y = X,

A space X is collectionwise normal [8] if for each discrete
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collection C of non-empty closed subsets of X, there is a
disjoint collection of open subsets O of X such that for each
F € Csome O € O satisfies F' C O.

A family of subsets of a space X is discrete [8] if for each
x € X has a neighborhood which intersects at most one
member of the family. It is to be noted that a discrete family of
non-empty closed subsets is a disjoint family of closed sets.
Also, if {As|la € A} is a collection of pairwise disjoint,
closure preserving family of non-empty closed subsets, then
it is a discrete collection of non-empty closed sets. For, if for
x € X, if x € UA,, say, ¢ € Ag, then X — (Unzp44)
is an open set containing x and it intersects only Ag. If
x ¢ UA,, then X — UA, is an open set which does not
intersect any Aa. So, the collectionwise normality is also
defined as: A space X is collectionwise normal if for each
collection C of non-empty disjoint, closure preserving closed
subsets of X, there is a disjoint collection of open subsets O
of X such that for each F' € C some O € O satisfies F' C O.
Moreover, if a metacompact space X has the property that for
each collection C of non-empty disjoint closed subsets of X,
there is a disjoint collection of open subsets O of X such that
for each F' € C some O € O satisfies F© C O, then every
discrete family of closed sets also has the property and hence
the space is collectionwise normal and paracompact, since
a metacompact collectionwise normal space is paracompact.
This observation was used in [13]. Relationshsips between
collectionwise normality, paracomapctness, metacompactness
etc. can be found in many literature on Topology [3], [8].

The characterizations of a closed function, g : X — Y,
stated in Lemma 1.1 and Corollary 1.1 are used to show
that a continuous closed onto image of a normal space under
the function is normal [11]. The following is true for u.s.c.
multifunctions. With the above observations, the following
Theorem has the same line of proof as in [13]. It is included
here for completeness.

Theorem 2.2. Let X be a collectionwise normal space and
p € M(X,Y) be u.s.c., image-closed, onto, with the property
that AN B = () in Y implies that =1 (A) N¢~1(B) = 0 in
X. Then Y is collectionwise normal.

Proof. Let {M, : n € Q} be a discrete collection of
non-empty closed subsets of Y. Then, since ¢ is u.s.c. and
onto Y, with the property that A N B = () in Y implies that
e M A) N Y(B) =0, {1 (M,) : n € Q} is a family of
discrete collection of non-empty closed subsets of X. For, for
each y € Y, there is an open set N, C Y, with N, N M,, # 1]
for utmost one n € Q. Also for z € X, there is y € ¢(x)
and for that y, N, N M,, # ( for utmost one n € €. Then
z € ¢ Y(N,) and =1 (N,) N~ (M,,) # 0 for utmost one
n € (1, with the hypothesis. Since X is collectionwise normal
there exist a collection of {O,, : n € Q} of disjoint open
subsets with ¢ ~1(M,,) C O,, for each n. So,

M, C 9(On) — (X — On).

Moreover,

(@(On> - (p(X - On)) n (7:7(07%) - (p(X - Om)) = @7

Hence Y is colllectionwise normal.

Corollary 2.5. Let X be a collectionwise normal space and
g : X — Y be continuous, closed and onto. Then Y is
collectionwise normal.

Corollary 2.6. Let X be a normal space and ¢ € M(X,Y)
be u.s.c., image-closed, onto, with the property that AN B = ()
in Y implies that ¢=1(A) N =1 (B) = 0 in X. Then Y is
normal.

In the hypotheses of Theorem 1.2 and Corollary 1.6, we
assumed that the multifunction ¢ € M(X,Y) is u.s.c., image
closed, onto and with the property that AN B = () implies that
e H(A) N Y(B) = 0 where A, B C Y . In the following
theorem we show that such a multifunction is Ls.c. also.

Theorem 2.3.1f ¢ : X — Y is an image closed, u.s.c.
multifunction onto Y, with the property that ANB = (J implies
that =1 (A) N p~1(B) = ) where A, B C Y, then ¢ is Ls.c.
and hence is continuous.

Proof. Let A C Y be open. Then, in view of Theorem 1.1
0 Y (A)—p (Y —A)isopenin X. Note that (Y —A)NA =0
and hence, in view of the assumption, p~1(A) — o~ }(V —
A) = o7 1(A) since 7 (A) N~ (Y — A) = 0. Therefore,
@ 1(A) is open in X. Therefore, ¢ is l.s.c. and since it is also
u.s.c., it is continuous. The proof is complete.

In section 2 of this article, some applications of the Lemma
1.1 are given. Several applications of this characterization of
closed function exist. However, stated here in this section are
just a few: some characterizations of the class of C-compact
spaces and the class of functionally compact spaces. A space
X is C-compact V such that {cIV : V € V} covers A [22].
A space X is functionally compact if each open filterbase 2
on X satisfying A(Q2) = I(Q) is an open set base for ()
where A(Q) is the set of adherent points and () is the set of
intersection of all members of €2 [2].

In section 3, the characterization for image-closed,
continuous onto multifunction, developed in section 1 is
used to give generalizations of the theorems of Michael,
Dowker, Worrell, and Banerjee and prove that if X is
paracompact, countably paracompact, metacompact, and
countably metacompact and ¢ € (X,Y") is an image-closed,
continuous, multifunction onto Y, then Y is, respectively,
paracompact, countably paracompact, subsetmetacompact,
and countably subsetmetacompact. Then use the same line
of proof to deduce that paracompactness, metacompactness,
countable paracompatness and countable metacompactness are
preserved by continuous, closed and onto functions. Ultrafilter
characterizations of these spaces, are used to give other
proofs that the above concepts are preserved by continuous,
closed onto functions [14]. Also using the fact that every
metacompact, collectionwise normal space is praracompact
and Theorem 1.2 along with Corollary 3.1, another proof is
given to show that paracompactness is preserved by continous,
closed and onto functions. independent proofs of these results
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are given in [13].

It is to be noted, as stated in the introduction, that the proofs
provided here do not assume normality of the space. Also,
using a characterization of normal, countably paracompact
spaces by Dowker, it can be shown that the continuous, closed,
image of a normal, countably paracompact space is countably
paracompact [7], [8].

A cover D of a space X is a locally finite refinement of a
collection A if each D € D is a subset of some member of A,
and D is loally finite.

The applications of Lemma 1.1, indicated in this section,
are direct consequences of Lemma 1.1 and results which are
already established. They are pointed out here as illustrations
of the existence of consequences of Lemma 1.1 producing
new properties or characterizations of well-known classes of
spaces.

Viglino introduced the class of C-compact spaces, and
showed that every continuous function from a C-compact
space to a Hausdorff space is closed [22]. This property of C-
compact spaces and the characterization of closed function in
Lemma 1.1 give the following property of C-compact spaces.

Theorem 2.4.Let X be a C-compact space and g be a
continuous function on X. Then (1) g(X) is closed and (2)
g(V) —g(X — V) is open in g(X) for every open subset V' of
X

It is shown that a space X is C-compact if and only if all
functions on X with strongly subclosed inverses are closed
functions [16]. In view of this characterization and Lemma
1.1, a new characterization for C-compact spaces is obtained.

Theorem 2.5. A space X is C-compact if and only if for all
functions g on X with strongly subclosed inverses, (1)g(X) is
closed and (2) g(V) — g(X — V) is open in g(X ) whenever
Vis openin X.

Dickman and Zame gave the following characterization of
a functionally compact space: A space X is functionally
compact if and only if every function from X into a Hausdorff
space is closed [5]. In view of this, the following new
characterization of functionally compact spaces follows as
another application of Lemma 1.1.

Theorem 2.6. A space X is functionally compact if and only
if for each continuous function on X, (1) g(X) is closed and
(2) g(V) — g(X — V) is open in g(X) for every open subset
V of X.

It is shown that a space X is functionally compact if and
only if each function on X with strongly closed inverse is a
closed function [12]. Using this result and the Lemma 1.1,
the following characterization of functionally compact spaces
comes.

Theorem 2.7. A space X is functionally compact if and only
if for each function g on X with strongly closed inverse, (1)
g(X) is closed and (2) g(V) — g(X — V) is open in g(X)
whenever V' is an open subset of X.

Using the chacaterization of image-closed multifunction
given in the Theorem 1.1 above and considering that for each
functiong : X — Y, g7' : Y — X is a multifunction,
the characterizations for C-compact spaces and functionally
compact spaces given in Theorems 2.2 and 2.4 can be extended

to multifunctions as follows:

Theorem 2.8. A space X is C-compact if and only if for all
multifunctions ¢ € M(X,Y") with strongly subclosed graphs,
(1) (X) is closed and (2) (V) — (X — V) is open in p(X)
whenever V is open in X.

Theorem 2.9. A space X is functionally compact if and only
if for all multifunctions ¢ € M(X,Y") with strongly closed
graphs, (1) ¢(X) is closed and (2) ¢(V) — (X — V) is open
in ¢(X) whenever V is open in X.

3. Results

Here, are presented proofs of extensions of Theorems
of Michael, Dowker, Worrell, and Bnerjee for M(X,Y).
Corresponding to each open cover of Y, there is an open cover
0 of X and sets of the form p(V) —p(X —V') where V € 0, is
acover of Y if ¢ € M(X,Y) is continuous image-closed and
onto Y. We introduce the following definition to fecilitate the
multifunction generalaization of continuous closed invariance
of metacompactness.

Definition 3.1. A space X is called compact-metacompact
if for each open cover S of X, there is an open refinement R
of S and a collection of compact subsets 7 of X such that
RNT = ( for all but finitely many R € R, T € T.

Note that every metacompact space 1is compact-
metacompact since the collection {{z} : = € X} is a
collection of subsets which will satisfy the condition of
compact-metacompactness, if the space is metacompact.
Considering the image of a metacompact space under
multifunctions, for each x € X, p(x) is a set, not necessarily
a single point set. Moreover, for each z € X, ¢(x) is compact
since ¢ is continuous, image closed and onto. Thus, here
we prove that the image of a metcompact space under a
multifunction is compact-metacompact, first and then deduce
that the image of a metacompact space under a continuous,
image closed onto function is metacompact.

The next theorem consists of extensions of results of
Michael (Worrell) to multifunctions.

Definition 3.2. Let X,Y be spaces with X paracompact
(metacompact) and let ¢ € M(X, Y) be continuous
image-closed and onto. Then Y is paracompact (compact-
metacompact).

Proof. With the assumptions on the ¢ € M(X, Y), each
open cover of Y gives an open cover of X and let 6 be such
an open cover of X. So, 6 has a locally finite (point finite)
refinement. Let B be a locally finite (point finite) refinement
of 6. Then for each z € X, there is a V € X{z} such
that VN B = () (x ¢ B) for all but finitely many B € B
Therefore, for all but finitely many B € B,V C X — B (z €
X — B) and hence (V) C (X — B) (p(z) € ¢(X — B)).
Hence (¢(V) — ¢(X — V)) N (¢(B) — ¢(X — B)) = 0
(p(z) N (p(B) — (X — B)) = 0 for all but finitely many
B € B. Since ¢ is an image closed multifunction onto Y,
{¢(B) — ¢(X — B)} is a locally finite refinement of the open
cover of Y associated with the cover 6 of X and also it satisfies
the condition of compact- metacompactness of Y. Hence Y
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is paracompact (compact-metacompact.) Thus the proof is
complete.

Corollary 3.1. Let X,Y be spaces with X paracompact
(metacompact) and let ¢ € M(X, Y') be continuous image-
closed onto function. Then Y is paracompact (metacompact).

Proof. The proof for paracompactness is the same as above.
For metacompactness, ¢ is a function and hence ¢(z) is a
single point and for each y € Y there is an € X such that
(x) = y. The proof follows.

Replacing “open cover” with “countable open cover”, the
same method as above will give theorems of Dowker and
Banerjee [7], [1].

Theorem 3.1.Let X,Y be spaces with X countably
paracompact (countably metacompact) and let p € M(X, Y)
be continuous image-closed onto multifunction. Then Y is
countably paracompact (subsetmetacompact).

Corollary 3.2. [Michael (Dowker)((Worrell)) (((Banerjee)))].

If g: X — Y is a continuous closed onto function and
X is paracompact (countably paracompact) ((metacompact))
(((countably metacompact))), then Y is paracompact
(countably paracompact) ((metacompact)) (((countably
metacompact))).

Remark 3.1. We use Theorem 1.2, Theorem 3.1 , Corollary
3.1 and the fact that a space is paracompact if and only if it is
metacompact and collectionwise normal to prove the following
[8]. Thus another proof is obtained for the result that the
image of a paracompact space under continuous, closed and
onto function is paracompact.

The following theorem is proved in [14]. There,
characterizations of paracompactness, metacompactness,
paralindel’ of spaces and meta-Lindel’of spaces are given in
terms of ultrafilters. Proofs, in cases of pracompact spaces
and metacompact spaces are given here for completeness. The
following definitions and results are used in the proofs and can
be found in [14].

A filterbase 2 is defined to be of typeP if each locally
ultimately dominating (l.u.d.) filter subbase coarser than ()
has non-empty adherence. A family is locally ultimately
dominating (l.u.d) if for each x € X there is an open set about
x contained in all but finitely many elements of 2. A space
X is metacompact if and only if every filter (or closed filter)
of typeM on X has non-empty adherence. A filter on a space
is of typeM if every point dominating (p.d.) subcollection of
the filter has nonempty adherence. A collection 2 of subsets of
a space is point dominating (p.d.) if each € X is a member
of all but finitely many members of {). An ultrafilter I/ is said
to be a of type P (M) if it contains a filter of type P (M). In
Theorem 1 of the referenced paper, it is proved that If U is a
filter which contains a filter of type P (M), then U itself is a
filter of of type P (M) [14]. For completeness, the result is
included here as a lemma.

Lemma 3.1. If U is a filter which contains a filter of type P
(M) , then U itself is a filter of of type P (M) [14].

Proof. Suppose U is a filter which contains a filter B of type
P (M). Consider a Lu.d. ( p.d.) subcollection C of U{. Then
CNBisalud. (p.d.) subcollection of B and hence has non-
empty adherence. Therefore, C has a non-empty adherence and

hence U/ is a filter of type P (M) .
Theorem 3.2. The following are equivalent:
1. X is paracompact (metacompact);
2. Every ultrafilter of type P (M) converges [14].

Proof. (1) = (2). Clear from the fact that every ultrafilter
of type P (M) has nonempty adherence and every ultrafilter
converges to each point of its adherence.

(2) = (1). Let U be a filter of type P(M) on X and W
be an ultrafilter containing ¢/. Then W is an ultrafilter of type
P(M) and hence converges in X, inview of the assumption.
Hence the filter &/ has non-empty adherence and so, X is
paracompact (metacompact).

In the following, the previous theorems are extended to
multifunctions using ultrafilters and then deduced for single
valued functions. The following Lemma is given.

Lemma 3.2. If an ultrafilter on X converges to a compact
set, then it converges to a single point.

Proof. Suppose A is a compact subset of X such that an
ultrafilter i/ — A. If for each x € A, there is a V,, € ¥{x}
and U € U, such that U, NV, = (. Then there is a finite
set B C Asuchthat A C UyepV, = Vand U = Nyepl,
with U € Y. That is, there isa V' € YA and Ue U such that
V NU = (), which is a contradiction since &/ — A. Thus there
isan z € A such thatif — .

Theorem 3.3.Let X,Y be spaces with X paracompact
(metacompact) and let ¢ € M(X, Y') be continuous, image-
closed and onto. Then every ultrafilter of type P (M) on Y
converges.

Proof. Let U be an ultrafilter of type P (M) on Y.
Then 1Y is an ultrafilter on X. Let V be a Lu.d. (p.d.)
subcollection coarser than ¢~ U. Since ¢ is image-closed and
onto, it follows that ¢ (V) is a L.u.d. (p.d.) collection coarser
than ¢/. Hence, adhp(V) # 0; so adhV # (. Therefore,
@~ U is an ultraifilter of type P (M), and adhp™'U # 0.
Since ¢ being continious, image-closed and onto, and ¢(z) is
a compact subset of Y, U — y € (z), in view of Lemma 3.4.

Corollary 3.3. Let X,Y be spaces with X paracompact
(metacompact) and let g : X — Y be continuous, closed and
onto. Then Y is paracompact (metacompact).

4. Discussion and Conclusion

In this article shorter proofs of theorems of Michael
and Worrell are given, It is obtained by extending the
characterization of continuous, closed and onto function
provided by Joseph and Kwack to multifunctions [11]. Filter
characterizations of paracompactness and metacompactness
paved the way for ultrafilter characterizations of these classes
of spaces [14]. These characterizations provided considerably
shorter and straight forward proofs of theorems of Micahel and
Worrell.

Paracompactness, metacompactness, collectionwise
normality, discrete collection of sets, a family being locally
finite or point finite etc. are classic topological concepts and
have been topics and tools of investigation for decades. There
exist numerous literature on these topics. Following are just a
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few of them [6, 8, 9, 17-20]. The definitions and basic results
of concepts which are generally available in literature are not
given with citation here, however, the definitions and the basic
results are stated here for completeness and easy access for
the readers. The authors of this article do not claim authorship
of them. When a definition of a new concept is given, it is
explicitely stated. Whenever a result is stated from another
source, care is taken to give appropriate citation of each of
them.
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