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Abstract: We recall that means arise in various contexts and contribute to solving many scientific problems. The aim of the
present paper is to give a continued fraction expansion of the Heinz operator mean for two positive definite matrices. We note
that the direct calculation of the Heinz operator mean proves difficult by the appearance of rational exponents of matrices. The
main motivation of this work is to overcome these difficulties and to present a practical and efficient method for this calculation.
We use the matrix continued fraction algorithm. At the end of our paper, we deduce a continued fraction representation of the
symmetric operator entropy.
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1. Introduction and Motivation
The basic idea of the continued fraction theory over real

numbers is to give an approximation of various real numbers
by the rational. A continued fraction is an expression obtained
through an iterative process of representing a number as
the sum of its integer part and the reciprocal, and so on.
One of the main reasons why continued fractions are so
useful in computation is that they often provide representation
for transcendental functions that are much more generally
valid than the classical representation by, say, the power
series. Further; in the convergent case, the continued fractions
expansions have the advantage that they converge more rapidly
than other numerical algorithms.

Recently, the extension of continued fractions theory from
real numbers to the matrix case has seen several development
and interesting applications, ([4-8]). Since calculations
involving matrix valued functions with matrix arguments are
feasible with large computers, it will be an interesting attempt
to develop such matrix theory. The real case is relatively
well studied in the literature ([9-10]). However, in contrast
to the theoretical importance, one can find in mathematical
literature only a few results on the continued fractions with
matrix arguments ([12-16]).

The theory of operator means for positive (bounded linear)

operators on an Hilbert space was initiated by T. Ando and
established by him and F. Kubo in connection with Lowner’s
theory for the operator monotone functions, see [1-3].

We notice that one remarkable mean, which interpolates
between the geometric and the arithmetic means is so called
Heinz mean Hα, defined for two positive real numbers a, b by
([5]).

Hα (a, b) =
aαb1−α + a1−αbα

2
,

where α is a given real number such that 0 ≤ α ≤ 1.
It is obvious that

√
ab ≤ Hα(a, b) ≤ (a+ b) /2, α ∈ [0, 1].

The function Hα is symmetric about α =
1

2
. We also note that

H0 (a, b) = H1 (a, b) =
a+ b

2
and H1/2 (a, b) =

√
ab.

In the present paper, we give a continued fraction
representation of the Heinz operator mean for two positive
definite matrices A and B. We recall that this operator is
defined by

Hα (A,B) = A
1
2

(
A
−1
2 BA

−1
2

)α
+
(
A
−1
2 BA

−1
2

)1−α

2
A

1
2 .



312 Kacem Belhroukia et al.: Continued Fraction Expansion of the Heinz Operator Mean

Therefor, We also recall that the symmetric operator entropy
for two positive definite matrices A and B is defined by

STα (A,B) =
1

α

(
Hα (A,B)− A+B

2

)
.

2. Definitions and Notations

The functions of matrix arguments play a widespreased
role in science and engineering, with applications areas from
nuclear magnetic resonance [1]. So for scalar polynomial
p (z) =

∑k
i=0 aiz

i gives rise to a matrix polynomial with
scalar coefficients by simply substitution Ai for zi:

P (A) =

k∑
i=0

aiA
i

More generally, for a function f with a series representation
on an open disk containing the eigenvalues of A, we are able
to define the matrix function f (A) via the Taylor series for f,
see [10].

Alternatively, given a function f that is analytic inside a
closed contour Γ which enclose the eigenvalues of A, f (A)
can be defined, by analogy with Cauchy’s integral theorem by

f (A) =
1

2πi

∫
Γ

f (z) (zI −A)
−1
dz.

The definition is known as the matrix version of Cauchy’s
integral theorem. Let Mm be the algebra of real square
matrices, we now mention an important result of matrix
functions.

Let A ∈ Mm, A is said to be positive semi-definite (resp.
positive definite) if A is symmetric and

∀x ∈ Rm,
< Ax, x > ≥ 0 (resp. ∀x ∈ Rmx 6= 0, < Ax, x > > 0).

where < ., . > denotes the standard scalar product of Rm
defined by

x = (x1, ..., xm),

y = (y1, ..., ym) ∈ Rm :< x, y >=

m∑
i=1

xiyi.

We observe that positive semi-definiteness induces a partial
ordering on the space of symmetric matrices. Henceforth,
whenever we say that A ∈ Mm is positive semi-definite (or
positive definite), it will be assumed that A is symmetric.

For any A,B ∈ Mm with B invertible, we write
A

B
=

B−1A, in particular, if A = I , where I is the mth order

identity matrix, then
I

B
= B−1. It is clear that for any

invertible matrix C, we have

CA

CB
=
A

B
6= AC

BC

Definition 2.1. Let (An)n≥0, (Bn)n≥0 be two nonzero
sequences ofMm. The continued fraction of (An) and (Bn)
denoted by K(Bn/An) is the quantity

A0 +
B1

A1 +
B2

A2 + · · ·

=

[
A0;

B1

A1
,
B2

A2
, · · ·

]
.

Sometimes, we use briefly the notation
[
A0;

Bn
An

]+∞

n=1

.

The fractions
Bn
An

and
Pn
Qn

=

[
A0;

Bk
Ak

]n
k=1

are called,

respectively, the nth partial quotient and the nth convergent
of the continued fraction K(Bn/An).

When Bn = I for all n ≥ 1, then K(I/An) is called a
simple continued fraction.

We now introduce some topological notion of continued
fractions with matrix arguments. Let A ∈Mm, we put

‖A‖ = sup
x6=0
{‖Ax‖
‖x‖

} = sup
‖x‖=1

{‖Ax‖}.

Let (An) be a sequence of matrices in Mm. We say that
(An) converges inMm if there exists a matrix A ∈Mm such
that limn→+∞ ‖An −A‖ = 0.

The continued fraction K(Bn/An) converges in Mm if

the sequence (Fn) = (
Pn
Qn

) = (Q−1
n Pn) converges in Mm

in the sense that there exists a matrix F ∈ Mm such that
limn→+∞ ||Fn − F || = 0. In this case, we note

F =

[
A0;

Bn
An

]+∞

n=1

.

We note that the evaluation of nth convergent according to
the Definition 1 is not practical because we have to repeat
inverse matrix. The following proposition gives an adequate
method to calculate K(Bn/An).

Proposition 2.1. The elements (Pn)n≥−1 and (Qn)n≥−1 of
the nth convergent of K(Bn/An) are given by the
relationships {

P−1 = I, P0 = A0

Q−1 = 0, Q0 = I

and {
Pn = AnPn−1 +BnPn−2

Qn = AnQn−1 +BnQn−2
, n ≥ 1.

Proof. We prove it by induction.

The proof of the next Proposition is elementary and we left
it to the reader.

Proposition 2.2. For any two matrices C and D with C
invertible, we have

C

[
A0;

Bk
Ak

]n
k=1

D =

[
CA0D ;

B1D

A1C−1
;
B2C

−1

A2
;
Bk
Ak

]n
k=3

.

Definition 2.2. Let {An} , {Bn} , {Cn} , and {Dn} be four
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sequences of matrices. We say that the continued fractions
K(Bn/An) and K(Dn/Cn) are equivalent if we have Fn =
Gn for all n ≥ 1, where Fn and Gn are the nth convergent of
K(Bn/An) and K(Dn/Cn) respectively.

In order to simplify the statement on some partial quotients
of continued fractions with matrix arguments, we need the
following proposition which is an example of equivalent
continued fractions.

Proposition 2.3 (14). Let
[
A0;

Bk
Ak

]+∞

k=1

be a given

continued fraction. Then we have

Pn
Qn

=

[
A0;

Bk
Ak

]n
k=1

=

[
A0;

XkBkX
−1
k−2

XkAkX
−1
k−1

]n
k=1

where X−1 = X0 = I and X1, X2, · · ··, Xn are arbitrary
invertible matrices.

Proof. Let
Pn
Qn

and
P̃n

Q̃n
be the nth convergent of the

continued fractions
[
A0;

Bk
Ak

]+∞

k=1

and

[
A0;

XkBkX
−1
k−2

XkAkX
−1
k−1

]+∞

k=1
respectively. By proposition 2, for all n ≥ 1, we can write

P̃n = XnAnX
−1
n−1P̃n−1 +XnBnX

−1
n−2P̃n−2,

which is equivalent to

X−1
n P̃n = An

(
AnX

−1
n−1P̃n−1

)
+Bn

(
X−1
n−2P̃n−2

)
.

This last result joined to the initial conditions prove that for
all n ≥ 1, X−1

n−1P̃n = Pn. A similar result can be obtained
for Qn. Consequently, both continued fractions have the same
convergent and Proposition 3 follows.

3. Main Results
This section is devoted to give a continued fraction

expansion ofAα+A1−α, whereA is a positive definite matrix
and α is a real number such that 0 < α < 1.

Definition 3.1. Let A be a positive definite matrix in
Mm, X ∈Mm and α a real number such that 0 < α < 1. We
define the matrix Aα by the formulae

Aα = exp (α logA) ,

where “ exp ” is the matrix exponential given by the series

exp(X) =

+∞∑
n=0

Xn

n!

and “ log ” is the logarithm defined, for example by

logA = −2

+∞∑
n=0

1

2n+ 1

(
I −A
I +A

)2n+1

.

Theorem 3.1. Let A ∈ Mm be a positive definite matrix and α a positive real number such that 0 < α < 1. If we put

Aα =
[
I; I

Ak

]+∞
k=1

, A1−α =
[
I; I

Ãk

]+∞
k=1

and ϕ (A) =
I −A
I +A

then, the continued fraction expansions of (Aα +A1−α) is given

by

Aα +A1−α =

[
2I;

A1 + Ã1

A1Ã1

,
A1(A1 + I) + Ã1(Ã1Ã2 + I)

A1A2Ã2 + Ã1Ã2A2 +A2 + Ã2

,
(A1Ã1)−1E2F3

E3 − F3
,
En−1Fn
En − Fn

]+∞

n=4

where 

A1 =
−I − αϕ (A)

2αϕ (A)
,

A2k =
−2α

(
α2 − 22

)
· · · (α2 − (2k − 2)2)

(α2 − 1) · · · (α2 − (2k − 1)2)
(4k − 1) I , k ≥ 1,

A2k+1 =
−
(
α2 − 1

)
· · · (α2 − (2k − 1)2)

2α (α2 − 22) · · · (α2 − 4k2)
(4k + 1)ϕ2 (A) , k ≥ 1.

For all n ≥ 1, the expression of Ãn is obtained from that of An by replacing α by (1− α), with En = Qn(α)Qn (1− α) (Qn−2 (α)Qn−1 (α) +Qn−2 (1− α)Qn−1 (1− α)) ,

Fn = Qn−2 (α)Qn−2 (1− α) (Qn−1 (α)Qn (α) +Qn−1 (1− α)Qn (1− α)) .

The matrices Qn (α) (resp. Qn (1− α) are the denominators of the nth convergent of Aα (resp. A1−α) which are defined by Q−1 (α) = 0, Q0 (α) = I

Q−1 (1− α) = 0, Q0 (1− α) = I
,


Qn (α) = AnQn−1 (α) +Qn−2 (α)

Qn (1− α) = ÃnQn−1 (1− α) +Qn−2 (1− α)

.

In order to prove Theorem 1, we begin by studying the real case.
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3.1. The Real Case

We begin by giving some lemmas concerning the real continued fraction which are important in the sequel.
The following lemma characterizes equivalence of continued fractions.
Lemma 3.2. [9] Let (rn) be a non-zero sequence of real numbers. The continued fractions[

a0;
r1b1
r1a1

,
r2r1b2
r2a2

, · · ·, rnrn−1bn
rnan

, · · ·
]

and
[
a0;

b1
a1
,
b2
a2
, · · ·, bn

an
, · · ·

]
are equivalent.

We now give a lemma which expresses the nth convergent for the sum of two continued fractions.
Lemma 3.3. [13] Let C and D be two real continued fractions which are defined by

C =

[
c0;

1

c1
,

1

cn

]+∞

n=2

, D =

[
d0;

1

d1
,

1

dn

]+∞

n=2

,

where ck and dk are non-zero real numbers for k ≥ 1. If we put

Cn =

[
c0;

1

c1
,

1

c2
, · · ·, 1

cn

]
=

cpn
cqn

, and Dn =

[
d0;

1

d1
,

1

d2
, · · ·, 1

dn

]
=

dpn
dqn

,

then, for all n ≥ 1, we have

Cn +Dn =

[
c0 + d0;

c1 + d1

c1d1
,
c1d1f2

e2 − f2
,
e2f3

e3 − f3
, · · ·, en−1fn

en − fn

]
,

where  en = cqn
dqn

(
cqn−2

cqn−1 + dqn−2
dqn−1

)
,

fn = cqn−2
dqn−2

(
cqn−1

cqn + dqn−1
dqn
)
.

The following Lemma gives two equivalent continued fraction expansions of λα, where λ and α are two strictly positive real
numbers.

Lemma 3.4. i) Let λ and α be two positive real numbers, ϕ(λ) = 1−λ
1+λ . The continued fraction expansions of λα is

λα =

1;
2αϕ (λ)

−1− αϕ (λ)
,

(
α2 − (k − 1)

2
)
ϕ2 (λ)

− (2k − 1)

+∞

k=2

.

ii) If we put {
b1 = 2αϕ (r)
a1 = −1− αϕ (r)

and

{
bk =

(
α2 − (k − 1)

2
)
ϕ2 (r)

ak = − (2k − 1)
, k ≥ 2

then, the simple continued fraction of λα is given by

λα =

[
1;

1

a∗1
,

1

a∗2
, · · ·, 1

a∗k
, · · ·

]
where 

a∗1 =
a1

b1
=
−1− αϕ(λ)

2αϕ(λ)
and for k ≥ 1,

a∗2k =
b1b3 · · · b2k−1

b2b4 · · · b2k
a2k =

−2α
(
α2 − 22

)
· · ·
(
α2 − (2k − 2)

2
)

(α2 − 1) · · ·
(
α2 − (2k − 1)

2
) (4k − 1) ,

a∗2k+1 =
b2b4 · · · b2k
b1b3 · · · b2k+1

a2k+1 =
−
(
α2 − 1

)
· · ·
(
α2 − (2k − 1)

2
)

2α (α2 − 22) · · · (α2 − (2k)2)
(4k + 1)ϕ2 (λ) .

Proof. i) See [15].
ii) We prove it by appropriate iteration and by applying Lemma 1.

Remark 1. The continued fraction expansion of λ1−α is obtained by substituting α by (1− α) in the previous formulas of λα.
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So, we define

λ1−α =

[
1;

1

ã∗1
,

1

ã∗2
, · · ·, 1

ã∗k
, · · ·

]
.

The next Theorem is a real version of the previous Theorem 1.
Theorem 3.5. With the same notations as bellow, Let λ and α be two real numbers such that λ > 0 and 0 < α < 1.A continued

fraction expansion of the real (λα + λ1−α) is given by

λα + λ1−α =

[
2;
a∗1 + ã∗1
a∗1ã
∗
1

,
a∗1(ã∗1 + 1) + ã∗1(ã∗2ã

∗
1 + 1)

a∗1a
∗
2ã
∗
2 + ã∗1ã

∗
2a
∗
2 + a∗2 + ã∗2

,
(a∗1ã

∗
1)−1e2f3

e3 − f3
, · · ·, en−1fn

en − fn

]+∞

n=4

,

where {
en = qn (α) qn (1− α) (qn−2 (α) qn−1 (α) + qn−2 (1− α) qn−1 (1− α))
fn = qn−2 (α) qn−2 (1− α) (qn−1 (α) qn (α) + qn−1 (1− α) qn (1− α))

and qn(α) (resp. qn(1− α) is the denominator of the nth convergent of λα (resp. λ1−α). They are defined by{
q−1 (α) = 0, q0 (α) = 1
qn (α) = a∗nqn−1 (α) + qn−2 (α)

,

{
q−1 (1− α) = 0, q0 (1− α) = 1.

qn (1− α) = ã∗nqn−1 (1− α) + qn−2 (1− α) .

Proof. According to Lemma 3.4, we have

λα =

[
1;

1

a∗k

]+∞

k=1

and λ1−α =

[
1;

1

ã∗k

]+∞

k=1

.

Then, we apply Lemma 3.3 to complete the proof.

Proof of Theorem 3.1.
Let A ∈ Mm be a positive definite matrix. Then there exists an invertible matrix X such that A = XDX−1 where D =

(λ1, λ2, ··, λm) and λi > 0, for all 1 ≤ i < m.
As the function z → zα is analytic in the open interval R∗+, then we get

Aα = XDαX−1 = Xdiag (λα1 , λ
α
2 , · · ·, λαm)X−1.

Therefore,
Aα +A1−α = X

(
Dα +D1−α)X−1.

Let us define the sequences (Pn) and (Qn) (the elements of the nth convergent of (Dα +D1−α)) by P−1 = I, P0 = 2I, P1 = 2D1D̃1 + (D1 + D̃1), P2 = (E′2 − F ′2)P1 + 2D2D̃2F
′
2

Q−1 = 0, Q0 = I, Q1 = D1D̃1, Q2 = (E′2 − F ′2)Q1 +D2D̃2F
′
2

and for n ≥ 3,  Pn = (E′n − F ′n)Pn−1 + E′n−1F
′
nPn−2

Qn = (E′n − F ′n)Qn−1 + E′n−1F
′
nQn−2 E′n = Qn (α)Qn (1− α) (Qn−2 (α)Qn−1 (α) +Qn−2 (1− α)Qn−1 (1− α)) ,

F ′n = Qn−2 (α)Qn−2 (1− α) (Qn−1 (α)Qn (α) +Qn−1 (1− α)Qn (1− α)) .

The matrices Qn (α) (resp. Qn (1− α)) are the denominators of the nth convergent of Dα (resp. D1−α) which are defined
by 

Q0(α) = 0, Q1 (α) = D1, Qn (α) = DnQn−1(α) +Qn−2(α),

Q0(1− α) = 0, Q1 (1− α) = D̃1, Qn(1− α) = D̃nQn−1(1− α) +Qn−2(1− α).
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We recall that 

D1 =
−I − αϕ (D)

2αϕ (D)
,

D2k =
−2α

(
α2 − 22

)
· · ·
(
α2 − (2k − 2)

2
)

(α2 − 1) · · · (α2 − (2k − 1)2)
(4k − 1) I , k ≥ 1,

D2k+1 =
−
(
α2 − 1

)
· · ·
(
α2 − (2k − 1)

2
)

2α (α2 − 22) · · · (α2 − 4k2)
(4k + 1)ϕ2 (D) , k ≥ 1.

We see that Pn, Qn, E′n and F ′n are diagonal matrices, we put{
Pn = diag

(
p1
n, p

2
n, · · ·, pmn

)
Qn = diag

(
q1
n, q

2
n, · · ·, qmn

) ,
{

E′n = diag
(
e1
n, e

2
n, · · ·, emn

)
F ′n = diag

(
f1
n, f

2
n, · · ·, fmn

)
.

We obtain for each 1 ≤ i ≤ m,  pi−1 = 1, pi0 = 2, pi1 = 2a∗i1ãi1 + a∗i1ã
∗
i1

qi−1 = 0, qi0 = 1, qi1 = (a∗i1ã
∗
i1) pi2 =

(
ei2 − f i2

)
pi1 + 2 (a∗i1ã

∗
i1) f i2

qi2 =
(
ei2 − f i2

)
qi1 + (a∗i1ã

∗
i1) f i2

and for n ≥ 3, we have  pin =
(
ein − f in

)
pin−1 + ein−1f

i
np
i
n−2

qin =
(
ein − f in

)
qin−1 + ein−1f

i
nq
i
n−2

ein = qin (α) qin (1− α)
(
qin−2 (α) qin−1 (α) + qin−2 (1− α) qin−1 (1− α)

)
f in = qin−2 (α) qin−2 (1− α)

(
qin−1 (α) qin (α) + qin−1 (1− α) qin (1− α)

)
By Theorem 3.5, we deduce that

pin
qin

converges to λαi + λ1−α
i for 1 ≤ i ≤ m. It follows that the matrix

Pn
Qn

converges to

Dα +D1−α. So, we get

Dα +D1−α =

[
2I;

D1 + D̃1

D1D̃1

,
D1D̃1F

′
2

E′2 − F ′2
,
E′n−1F

′
n

E′n − F ′n

]+∞

n=3

.

By Proposition 2, we have

Aα +A1−α = X
(
Dα +D1−α)X−1 =

[
2I;

(D1 + D̃1)X−1

D1D̃11X−1
,

(D1D̃1)F ′2X
−1

E′2 − F ′2
,
E′n−1F

′
n

E′n − F ′n

]+∞

n=3

Let us define the sequence (Xn))n≥−1 by X−1 = X0 = I, and for all n ≥ 1, Xn = X. Then we have

X1(D1+D̃1)X−1X−1
−1

X1D1D1D̃1X−1X−1
0

= A1+Ã1

A1Ã1
,

X2(D1D1D̃1F
′
2X
−1)X−1

0

X2(E′2−F ′2)X−1
1

= A1Ã1F2

E2−F2
,

XnE
′
n−1F

′
n)X−1

n−2

Xn(E′n−F ′n)X−1
n−1

= En−1Fn

En−Fn

,

with XE′nX
−1 = En and XF ′nX

−1 = Fn for all n ≥ 2.
By applying the result of Proposition 3 to the sequence (Xn)n, we finish the proof of Theorem 1.



American Journal of Applied Mathematics 2020; 8(6): 311-318 317

3.2. Expansion of the Operator of Heinz

The original motivation of this article was the problem of representation the Heinz operator in continued fraction in order to
make its computation practical and efficient. Given two positive definite matrices A,B we recall that the Heinz operator mean is
the map

Hα (A,B) = A
1
2

(
A
−1
2 BA

−1
2

)α
+
(
A
−1
2 BA

−1
2

)1−α

2
A

1
2

Theorem 3.6. Let A,B ∈ Mm be two positive definite matrices, α a positive real number such that 0 < α < 1. A continued
fraction expansion of Hα (A,B) is

Hα(A,B) =

[
A;

1
2 (A′1 + Ã1)A

1
2

A′1Ã
′
1A
− 1

2

,
(A′1(A′1 + I) + Ã′1(Ã′1Ã′2 + I))A−

1
2

A′1A
′
2Ã
′
2 + Ã′1Ã′2A′2 +A′2 + Ã′2

,
(A′1Ã

′
1)−1E2F3

E3 − F3
,
En−1Fn
En − Fn

]+∞

n=4

where 
A′1 = −I−αφ(A−

1
2BA−

1
2 )

2αφ(A−
1
2BA−

1
2 )

=
−I−αA

1
2 ( A−B

A+B )A
−1
2

2αA
1
2 ( A−B

A+B )A
−1
2

,

A′2 =
−10α( A−B

A+B )2A
−1
2

(α2−1)( A−B
A+B )2A

−1
2

.

The expressions of Ã′1 and Ã′2 are obtained from that of A′1 and A′2 respectively by replacing α by (1−α). The matrices En
and Fn are the same as in Theorem 1.

We deduce a continued fraction expansion of the symmetric operator entropy STα(A,B).
Corollary 3.7. Let A,B ∈ Mm be two positive definite matrices, α a positive real number such that 0 < α < 1. With the

same notations as in Theorem 3, a continued fraction expansion of STα (A,B) is

STα(A,B) =

[
A−B

2α
;

1
2α (A′1 + Ã1)A

1
2

A′1Ã
′
1A−

1
2

,
(A′1(A′1 + I) + Ã′1(Ã′1Ã′2 + I))A−

1
2

A′1A
′
2Ã
′
2 + Ã′1Ã′2A′2 +A′2 + Ã′2

,
(A′1Ã

′
1)−1E2F3

E3 − F3
,
En−1Fn
En − Fn

]+∞

n=4

Proof of Theorem 3.5. Since (
A
−1
2 BA

−1
2

)α
+
(
A
−1
2 BA

−1
2

)1−α
= 2A

−1∐ 2Hα (A,B)A
−1
2 ,

According to Theorem 1, the continued fraction expansion of Hα (A,B) is

Hα(A,B) =
1

2
A

1
2

[
2I;

A′1 + Ã1

A′1Ã
′
1

,
A′1(A′1 + I) + Ã′1(Ã′1Ã′2 + I)

A′1A
′
2Ã
′
2 + Ã′1Ã′2A′2 +A′2 + Ã′2

,
(A′1Ã

′
1)−1E2F3

E3 − F3
,
En−1Fn
En − Fn

]+∞

n=4

By applying the result of Proposition 2, we obtain

Hα(A,B) =
1

2
A

1
2

[
A;

1
2 (A′1 + Ã′1)A

1
2

A′1Ã
′
1A
− 1

2

,
(A′1(A′1 + I) + Ã′1(Ã′1Ã′2 + I))A−

1
2

A′1A
′
2Ã
′
2 + Ã′1Ã′2A′2 +A′2 + Ã′2

,
(A′1Ã

′
1)−1E2F3

E3 − F3
,
En−1Fn
En − Fn

]+∞

n=4

.

Remark 2. The matrices En and Fn are the same as in
Theorem 3.1.

Which completes the proof of Theorem 3.6.

4. Conclusion

Many researchers have studied a various means inequalities,
the Heinz norm inequalities for positive operators in Hilbert
spaces. In this work, we provide a method which allows us to
compute the Heinz operator mean Hα(A,B) of two positive
definite matrices A and B. It is defined by

Hα (A,B) = A
1
2

(
A
−1
2 BA

−1
2

)α
+
(
A
−1
2 BA

−1
2

)1−α

2
A

1
2 ,

where α is a positive real number such that 0 < α < 1.
In Theorem 3.6, a continued fraction expansion of the Heinz

operator mean Hα(A,B) is given.
As a corollary of this result, an algorithm of calculus of the

symmetric operator entropy

STα (A,B) =
1

α

(
Hα (A,B)− A+B

2

)
.
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is also presented.
Our contribution allowed us to avoid the computation of

these operators by the exponential and logarithm functions of
matrices.

It should be noted that we can use the Padé approximation
in order to compute the Heinz opertor mean.
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