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Abstract: We recall that means arise in various contexts and contribute to solving many scientific problems. The aim of the
present paper is to give a continued fraction expansion of the Heinz operator mean for two positive definite matrices. We note
that the direct calculation of the Heinz operator mean proves difficult by the appearance of rational exponents of matrices. The
main motivation of this work is to overcome these difficulties and to present a practical and efficient method for this calculation.
We use the matrix continued fraction algorithm. At the end of our paper, we deduce a continued fraction representation of the

symmetric operator entropy.
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1. Introduction and Motivation

The basic idea of the continued fraction theory over real
numbers is to give an approximation of various real numbers
by the rational. A continued fraction is an expression obtained
through an iterative process of representing a number as
the sum of its integer part and the reciprocal, and so on.
One of the main reasons why continued fractions are so
useful in computation is that they often provide representation
for transcendental functions that are much more generally
valid than the classical representation by, say, the power
series. Further; in the convergent case, the continued fractions
expansions have the advantage that they converge more rapidly
than other numerical algorithms.

Recently, the extension of continued fractions theory from
real numbers to the matrix case has seen several development
and interesting applications, ([4-8]). Since calculations
involving matrix valued functions with matrix arguments are
feasible with large computers, it will be an interesting attempt
to develop such matrix theory. The real case is relatively
well studied in the literature ([9-10]). However, in contrast
to the theoretical importance, one can find in mathematical
literature only a few results on the continued fractions with
matrix arguments ([12-16]).

The theory of operator means for positive (bounded linear)

operators on an Hilbert space was initiated by T. Ando and
established by him and F. Kubo in connection with Lowner’s
theory for the operator monotone functions, see [1-3].

We notice that one remarkable mean, which interpolates
between the geometric and the arithmetic means is so called
Heinz mean H,,, defined for two positive real numbers a, b by
({5D).
aabl—a + al—aba

2 )
where « is a given real number such that 0 < o < 1.
It is obvious that vab < H,(a,b) < (a +b) /2, € [0,1].

The function H,, is symmetric about o = 3 We also note that

H, (a,b) =

and Hy /5 (a,b) = Vab.

a+b
H() (a,b) = H1 ((L,b) = B

In the present paper, we give a continued fraction
representation of the Heinz operator mean for two positive
definite matrices A and B. We recall that this operator is
defined by

A%IBA%)Q + (A%IBA%]) -
2

Nl=

HQ(A,B)ZA%( Az,
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Therefor, We also recall that the symmetric operator entropy
for two positive definite matrices A and B is defined by
ST. (A, B) = (HQ(A,B) _ A;B) .
«

2. Definitions and Notations

The functions of matrix arguments play a widespreased
role in science and engineering, with applications areas from
nuclear magnetic resonance [1]. So for scalar polynomial
p(z) = E?:o a;z" gives rise to a matrix polynomial with
scalar coefficients by simply substitution A? for z*:

k
P(A) =) a;A'
=0

More generally, for a function f with a series representation
on an open disk containing the eigenvalues of A, we are able
to define the matrix function f (A) via the Taylor series for f,
see [10].

Alternatively, given a function f that is analytic inside a
closed contour I" which enclose the eigenvalues of A, f (A)
can be defined, by analogy with Cauchy’s integral theorem by

FA) =5 / f(2) (2 — 4) i

The definition is known as the matrix version of Cauchy’s
integral theorem. Let M,, be the algebra of real square
matrices, we now mention an important result of matrix
functions.

Let A € M,,, A is said to be positive semi-definite (resp.
positive definite) if A is symmetric and

Ve e R™,
< Az,x > >0 (resp. Ve € Rz £ 0, < Az,z > > 0).

where < ..
defined by

> denotes the standard scalar product of R™

= (T1,. ey Tm),

m
Y= (Y1, Ym) € R":<z,y >= leyl
i=1

We observe that positive semi-definiteness induces a partial
ordering on the space of symmetric matrices. Henceforth,
whenever we say that A € M,, is positive semi-definite (or
positive definite), it will be assumed that A is symmetric.

A
For any A, B € M,, with B invertible, we write B =

B'A, in particular, if A = I, where I is the mth order
identity matrix, then 5= B~'. It is clear that for any
invertible matrix C, we have

CA AC

=g

Definition 2.1.Let (A,), <o, (Bn),>, be two nonzero
sequences of M,,,. The continued fraction of (A,,) and (B,,)
denoted by K (B,,/A,,) is the quantity

B B, B
AO+ L = Ao;ilaia"' .
A + BZ Al A2
1 Ao+ -+
B,]*"
Sometimes, we use briefly the notation [AO; An]

nlin=1

B P, B.1"
The fractions —2~ and —% = |Ag; —% are called,

A Qn Ak Jpm1

respectively, the n'* partial quotient and the n'" convergent
of the continued fraction K (B,,/A,,).

When B,, = I forall n > 1, then K(I/A,) is called a
simple continued fraction.

We now introduce some topological notion of continued
fractions with matrix arguments. Let A € M,,,, we put

Ax
1]l = Sup{L H} = sup {[|Az|}.
z#£0 [|]] lz||=1

Let (A,,) be a sequence of matrices in M,,,. We say that
(A,,) converges in M, if there exists a matrix A € M,, such
that lim,,_, ; || 4, — 4| = 0.

The continued fraction K (B, /A,) converges in M, if

the sequence (F,,) = (Q—") = (Q,,'P,) converges in M,,

n
in the sense that there exists a matrix F' € M,, such that
limy,—, y oo ||Frn — F|| = 0. In this case, we note

B,]"*
F=|A, =2 .
|: OaAn:|

n=1

We note that the evaluation of n'" convergent according to
the Definition 1 is not practical because we have to repeat
inverse matrix. The following proposition gives an adequate
method to calculate K (B,,/A,,).

Proposition 2.1. The elements (P,),~_, and (Qy),,~_, of
the n'* convergent of K(B,/A,) are given by the
relationships

P,=1 P =4
Qfl = Oa QO =1
and
Pn:AnPnfl"'_BnPan n>1
Qn = Ananl + BnQn72 ’ -
Proof. We prove it by induction. O

The proof of the next Proposition is elementary and we left
it to the reader.

Proposition 2.2. For any two matrices C' and D with C
invertible, we have

Bi1D ByC™' B,]"

Bp1"
c {Ao;} D= [CAOD ST AT T -
Ap | ACTY Ay T Ay s

k

Definition 2.2. Let {A,,}, {Bn}, {Cy}, and {D,,} be four
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sequences of matrices. We say that the continued fractions
K(B,/A,) and K(D,,/C,,) are equivalent if we have F),, =
G, for all n > 1, where F, and G,, are the n*" convergent of
K(B,/A,) and K(D,,/C,,) respectively.

In order to simplify the statement on some partial quotients
of continued fractions with matrix arguments, we need the
following proposition which is an example of equivalent
continued fractions.

B ™™
Proposition 2.3 (14). Let {Ao; k}

be a given
Ak L pm1

continued fraction. Then we have

BB - [A

XeBeX L ]"
Qn Ay k=1

0 1 w_1
XiAp X, 1

where X 1 = X¢ = I and X1, Xo, - -
invertible matrices.

-, X, are arbitrary

P, P,
Proof. Let —* and =~ be the n'" convergent of the
Qn n

+oo

+oo

B X B X!

continued fractions [AO; k} and Lk:f
Ay k=1 XkAka—1

respectively. By proposition 2, for all n > 1, we can write

Ao;

k=1

ﬁn = XnAani_llﬁnfl + XanXni_:LQﬁnf%
which is equivalent to

X1:1§7L = An (Aan__llﬁn—1> + Bn, (X;_lgﬁn—Z) .

This last result joined to the initial conditions prove that for
alln > 1, X;Ean = P,.. A similar result can be obtained
for Q,,. Consequently, both continued fractions have the same
convergent and Proposition 3 follows. O

3. Main Results

This section is devoted to give a continued fraction
expansion of A%+ A1~ where A is a positive definite matrix
and « is a real number such that 0 < o < 1.

Definition 3.1.Let A be a positive definite matrix in
M., X € M,, and o a real number such that 0 < o« < 1. We
define the matrix A by the formulae

A® =exp(alog A),
where “exp” is the matrix exponential given by the series
+o0 xn

exp(X) = 30 o

n=0

and “log” is the logarithm defined, for example by

+oo 2n+1
1 (I-A

logA=-2% —— (=—= .
©8 §2n+1<I+A>

Theorem 3.1. Let A € M,, be a positive definite matrix and « a positive real number such that 0 < o < 1. If we put

+o0 +oo I —

a __ LI l-a _ . L — : : : « 1—a) ; .
AY = [I, i ] oy A [I, y ] o and ¢ (A) 14 then, the continued fraction expansions of (A% + A'~%) is given
by .

A 4 Al-a — |97 A+ A Al(Al + I) + Al(AlAQ + I) (A1A1)71E2F3 E, F,
’ A1A1 ,A1A2A2+A1A2A2+A2+A27 E3_F3 ,En_Fn ned
where

_—T-ap(4)

M= aae(a) ]
—2a (o —2%) -+ (a® — (2k — 2)%)
Aok = (0 ~1) - (a? — 2k~ 1)?), (eI, k21,
—(a?=1) - (a® = (2k—1

Aopsr = (0" —1) (o~ ( ))(4k+1)<,o2(A),k21.

200 (@ — 22) - - - (a? — 4k?)

For all n > 1, the expression of Zn is obtained from that of A,, by replacing « by (1 — &), with

E, = Qn(a)Qn (1 - a) (Qn—2 (a) Qn-1 (a) + Qn-2 (1 - a) Qn—1 (1 - a)) >

Fn = Qn—Z (05) Qn—2 (1 - Ot) (Qn—l (a) Qn (Oé) + Qn—l (1 - Oé) Qn (1 - a)) .

The matrices @, (a) (resp. @, (1 — «) are the denominators of the n'"* convergent of A (resp. A'~%) which are defined by

Qfl (Oé):O, Qo (a):[
Q_l(l—a):(), Qo(l—a):I

b

Qn (1

Qn (a) = Ananl (a) + QH*Q (Ol)

_ Ol) — ;[nQn_l (1 — Oé) + Qn—Q (1 - a) .

In order to prove Theorem 1, we begin by studying the real case.



314 Kacem Belhroukia ef al.: Continued Fraction Expansion of the Heinz Operator Mean

3.1. The Real Case

We begin by giving some lemmas concerning the real continued fraction which are important in the sequel.
The following lemma characterizes equivalence of continued fractions.
Lemma 3.2. [9] Let (r,,) be a non-zero sequence of real numbers. The continued fractions

[ r1by Toribo TnTn—1bn ] [ by b by }
a . “ . 5 “ .. and PR

05 ) ) ) ag; —, 3Ty T T
riay 202 T'nln

ai’ax’ ap’

are equivalent.
We now give a lemma which expresses the n*" convergent for the sum of two continued fractions.
Lemma 3.3. [13] Let C and D be two real continued fractions which are defined by

1 1] 1 11"
C= |:CO;7:| ) D= |:d077:| )

C1 Cp dl dn

n=2 n=2

where ¢; and dj, are non-zero real numbers for £ > 1. If we put

11 1 P 11 1 “py,
O frd e — e e e — = d D = d e, L, — =
n |:COa C17 C27 ) Cn:| qn7 an n 05 dl’ d27 ) dn dqn7
then, for all n > 1, we have
ci+di cidifo  eafs 6n-1fn]
C+D|:C +d7 ) ) [ )
" " OO T dy Tea— foles — fs €n — fn

where oy ‘ 4 J
€n = CQn dn (Canz °Qn71 + “gn-2 anl) )
fn = CQn72 dan2 (Canl CQn + danl dQn) .

The following Lemma gives two equivalent continued fraction expansions of A%, where A and « are two strictly positive real
numbers.

Lemma 3.4.1) Let A and « be two positive real numbers, ¢(\) = }J_—i The continued fraction expansions of \“ is
2 too
yo - |1 2010 (A) (0‘2 —(k—1) ) ¢* (N
T —l—ap (N’ —(2k—1)
k=2

ii) If we put

{ b1 = 2ap (1) and by = (042 — (k- 1)2) ¢* (r) E>9
ay = —1—ap(r) ar = — (2k — 1) T

then, the simple continued fraction of A® is given by

where ) \
ai:%:7_ _aSO( ) andfor kz]-,
b1 20up(N)
—2a(a2—22)-~-(aQ—(Qk—2)2)
Ao = Dubs -+ Doty azk = (4k — 1),
’ boby - - - bay, (@2 —1)--- (a2—(2k—1)2)
2 2 2
boby - - - b —(a?2=1)---(a? = (2k—1)
W1 = G g k1 = ( ) (4k+1) ¢ (A).
b1b3 e b2k+1 2c (oz2 — 22) e (Oé2 — (2]€)2)
Proof. 1) See [15].
ii) We prove it by appropriate iteration and by applying Lemma 1. O

Remark 1. The continued fraction expansion of A1~ is obtained by substituting o by (1 — «) in the previous formulas of \*.
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So, we define

Ao = 1.1 71 ...71
- )~ ) k) )~ )
aj aj ay,

The next Theorem is a real version of the previous Theorem 1.
Theorem 3.5. With the same notations as bellow, Let A and « be two real numbers such that A > 0and 0 < a < 1. A continued
fraction expansion of the real (A* + A\1~%) is given by

ai+a af@ 4+ 1) +a@ar+1) (o1 leofs enifa]

PRI S {2, ~
~ ’ ~ ~y ~% 7 ’ ’ ’
ajaj ~ajaza; +ajaza; +az+a; €3 — f3 en = fnln=a

where

{ €n = Q4n (Oé) dn (1 - a) (Qn—Z (Oé) dn—1 (CY) + gn—2 (1 - Oé) dn—1 (1 - Oé))
fn = @n—2(a) gn—2 (1 — @) (gn-1 () gn (@) + -1 (1 — @) g (1 — a))

and g, () (resp. ¢, (1 — ) is the denominator of the n‘"* convergent of \* (resp. A\!~®). They are defined by

{ -1 (a) =0, g (o) =1 { g-1(1—a)=0, (1 —a)=1.
qn (@) = ajqn_1 () + gn_2 () ’ Gn(l—a)=aqn1(1—-0a)+g2(l—a).

Proof. According to Lemma 3.4, we have

Then, we apply Lemma 3.3 to complete the proof. O

Proof of Theorem 3.1.

Let A € M,, be a positive definite matrix. Then there exists an invertible matrix X such that A = XDX ! where D =
(A1, A2, -, App) and A; > 0, forall 1 < ¢ < m.

As the function z — 2 is analytic in the open interval R* , then we get

AY = XD“X "t = Xdiag (A}, NS, - A%) XL

Therefore,
Aa _|_A17a —_ X (Da _|_D170<) X*l'

Let us define the sequences (P,,) and (Q,,) (the elements of the n*" convergent of (D® + D'~%)) by
Py=1, Py=2I, P,=2D1Dy + (D1 + Dy), P, = (E})— F})P, +2Dy,D,F}

Q1=0, Qo =1, Q. =DDy, Qo= (E,— F})Q+ DyDyF}

and for n > 3,
Py =(E, = F}) Por + B, FyPys

Qn = (E;l - Fy/l) Qn—l + E;l_lF;lQn—Q
E;L = Qn (Oé) Qn (1 - CY) (Qn—2 (Oé) Qn—l (Oé) + Qn—2 (1 - Oé) Qn—l (1 - Oé)) )
) =Qno2(a)Qn2(l—0a)(@Qn1(0)Qn(a)+Qn1(1-a)Qn(l-a)).

The matrices Q,, («) (resp. @, (1 — a)) are the denominators of the n*" convergent of D® (resp. D'~%) which are defined
by

Qo(a) =0, Q1 (o) = D1, Qn(a) = DpQn-1(a)+ Qn-2(c),

Qo(l—a)=0, Q1(1-a)= 51’ Qun(l —a)= f)nQn—l(l —a)+Qn2(1—a).
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We recall that s (D)
By ——"
D= Tap0)
—2a/(a? - 22) -+ (a2 = 2k~ 2)°)
Do=— om0 R
—(a2—1) (ozz—(Qk—l)2>
Daogy1 =

4k+1)¢* (D), k> 1.
S (0Z =2 (e kF D (D) k=
We see that P,,, Q,,, E/, and F are diagonal matrices, we put

{ P, = diag (p?lw pi,. . .,pzl) { E! = diag (e}l, 6,21, .- ‘,em)
Qn = diag (¢}, @2, q7) °

Fé:diag( 1o f2 ,f,ﬁb”)
We obtain for each 1 < ¢ < m,

n> Jno
piy =1 ph =2, pi = 2a}an + ajiap,
¢-1 =0, ¢4 =1, ¢f = (a},a};)

ph = (eh — f3) pi +2(ajya},) f5
(5 — f3) ¢i + (a1a}) f3
and for n > 3, we have

ph = (e, — fi)ph_1 + el finh o

q, = (e, — fi)diy +eh 1 fial o

i i

e =dq, (@) g, (1 —) (¢ 2 () g}y (@) + ¢, o (1 —a)g,_; (1 -a))

fi=di o(a)gh o(1—0a) (g (a) g, (@) +q, 1 (1—a)g (1-a))

P,
By Theorem 3.5, we deduce that —7 converges to Ay + )\%_o‘ for 1 < i < m. It follows that the matrix —* converges to
n

D + D'~ So, we get

“+ o0

Dy+D, D\D\F; E,_,F!
D™+ D' — |2 1+~ 1, /1 1 ?’ n—11'n
DD, E;—F, Ej —F)

n=3
By Proposition 2, we have

—+oo

Dy +D)X~! (D,D,)F.X~' E'_,F'
A AT =X (DO + D) XL = op; D1t DUX T (D1 ,1) 2= _n-ln
DlDllX_l E2_F2 En_Fn

n=3

Let us define the sequence (X,,))n>—1 by X_1 = Xo = I, and for alln > 1, X,, = X. Then we have

X (D1+D)X XL A LA
X1D1D1D1 X-1Xg 1 T AjA; ]

X2(D1D1151F2,X_1)X0_1 _ A A Fy

Xo(E)—F3) X1 Ey—Fp 0

n—2

Xn(EL,—F)X, 1)

-1
XnE,_ F)X En_1F,

with XE' X1 = FE, and XF/ X! = F,, foralln > 2.
By applying the result of Proposition 3 to the sequence (X,),, we finish the proof of Theorem 1.
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3.2. Expansion of the Operator of Heinz

The original motivation of this article was the problem of representation the Heinz operator in continued fraction in order to
make its computation practical and efficient. Given two positive definite matrices A, B we recall that the Heinz operator mean is
the map

-1, ,=1\? R A
(47 BAZ) + (47 BAT)
2

Theorem 3.6. Let A, B € M., be two positive definite matrices, « a positive real number such that 0 < « < 1. A continued

fraction expansion of H, (A, B) is

A3

H, (A, B) = A®

~ P o~ —+oo
H,(A,B)= |A JAL+ ADAS (AYAL + 1) + AL(AW A + 1)A™E (ALA) T ByFy Byt Fy
o LOAAATE T M A + ANA Ay + Ay + Ay Es—Fs TE.—Fu|
where . .
A _ —I—ad(A"EBATE)  —l-aAZ(45p)AT
1 2a¢(A~3 BA™T) QQA%(‘:J:E A

—1
—10a(458)° A2

—.
(a2—1)(475)2A2

Ay =

The expressions of ;Pl and ;Pg are obtained from that of A} and A}, respectively by replacing « by (1 — «). The matrices F,,
and F;, are the same as in Theorem 1.

We deduce a continued fraction expansion of the symmetric operator entropy ST, (A, B).

Corollary 3.7. Let A, B € M., be two positive definite matrices, « a positive real number such that 0 < o < 1. With the
same notations as in Theorem 3, a continued fraction expansion of ST, (A, B) is

~ —_ o~~~ 1 — +o00
ST.(4,B) = | A5, 2a (A1 + AR (A (AL + D) + A4 Ay + D)ATE (A By By By
2007 AANATE T MAGAL + AL A+ Ay + A, Es—Fs TE.—F.|
Proof of Theorem 3.5. Since
— —1\ & —1 _1\1l—«a —1 —1
(ATlBAT) n (ATBAT) — 2ATI2H, (A, B) A7,
According to Theorem 1, the continued fraction expansion of H, (A, B) is
1 A’ —|—;4v]_ A (A/ +I)+/A71(/A71/A72+I> (A//A-;l)_lEgFg E,_F, e
H,(A,B) = —A= |2[; 22— L1~/ T~ LA :
2 AVAY  ALALAT, + A AT A+ AL+ Ay E3 — F3 En—Fu|
By applying the result of Proposition 2, we obtain
— — o~ —~— —~— —+o0
H,(A,B) = Lat |4, 2(41 iAll)A% (A (A +1) + A (AL A + I))é_% (ALAN) By By By Fy
’ 2 LONAIATE T MANAL, AN ALA Ay Ay Bs—Fy TE - F|
Remark 2. The matrices FE,, and F;,, are the same as in -
Theorem 3.1. ) (A%BA_Tl) i (A_TlBA_Tl) 1
Which completes the proof of Theorem 3.6. H, (A, B) = Az Az

2 )
where « is a positive real number such that 0 < o < 1.
In Theorem 3.6, a continued fraction expansion of the Heinz
4. Conclusion operator mean H, (A, B) is given.
As a corollary of this result, an algorithm of calculus of the

Many researchers have studied a various means inequalities, symmetric operator entropy

the Heinz norm inequalities for positive operators in Hilbert 1

spaces. In this work, we provide a method which allows us to ST, (A,B) = — (Ha (A,B) —
compute the Heinz operator mean H, (A, B) of two positive @

definite matrices A and B. It is defined by

A+B
5 .
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is also presented.

Our contribution allowed us to avoid the computation of
these operators by the exponential and logarithm functions of
matrices.

It should be noted that we can use the Padé approximation
in order to compute the Heinz opertor mean.
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