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Abstract: We propose a stochastic process modelling of covid-19 deaths in Ghana. The objective is to accurately capture the 

death processes resulting from the pandemic and to predict future deaths resulting from Covid-19 infections in Ghana. The 

mathematical derivation is based strictly on the compound Poisson process, a class of a Levy process. The model is verified by 

using empirical data of deaths resulting from Covid-19 from the onset of the pandemic up to the time of writing this report. 

That is, Covid-19 deaths in Ghana from March to August 2020. The method departs slightly from the usual differential 

equations used in modeling pandemics due to the unique occurrence of deaths from the disease in Ghana. As the methods are 

basically compound Poisson process, we delve into Levy processes as it allows us to effectively simulate the future behaviour 

of the death process. To test the effectiveness of the model, we compared the simulated results to the actual reported number of 

deaths from Covid-19 cases in Ghana from March to August 2020. The results show that at a 95% confidence interval there is 

no significant difference between the actual deaths and the simulated results. The results of the simulation, when extended to 

February 2021 (one year after the advent of the pandemic) shows that if the current conditions remain same, that is, if there is 

no immediate intervention by the discovery of an effective drug or a vaccine, then the number of deaths could reach four 

hundred and forty six (446) by February 28, 2020. 
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1. Introduction 

As is wildly known by now, the first case of Corona Virus 

was reported in Wahun, a city in China in late December 

2019. In February 2020, Iran, Italy and Spain reported the 

presence of the virus in their territories. Events then unfolded 

quickly and by March 2020, The World Health Organization 

[1] had declared the situation a pandemic, the first since the 

Spanish Flu in 1918. Figure 1 shows The Guardian [2] World 

map of coronavirus infections as at the end of August 2020.  

Ghana reported its first case of corona virus in Accra on 

12th March, 2020 and the disease has since spread to all other 

regions in the country, infecting over 40,000 people by end of 

August 2020. 

Although a large proportion of people infected with the 

virus show no symptoms or may only develop mild 

symptoms such as increased body temperature, mild cough, 

loss of taste and smell and do not develop serious illness, 

older people and those already carrying some kind of 

underlying medical conditions such as diabetes, chronic 

respiratory disease, or cancer may develop serious illness.  

The outbreak of the pandemic has been devastating to the 

world. As it raged, it has destroyed many economies, killed 

almost a million people by August 2020, and has led to 

lockdowns in many countries and regions., Orlik T. et al., [3] 

estimates that the cost of Covid�19 to the world economy 

could top $2.7 trillion, equivalent to United Kingdom’s 

economy. Developing countries, Western economies and 

emerging markets such as India and Brazil have been 

significantly impacted. Developing countries for instance, 

have had to do without support from western governments 

who are themselves reeling from the impact of the pandemic. 

Consequently, several forms of development assistance, debt 
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relief & debt restructuring have been suspended. Despite 

multilateral institutions like IMF and the World Bank 

providing a lifeline for African countries to access funds to 

combat the virus many countries including Ghana have cut 

rates and announced various monetary policies.  

 

Figure 1. Corona virus infections around the world - August 2020.  

Although there has been multifaceted response from 

governments and multilateral institutions toward mitigating 

the economic impact, any gains cannot be consolidated 

without a meaningful model of the future trend of the disease 

especially in terms of loss of human capacity. It is in this 

regard that we have decided to investigate and develop a 

mathematical model to predict Covid�19 fatalities in Ghana. 

To this end, we track the pattern of deaths resulting from the 

virus and use stochastic models predict deaths resulting from 

Covid�19 in the immediate future in Ghana. 

The study is based on a stochastic model, specifically, the 

compound Poisson process, a form of a Lèvy process. As it’s 

synonymous with most mathematical models, the predictive 

ability of the model is limited by the reliability of the available 

empirical data and in addition, the model is subject to several 

assumptions and thus do not convey direct clinical information 

and caution to the general public. Castorina P, et al., Dehkordi 

A.H. et al., [4, 5]. However, we believe that the model’s 

highlights will be of great benefit and offer reliable 

information to enable for a quick assessment of the severity of 

the pandemic and help guide government and health officials 

in defining or developing national and regional strategies to 

combat the disease In addition, the paper also provides 

mathematical insights and a rich theoretical framework to 

investigate the dynamics of deaths from the pandemic. 

It must be stated here that we are more interested in the 

number of deaths because it gives a more direct or accurate 

measure of the impact of the virus as compared to the 

number of infected cases. This is because in the first place 

many carriers of the virus do not show any symptoms 

(asymptomatic) or may develop only mild symptoms which 

in most cases does not lead to hospitalisation. Secondly, the 

number of tests carried out in Ghana was only meant for 

targeted sample of the population through contact tracing, 

routine surveillance and other related activities. Thus, the 

population was not mass tested and a such a large proportion 

of Covid�19 infections were not detected. The number of 

reported cases is in effect, was only an unsatisfactory 

representation for the total infections in the populace Li R. et 

al., [6]. The true reflection of the virus situation in the 

country is thus difficult to estimate from the reported 

infections. On the other hand, the number of deaths from 

Covid�19 related diseases is a more accurate measure of the 

advance of the epidemic and its prevalence as deaths from 

the disease can hardly go undetected. Although the number of 

deaths attributed to Covid � 19 from official sources may 

have some inaccuracies and uncertainties of their own, 

primarily due to individual government’s recording and 

reporting protocols, nevertheless, it is still realistic to assume 

that the evolution of the number of confirmed deaths bears a 

direct relation to the dynamics of the impact of the disease. 

Under these circumstances, coupled with the absence of other 

reliable sources for the estimates of the number of infected 

cases, we decided to model death dynamics rather than 

infection rates. Thus, the main objective is to model the daily 

deaths from covid�19 as well as the cumulative number of 

deaths over time. Furthermore, the paper makes predictions 

of daily deaths and the cumulative deaths in the immediate 

future. 

Figure 2 shows the graph of Covid�19 deaths in some 

countries in North and South America, Europe, Asia and 

Africa. The graphs indicate that there are stark differences in 

the way death cases have evolved in the various countries. It 

is realised that whereas in other countries deaths are daily 

events and occur in hundreds or thousands, death cases in 

Ghana do not occur daily but rather occur over irregular time 
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intervals and are usually in single or double figures. 
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Figure 2. Covid -19 Deaths around the World: March�August 2020. 
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Based on the empirical evidence it will be inappropriate to 

model Covid � 19 deaths in Ghana using existing models 

proposed in other countries. It is therefore imperative to 

develop models suitable to Ghana’s unique situation in order 

to capture the true picture of losses from the pandemic in the 

country. The aim of this paper is therefore to develop an 

appropriate mathematical model that can suitably predict 

daily death toll from covid-19 and in addition provide a 

measure of the cumulative number of deaths in the near 

future. 

Mathematical models of the evolution of the number of 

infections in a pandemic is mostly dominated by ordinary 

differential equations resulting in exponential growth of 

infections. The most general and frequently used framework 

is the Susceptible–Infectious–Recovered (SIR) class of 

models and its variants. Piccolomini, E. L., & Zama, F.,: J. 

Kucharski et al.: Berger, K. H., & Mongey, S.,: Walker P. G. T., 

et al., [7�10]. The basic and the most useful of the SIR 

models is the Richards growth model defined by ordinary 

differential equations Richards F.J.,: Hsieh Y-H., [11, 12]. 

Mathematical models using this approach forecast Covid�19 

deaths by estimating the number of deaths as a percentage of 

the number of infectious cases Ivorra B, et al.: Sameni R.,: 

Crokidakis N.,: Bastos S. B. & Cajueiro, D. O.,: Andersson H. 

& Britton, T., [13�17]. 

Other models directly compute the daily deaths. One 

example of this approach is by Roman Cherniha, et al., [18] 

who proposed a model based on non-linear ordinary 

differential equations. The results of the model were shown 

to be in agreement with measured public data in China and 

Austria and was able to make predictions with less than 10 

percent error. Pham, H., [19] used ordinary differential 

equations to develop a model to estimate the cumulative 

number of deaths in the United States. The model’s results 

were compared to two related existing models based on a 

selection criterion including SSE (Sum of Squared Error), 

MSE (Mean Squared Error). The results show that the 

proposed model fits significantly better than the other two 

related models. The model predicted with a 95% confidence 

that the expected total death toll will be between 60,951 and 

63,249 deaths by 22 April 2020. Pham, H., [20] used partial 

differential equations to predict the number of Covid�19 

deaths in the United States. The model was based on a set of 

indicators such as recovered cases, daily new cases, total 

cases as well as the recovery rate. The modelling results were 

found to be in agreement with real time United States daily 

deaths as well as in predicting the number of deaths in Italy 

and The United Kingdom. Another study, M. Yousaf, et al., 

[21] analysed data from Islamabad and produced a forecast 

of Covid � 19 confirmed cases as well as the number of 

deaths and recoveries in Pakistan using the Auto-Regressive 

Integrated Moving Average Model (ARIMA). The model 

when fitted to the live data revealed that the cumulative 

number of Covid�19 confirmed cases, deaths and recoveries 

show exponential growth over time in regards to number of 

confirmed cases in Pakistan. The ARIMA model also had 

higher fitting and forecasting accuracy than exponential 

smoothing and captures both the seasonal and non-seasonal 

forecasting trend. 

2. Methodology 

2.1. Existing Models to Estimate Covid-19 Deaths 

On the models that directly predict Covid � 19 deaths, 
Roman Cherniha & Vasyl’ Davydovych proposed a 

non�linear ordinary differential equations of the form 

���� = �(	 � 
�), �(0)  =  �� ≥ 0,             (1) 

where �(�) predicts the total number of the Covid�19 cases 

and 	 and 
 are positive constants. 

By setting � = � + � we have 

�� �� = �(�)� �(0) = �� ≥  0                    (2) 

where � are recoveries and � represents deaths at time � and �(�) > 0 reflects the effectiveness of the health care system 
of the country or region. 

Equations (1) and (2) are generalized as 

���� = (� � �)(	 � 
(� � �)� )               (3) 

���� = �(�)(� � �)                        (4) 

����  =  �(	 � �(�) � 
�� )                (5) 

�(0) = �� ≥ 0, �(0) = �� ≥ 0, �(0) = �� = �� 

Solving Equations (3), (4), (5) and making substitutions 

the integral representation is giving by 

�(�) =  �� + �(�) + � �(�)�(�) ���
�  

Setting �(�) = �� ���� ,  > 0 , the exact solution of 
equations (1) and (2) are 

�(�) = 	���!�	 + 
��(�!� � 1) 

�(�)  =  	����  � �(!��)#	 + 
��(�!# � 1)�
� �� + �� 

When the model was applied to data on the outbreak in 

China the number of deaths was obtained as 

� $ � = % ≡ 571��  � ) ��.+,#
1 + 57180,000  (��.+.#  �  1)/0

� �� +  17 

Hoang Pham also used partial differential equations to 

predict Covid � 19 deaths in the United States. The 

generalized mathematical model follows the Partial 

Differential Equation 
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 12(�,3�1�  45��,3�6
��, 7�8��, 7��	��, 7� � 8��, 7� � 91 �  45��,3�6:
��, 7��	��, 7� � 8��, 7��                          (6) 

where 	��, 7�= the total number of deaths  
��, 7� = death rate per person  8��, 7� = cumulative number of deaths by time � 7 = a set of indicators   45��,3�6 ; �0,1� = recovery rate by time � 

Solving the partial differential equation in Equation (6) 

produces two solutions 8,���  and 8+���  estimating the 

cumulative number of deaths  

8,��� �  
1 � < => � �?�@ 

when  45��,3�6 � 0 

8+��� �  �1 � ���
1 � < => � �?�@ 

where 	, 
, =, � and β are the unknown constants. The daily 
death toll is obtained as 

A+��� �  ��> � �?���> � �?� � =� � �1 � ����
=�?��B> � �?� � =C+  

2.2. Modelling Ghana Covid�19 Deaths 

Consider Figure 3 which shows the plot of Covid �19 

deaths in Ghana from March�August 2020. We realise that 

deaths occur over infrequent days and when they occur, the 

number of deaths also differ in sizes on the reporting day. We 

will refer to these reporting days as death events. So, for 

instance, there were 7 death events in April but May reported 

10 death events. In addition, at each death event the number 

of deaths vary in size. Thus, for instance, on the first death 

event on 23rd March had death size 1. However, on the ninth 

death event on April 28 the deaths size was 5.  

 

Figure 3. Deaths events from Covid �19 in Ghana. March�August 2020. 

The process can be modelled as follows: 

1) Let D���  counts the number of deaths events and %E, F � 1, 2, . .. be the random times at which the death 

events occur. At time � � 0, that is, at the beginning, 
before any death has occurred, the number of death 

events was zero. That is, at � � 0, D��� � 0  and we 

write D�0� � 0 . D���  stays at the level 0 until some 

random time %, when the first death event occurs and D��� counts the death events as 1 so we write D�%,� � 1. We do not observe any death event until another 

random time %+ when the next death event occurs and 

we have D�%+� � 2. 
2) It is observed that the number of deaths can only add up 

and thus given any two times G and � such that G H �, 

the number of deaths at G is always less than the number 

of deaths at �  and write D�G� H D���  for G H � . D��� 
can thus be considered as a non-decreasing function. 

3) The increment of death events D��� � D�G�  is 

independent of the previous information. Thus if �Ω, J, K� is a probability space admitting D��� and the L �algebra J�  such that J� � LMD�G�: 0 O G O �P  is a 

filtration satisfying D��� ; J�  for all � , then D��� �D�G� is independent of JQ 

The characteristics of the death event process can therefore 

be summarised as follows: 

i. D�0� � 0. 

ii. D��� counts the number of death events and it is always 

an integer valued function. 

iii. For all G H � , D�G� H D��� . That is, D���  is a non 

decreasing function 

iv. The increment of death events D��� � D�G�  is 

independent of JQ, 

v. D��� is a discrete state process occurring in continuous 

time frame 
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It happens that characteristics (R � �) above of the death 

event process satisfies the criteria for D(�)  to be 
approximated by the Poison process. If we define a constant S as the mean number of death events, then for all G < � , D(�) � D(G)  is a Poisson random variable with parameter S(� � G). 

Definition 

Let (T, ℱ, ℙ) be a probability space with a given filtration U = {ℱ�}�V�  and let S  be a nonnegative real number. The 

process D(�) which counts the number of death events is a 
Poisson process with intensity λ with respect to the filtration U and satisfies the following conditions. 

i. D(0) = 0 

ii. For all G < �, D(�) � D(G) is independent of ℱQ 

iii. For all G < � , the conditional distribution of the 

increment D(�) � D(G) is given by 

ℙ W9D(�) � D(G):Xℱ �Y = ��Z(��Q)9S(� � G):EF! , 
\]A 	^^ F = 0, 1, 2 … … ….                          (7) 

Probability Distribution of D(�) 

Given that D(�) is Poison and at time � the number of deaths 

is F , then in a small-time interval ℎ,  there will be three 
possibilities: 

1. The probability that by the time � + ℎ, the number of 

deaths has increased by 1 to F + 1, is given by  

ℙBD(� + ℎ) = F + 1|D(�) = FC 
If the Poisson process has intensity S then 

ℙ WD(� + ℎ) = F + 1 bD(�) = FY = Sℎ + ](ℎ) 

where ](ℎ) is a small adjustment such that 

^Rcd→�
\(ℎ)ℎ = 0 

2. As ℎ → 0 , there can only be a small number of 
adjustments in the number of death events. That is, in 
the minute interval the number of death events increase 
by 1. This means that  

ℙ WD(� + ℎ) > F + 1 bD(�) = FY = ](ℎ) 

3. The probability that the deaths will be greater than F + 1 given that D(�) = F is almost negligible. Hence  

ℙ WD(� + ℎ) = F + 1 bD(�) = FY = 1 − Sℎ + ](ℎ) 

The probability distribution of the increment of the process 

can be summarised as  

ℙBD(� + ℎ) − D(�) = FC =
fgh
gi Sℎ + ](ℎ)                           F = 1

](ℎ),                                    F ≥ 2
1 − Sℎ + ](ℎ),                    F = 0 

  

1. Distribution of the process up to the first death event 

Let’s assume that there are no deaths up to time � and let %,  be the time to first death event. The time to first death 

event can be designated as %, > �. But this is the same as the 

time up to � = 0  or the time to the first death event. The 
probability of this death event is given as 

ℙ(%, > �) = ℙBD(�) = 0C 
But D(�) is Poisson and hence 

ℙBD(�) = 0C = ��Z�(S�)�0! = ��Z� . 11 = ��Z� . 
The probability that a death event will occur between 0 

and � is thus given by 

ℙ(%, ≤ �) = 1 − ��Z� 

But 1 − ��Z�  is the distribution function for the 
exponential distribution. Hence the distribution of the process 
up to the time of the first death event follows the exponential 

distribution with parameter S. 

2. Distribution of the process between two death events 

By the same argument as in 1 above we can write that in a 

small-time interval ℎ 

ℙ WD(� + ℎ) − D(�) = F bD(�) = FY 

This means that there is no increase in number of deaths 

and so 

ℙ WD(� + ℎ) − D(�) = 0 bD(�) = FY 

This confirms that the increment D(� + ℎ) − D(�)  is 

independent of the time period D(�) = F 

ℙ WD(� + ℎ) − D(�) = 0 bD(�) = FY= ℙBD(� + ℎ) − D(�) = 0C 
= ℙBD(�) = 0C 

= ��Z� 

Thus, between two death events the process is distributed 

exponentially with parameter S. 

2.3. The Infinitesimal Characteristics of Covid-19 Death 

Events 

We realise that deaths in America and elsewhere occur daily 
in hundreds or thousands. Thus, although individual deaths are 
discrete the entire death process can be modelled as a 
continuous process without any loss of generality. This is not 
the case in Ghana where death events are infrequent and 
unpredictable making each death event a non anticipatory 
activity. This allows the introduction of stochastic processes. 
We notice that approaching a death event from the left side, the 
limiting value is the value of the process just before a death 
event. On the other hand, approaching a death event from the 
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right-hand side, the process has a limit but it is continuous 
because the process attains the limiting value since the death 
event had occurred. So, the process is right continuous with 
left limits. Thus, the process comes from a family of “continue 

adroit limit á gauge” (right continuous with left limits) =	�^	j functions. Essentially, the cadlag specification means 

that the death events are non � anticipative. One could 
alternatively define the death event process as left continuous 

with right limits (=	j^	j, but then the death events would be 
anticipative or predictable process as in the case of America 
and elsewhere. For extensive literature on cadlag and caglag 
functions see Cont R., & Tankov P. [22]. 

Now approaching a death event from the left, if D(�) is a 

Poisson process then just before a potential death event D(�) 

is written as D(��) and defined by D(��)  = ^RcQ↑� D(G) 

In a continuous setting the increment process is defined as �D(�) = D(�) � D(� �) = D(�) � D(� � ��)  and takes 
only two possible values:  

1. where no death event occurs and �D(�) = 0;  

2. where a death event occurs and �D(�) = 1.  

In particular, 

D(�) = l m0(n,o)(�)p
Eq,  

where 

m0(n,o)(�) = v 1 R\ � ≥ %E
0 R\ 0 ≤ � < %E 

2.4. The Compound Poisson Process 

Thus far, we know that the death events follow the Poison 

distribution with intensity S. But we realise that in addition to 
the death events the number of deaths or death sizes in each 
event must also be considered. For example, on the first 
death event on 23 March 2020, the number of individual 
deaths was 1 but on the ninth death event on 29 April 2020, 
the number of individual deaths were nine (9). Consequently, 
to develop a complete and realistic model to describe the 
death processes the Poisson process must be extended.  

Let’s assume that the total number of deaths is a random 
variable with some probability distribution, identically and 
independently distributed with finite expectation and 

variance. Let w(�) represents the total number of deaths after 

time � and let x(1), x(2), , . .. denote the i.i.d sequential death 

event sizes, then the total number of deaths by time � is given 
by the compound Poisson process 

w(�) = l x(�)y(�)
zq,  

where D(�) is a Poisson process. 

2.4.1. Levy Representation 

Now let’s examine the process under levy measures. We 

diverge into Levy processes as they admit a fair amount of 

tractability and it is also possible to simulate at a fixed set of 

dates. Let 

w(�)  =  l x(�)y(�)
zq,  

be a compound Poisson process. The following proposition 

allows the compound Poisson process to be modelled as a 

Levy process. 

Proposition 

A Poisson process Mw(�)P�V�  is a compound Poisson 

process if and only if it is a Levy process and its sample 

paths are piecewise constant functions. 

Thus, from proposition 1, the compound Poisson process 

can be modelled as a Levy process. 

2.4.2. Expected Number of Deaths 

Let (w(�) �V�)  be a compound Poisson process with 

intensity S  and death event size distribution \(7) , then w(�) �V� is a Levy process with density 

S = � �(�7)0
�  

� is the Levy measure and represents the expected number 
per unit time of the size of a death event. We assume { �(�7) < ∞0�  and as such the Levy process has a finite 

expected number of death events in the interval B0, %C. In 

particular, the process has the characteristic triplet (	, 0, �) 

and �(�7) = S\(�7)�7  is the arrival rate of death events. 
We assume the aggregate death events is finite. That is 

� �(�7) < ∞0
�  

This means that there are finite number of death events 
within any finite time interval [0, T]. 

Having introduced the process in a Levy framework, we 

deduce the expected deaths in a given time �  as follows: 

Given that MD(%) = FP, the death event sizes (w(�))�∈}~  on B0, TC are independent random variables which are distributed 

according to �(�7). Thus, for any G < � ∈ B0, %C the expected 

increment in w(�) is given by 

�4exp9(w(�) − w(G)):6 = � ��78 � l x(�) y(�)
zqy(Q�,) �� = � ��78 � l x(�) y(�)

 zqy(Q�,) �� = � ��78 � l x(�) y(�)�y(Q)
 zq, �� 
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= � ��78 � l x(�) y����y�Q�
 zq, � �D��� � D�G� � F� K9D��� � D�G�: � F 

� ��Z���Q� l SE�� � G�EF!
p

Eq� �l x��� E
 zq, � � ��Z���Q� l SE�� � G�EF! � �Bexp �x����CE

zq,
p

Eq�  

� ��Z���Q� l SE�� � G�EF! M�Bexp �x����CPEp
Eq� � exp MS�� � G���Bexp �x����C � 1�P 

� exp �S�� � G� � ���p
�p ����� � S�� � G� � �����p

�p � � exp �S�� � G� � ����p
�p � 1������� 

�4exp9�w��� � w�G��:6 � exp �S�� � G� � ����p
�p � 1������� 

�4exp9�w��� � w�G��:6 � exp �S�� � G� � ����p
�p � 1�S\��7���� 

the expectation of w��� is computed as the product of the mean number of deaths event times �BD���C � S� and the mean 

death event size �BxC, i.e., 

�Bw���C � �� �4������6 � S� � ������ �p
�p �BD���C�BxC � S��BxC 

Variance of w��� is obtained similarly as 

�	ABw���C � S� � �+����� � S��B|x|+Cp
�p �  �BD���C�B|x|+C 

3. Simulating Expected Number of 

Deaths 

The data used in this study was obtained from the database 
made publicly available by Worldometer [23]. The website 
lists in a tabular form daily updates of Total Number of Cases 
(Cumulative), Total Number of New Cases, Total Number of 
Deaths (Cumulative), Total Number of New Deaths, 
Recovered Cases, Active Cases, Serious or Critical Cases, 
Total Number of Cases Per Million Population, Total Number 
of Deaths Per Million Population, Total Number of Test Per 
Million Population of every country affected by Corona 

Virus. The daily deaths are used as input parameters and we 

compute the mean number of death events S. The simulation 

proceeds by first simulating D���  as a Poison distribution 

with parameter S, that is, D���~�]�S�. The time to the next 
death event follows the exponential distribution, D���~ exp�S�. The death event sizes are sampled from the 

normal distribution with mean �  and variance L+ , that is, x�F�~���, L+� . This assumption is realistic given the 
monthly distribution of deaths events shown in Figure 4. The 

complete � code is found in the Appendix. The path w�F� is 
one realisation of the random processes and so several paths 
of the process are simulated and the mean path is taken. 

 

Figure 4. Monthly distribution of Covid-19 deaths in Ghana, March���8��c
�A 2020. 
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4. Results and Discussion 

Figure 5 shows the plots of the simulated and the actual 

daily death from Covid�19 in Ghana from March to August 

31, 2020. The cumulative number of deaths within the same 

period (March � August) is also shown in Figure 6. The 

simulated path using the proposed model predicts that there 

will be 268 deaths by August 31, 2020. The realised or the 

actual number of cumulative deaths at 31 August 2020 was 

275. This shows that the model underpredict the number of 

deaths by 7 which translate as an error of 2.5%. 

 

Figure 5. Actual vs. Simulated daily deaths in Ghana: March – August 2020. 

 

Figure 6. Actual vs. Simulated cumulative deaths in Ghana: March – August 

2020. 

The actual cumulative deaths and the simulated deaths, 

projected to February 2021 is shown in Figure 7. The 

cumulative deaths from the simulated and the actual daily 

deaths from Covid�19 from March to August 2020 is shown 

in Figure 8. The graph of cumulative simulated daily deaths 

is projected to the end of February 28, 2021 also in Figure 7. 

The results show that in the absence of any mitigating factors 

the number of Covid�19 deaths are expected to reach 446 by 

February 28, 2021. 

 

Figure 7. Projected Daily deaths from Covid-19: March 2020– February 

2021. 

 

Figure 8. Projected cumulative deaths from covid-19: March – February 

2021. 

We emphasize here that although our primary interest in the 

model is its predictive capacity, we are also interested in the 

provision of a mathematical framework in the form of an 

explicit formula, which provides quantitative measures of the 

extent of the pandemic. To this end, we also obtained the 

summary statistics of actual and simulated number of deaths 

which is given in Table 1. The result shows that the simulated 

mean daily deaths March to August was 1.65. However, the 

actual mean number of daily deaths during this period was 

1.69. In reality, since the number of deaths is integer valued it 

follows that both the actual and simulated can be approximated 

as 2 deaths per day. The � � test also shows that at 95% 

confidence interval, there is no significant difference between 

the means of actual and simulated number of deaths. 

Table 1. Summary statistics of actual and simulated deaths. 

 Actual Deaths Simulated Deaths 

Maximum event deaths 15 9 
Minimum event deaths 1 1 
Weltch � �test for difference between means � �\ 95 % Confidence Interval for means 
Mean 1.697531 1.654321 
0.14991 294.85 �0.5240414 0.6104612 
Alternative hypothesis: true difference in 
means is not equal to 0 

8 �value = 0.8809 
8 �value = 0.8809 > 0.05. We fail to reject the null hypothesis and conclude 
that, the means of the actual and Simulated are the same 
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5. Conclusion 

In this paper, we have derived an explicit model based on 

the compound Poisson process, a class of the Levy processes 

to estimate fatalities from Covid�19 infections in Ghana. 

This is the first formal mathematical model in Ghana to 

analyse and make a short term forecast about the number of 

Covid � 19 related deaths using stochastic processes. The 

model predicts the daily death toll as well as the total number 

of deaths in Ghana related to Covid�19. The results are 

obtained by fitting the simulated daily death cases as well as 

the cumulative number of deaths to the existing Covid�19 

death data. The results show that the simulated cumulative 

deaths is in good agreement with the empirical data of actual 

deaths from Covid�19 and gives an accurate prediction of 

the future behaviour of deaths from pandemic in Ghana. We 

must however reiterate that while the short-term forecasts are 

in good agreement with the existing data, the current 

methodology is not be able to estimate the asymptomatic 

behaviour that will eventually characterise the long-term 

distribution of the death process. To do this we need further 

information which is currently unavailable. In the future 

however, we believe we can obtain this information and 

make the necessary adjustment in the model to be able to 

make long-term predictions on the death situation. 

Appendix ℛ-Codes for Simulation ��j�F = \�F=�R]F(^	c
�	){  � = 0  ��c = 0  \^	j = 0  �ℎR^� (\^	j == 0){  � = �^]j(A�FR\(1))  ��c = ��c + �  R\ (��c <  ^	c
�	) { � = � + 1} �^G� { \^	j = 1}    }  A���AF(�) }  ��� = \�F=�R]F(^	c
�	, %, D) {   ℎ = %/D    � = (0: %)/D  � = A�8(0, D + 1)  � = A�8(0, D + 1)  5 = A�8(0, D)  �[1] = 0  \]A(R RF 1: D) {   5[R] = ��j�F(ℎ ∗ ^	c
�	)  R\ (5[R] == 0){�[R] = 0} �^G� {�[R] = AF]Ac(1)}   �[R + 1] = �[R]  +  �[R]}  A���AF(�) }  �A < ����(5,71,299)  �A2 < −A]�F�(�A, �RjR�G =  0)  �A1 < −	
G(�A2)  �A1  G�c(�A1)  ^�Fj�ℎ(�A1)  

 

References 

[1] World Health Organization W.H.O. (accessed 12 August 2020). 
Coronavirus disease (COVID-2019) Situation reports. 
https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/situation -reports 

[2] The Guardian Newspaper, 
https://www.theguardian.com/world/2020/oct/11/coronavirus-
world-map-which-countries-have-the-most-covid-cases-and-
deaths (accessed 12 August 2020) 

[3] Tom Orlik, Jamie Rush, Maeva Cousin, & Jinshan Hong, 
(2020). Corona virus Could Cost the Global Economy $2.7 
Trillion. Here’s How Bloomberg. (2020). 
https://www.bloomberg.com/graphics/2020-coronavirus-
pandemic-global-economic-risk/ 

[4] Castorina P, Iorio A., & Lanteri D. (2020). Data analysis on 
coronavirus spreading by macroscopic growth laws. arXiv 
preprint arXiv:2003.00507. 

[5] Dehkordi A. H, Alizadeh M, Derakhshan P, Babazadeh P., & 
Jahandideh A. (2020). Understanding epidemic data and 
statistics: a case study of COVID-19. arXiv preprint 
arXiv:2003.06933. 

[6] Li R, Pei S, Chen B, Song Y, Zhang T, Yang W., & Shaman J. 
(2020). Substantial undocumented infection facilitates the 
rapid dissemination of novel coronavirus (SARS-CoV2). 
Science 368(6490):489–493 DOI 10.1126/science. abb3221. 

[7] Elena Loli Piccolomini & Fabiana Zama (2020). Preliminary 
analysis of COVID-19 spread in Italy with an adaptive SEIRD 
model. 

[8] J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, 
S. Funk, & R. M. Eggo. Early dynamics of transmission and 
control of covid-19: a mathematical modelling study. 

[9] D. Berger, K. Herkenhoff, & S. Mongey. (2020). An seir 
infectious disease model with testing and conditional quarantine. 
Technical report, Federal Reserve Bank of Minneapolis. 

[10] Walker P. G. T., Whittaker C., O. Watson, M. Baguelin, 
Ainslie K. E. C., S., Bhatia, S. Bhatt, A. Boonyasiri, O. 
Boyd, L. Cattarino, Z. Cucunuba, G. Cuomo-Dannenburg, A. 
Dighe, C. A. Donnelly, I. Dorigatti, S. van Elsland, R. 
FitzJohn, S. Flaxman, H. Fu, K. Gaythorpe, L. Gei-delberg, 
N. Grassly, W. Green, A. Hamlet, K. Hauck, D. Haw, S. 
Hayes, W. Hinsley, N. Imai, D. Jorgensen, E. Knock, D. 
Laydon, S. Mishra, G. Nedjati-Gilani, L. C. Okell, S. Riley, 
H. Thompson, J. Unwin, R. Verity, M. Vollmer, C. Walters, 
H. W. Wang, Y. Wang, P. Win-skill, X. Xi, N. M. Ferguson, 
& A. C. Ghani. (2020). The global impact of covid-19 and 
strategies for mitigation and suppression. Technical report, 
Imperial College. 

[11] Richards F.J. (1959). A flexible growth function for empirical 
use. Journal of experimental Botany, 10(2):290–301. 

[12] Hsieh Y-H. (2009). Richards model: a simple procedure for 
real-time prediction of outbreak severity. In: Ma Z, Zhou Y, 
eds. Modeling and Dynamics of Infectious Diseases. 
Singapore: World Scientific, 216–236. 



 American Journal of Applied Mathematics 2020; 8(6): 344-355 355 
 

[13] Ivorra B, Ferrández M. R, Vela-Pérez M & Ramos A.M. 
(2019). Mathematical modeling of the spread of the 
coronavirus disease (COVID-19) taking into account the 
undetected infections. The case of China. Commun Nonlinear 
Sci Numer Simul. 2020 doi: 10.1016/j.cnsns.2020.105303. 

[14] Sameni R. (2020). Mathematical modeling of epidemic 
diseases; a case study of the COVID-19 coronavirus. arXiv 
preprint arXiv:2003.11371. 

[15] Crokidakis N. (2020). Data analysis and modelling of the 
evolution of COVID-19 in Brazil.arXiv preprint 
arXiv:2003.12150. 

[16] Saulo B. Bastos & Daniel O. Cajueiro. (2020). Modeling and 
forecasting the covid-19 pandemic in Brazil. arXiv preprint 
arXiv:2003.14288. 

[17] Hakan Andersson & Tom Britton. (2000). Statistical epidemic 
models and statistical analysis, Springer-Verlag, New York. 

[18] Roman Cherniha, Vasyl Davydovych Cherniha R. & 
Davydovych, V., (2020). A mathematical model for the 
COVID-19 outbreak. arXiv arXiv:2004.01487v2. 

[19] Hoang Pham Pham, H. (2020a). On Estimating the Number of 
Deaths Related to Covid-19. Mathematics, 8, 655. 

[20] Hoang Pham Pham. (2020b). Predictive Modelling of the 
Number of Covid-19 Death Toll in the United States 
Considering the Effects of Coronavirus-Related Changes and 
Covid-19 Recovered Cases, International Journal of 
Mathematical, Engineering and Management Sciences doi: 
10.33889/IJMEMS.5.6.087. 

[21] M. Yousaf, S. Zahir, M. Riaz, Statistical analysis of 
forecasting COVID-19 for upcoming month in Pakistan, 
Chaos Solitons Fractals (2020), p. 109926, 
10.1016/j.chaos.2020.109926. 

[22] Cont R., & Tankov P. (2009). Financial Modelling with jump 
processes, Chapman & Hall, New York. 

[23] Worldometer-covid-19 data. (Accessed: August, 2020). 
https://www.worldometers.info/coronavirus/. 

 

 


