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Abstract: A delayed reaction Cdiffusion Rosenzweig-MacArthur model with a constant rate of prey immigration is considered.
We derive the characteristic equation through partial differential equation theory, and by analyzing the distribution of the roots
of the characteristic equation, the local stability of the positive equilibria is studied, and we get the conditions to determine the
stability of the positive equilibria. Furthermore we find that Hopf bifurcation occurs near the positive equilibrium when the time
delay passes some critical values, and we get the conditions under which the Hopf bifurcation occurs and so periodic solutions
appear near the positive equilibria. By using the center manifold theory and normal form method, we derive an explicit algorithm
for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions. Furthermore, some
numerical simulations are carried out to illustrate the analytic results of our study.
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I functional response. In [8-12] the global stability are
discussed. There are also many researches on the limit cycle
of R-M model [13-16]. In [17], Malay Banerjeethe studied
the existence of Turing patterns in this model and in the effect
of the non-local interaction on the periodic travelling wave
and spatio-temporal chaotic patterns. In [18], a fractional

1. Introduction

Predator-prey systems (or consumer-resource systems)
are basic differential equation models for describing the
interactions between two species with a pair of positive-

negative feedbacks. Furthermore, many ecological concepts
such as diffusion, functional responses and time delays have
been taken into consideration to gain more accurate description
and better understanding [1-6]. A typical Rosenzweig-
MacArthur model was put forward first in [7]. In this model
the prey has a logistic growth and the predator has a Holling

order Rosenzweig-MacArthur (R-M) model incorporating a
prey refuge is constructed and analyzed in detail. Sugie et
al discussed the existence and uniqueness of limit cycles in
predator-prey systems with a constant immigration in [19].

In this paper, we study the reaction-diffusion system,
Rosenzweig-MacArthur model with a constant immigration.

Oou(t,z) Cu(tx)]  ultz)olt) | Ov(t ) B
= Dy Au(t, z) + rult, z) [1 . P b Yk DyAv(t,z) — do(t, )+
pu(t — Ty x)v(t — 7, x) ou(t,z)  Ou(t,x)
at+ult—r1,2) zefl, t>0 o v =0 M

x€0Q, t>0ut,z) =¢(t,x) >0, vt,r)=y(tx)>0, x€Q, §c[-7,0]
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Where 2 = (0, 7), the homogeneous Neumann boundary
condition means the system is a closed one. wu(t,x),v(t,x)
stand for the densities of the prey and predator at time ¢ > 0
and a spatial position x € ), D1, Dy > 0 are the diffusion
coefficients of the species. a,b,d,k,r,u are all positive
constants, and the meaning of them are the same as those in
[19], and 7 > O is the constant delay due to the gestation of
the predator.

It is easy to see that system (1) always has a boundary
equilibrium

k  Vk2r?2 4 4bkr
EQ(U/0,0) = (2 2’{‘7())

When i > d, we let

bk(p — d)? + adkr(p — d)

Fo = a?d3r

then we can get that when Ry < 1 system (1) has no
positive equilibrium and Eg(xo,0) is the unique equilibrium
of (1) ; and when Ry > 1 system (1.1) has a positive
equilibrium E (u,, v.) besides Ey(ug, 0),

165
Immigration

By straightforward calculation, we get the characteristic
equation of the linearizing system of (1) about FEj

[)\+D1n2 . (1 _ 2“())}
k
[/\ + Dyn? +d— ““06”] -0
a + ug

Similar to the discussion in [20], we know that Ej is locally
asymptotically stable when Ry < 1, and unstable when Ry >
1.

The rest of the present paper is organized as follows:
In Section 2, we analyze the local stability of the positive
equilibrium E,, and the existence of Hopf bifurcation at F,.
In section 3, we determine the properties of the bifurcating
periodic solution. In Section 4, some numerical simulations
are carried out to illustrate the analytic results.

2. Local Stability of £, and the Existence
of Hopf Bi-furcation

As shown in section 1,
has a positive equilibrium FE,(u.,v.) when Ry

we know that system (1)
> 1.

[ ad u Us Move F, (4, vs) to the origin O(0,0) , we can rewrite (1) as
Euue,vi) = <,Hz’ 3 {7’“* (1 - ?) + bD follow:
augt’ z) = Di1Au(t, z) + cqu(t, ) — agv(t, ) + f1(u,v) av(;; ) = DoAv(t,x)—
dv(t,x) + fru(t — 7,z) + do(t — 7,2) + fa(u,v) auét, 7) = aug’ z) =0, 2)
v v
x €00, t>0u(t,r) = ¢(t, ) —us, v(t,z) =1t x)—v., x€Q, €[-T,0]
where
o 2ru, _ avy Uk 8, = AV
a=r k (a4 uy)?’ Tatu TN (a+u)?
oru(te)? | avau®(tx) — ala + u)u(t, z)o(t, x)
filu,v) = k (a4 us)?(a+ us +ult,x)) ®)
(et uut — T2t — T,2) — vuP(t — 7, 2)
fa(u,0) = ap (@ +ue)?(a+us +ult —7,7))
Denotinig X = C([0,7],R?), C, = C([-7,0], X)
up = ult,-), ug =v(t,"), U= (u1,ug)”
then we can write (2) as an abstract ordinary differential equation in the phase space C';
U(t) = DAU(t) + L(U) + F(Uy) @)
where
dom(DA) = {(u,v) |uV€C’2([O,7T] R), Oyu = 0,0 =0, 7}
1—a2 < (0)> ( >(¢1(—7')) D—(D1 0)
(O) d (bg(—T) ’ 0 D2
7“(252 L :03(0) — a(a +u)d1(0)¢2(0)

+“*)¢1( 7)p2(—

(@ +ue)?(a +ux + ¢1(0)
)_U*¢1( 7)

o-(:
e

(@ +u.)?(a+ ue + ¢ (=

7))
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Equation (4) has the linear part

U(t)=DAU(t)+ L(Uy)
and the characteristic equation

My — DAy — L(eMy) =0, y e dom(DA)\{0}

Letting

o= i (an> cos(nmx)
n=0 bn

be the characteristic function corresponding to the eigenvalues A , then the characteristic equation has the following form

Ap(\,T) = A2+ AN+ B, + (C,, —d\)e* =0,

where

An = (Dl + Dg)n2 + d— aq,
B, = D1D2n4 + (D1d — Dgal)’l’LQ — dal,
Cn = —Dldn2 + da1 + a251.

Assuming condition (A) as follow:

d 2ad —d
adr adr +r(,u )+

b(u — d)*

() ar<0er+—<

kp  k(p—d) I adp

then we have Lemma 2.1. If (A) holds, then A = 0 is not the root of Eq. (5) for any n € Ny .

Proof. According to (5) we know that

An(O,T) =B,+C, = D2n2(D1n2 — 011) + gy

Condition (A) holds means that «; < 0, and from (3) we can get as > 0, (31 > 0, then

An(0,7) >0,V n € Ny.

&)

Lemma 2.2. If (A) holds, when T = 0, all roots of Eq. (5) have negative real parts,for any n € Ny, furthermore, E, is locally

asymptotically stable.
Proof. When 7 = 0, Eq. (5) becomes

Nn(N,0) =X+ (A, —d)A\+ B, +C,, =0.

Suppose that A1, A2y, be roots of the above equation, then we have

)\1n+)\2n:d—An:a1—(D1+D2) <0
)\17L/\2n =B, + Cn = D1D2n4 — D2a1n2 + 04251 > 0,

which completes the proof.
When 7 # 0, letting w (w > 0) be the root of Eq.(5), then

C,sinwt + dw coswt = A,w

C, coswT — dwsinwr = w? — B,
which leads to

wh+ (A% - 2B, —d*)w? + B2 - C? =0.

(6)
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Let z = w?, Eq. (6) becomes
22+ (A2 - 2B, —d*)z+ B2 - C% =0. (7)
Through calculation we know that

A2 — 2B, — d* = (D + Do)n* + d — ay)* — 2[D1 Don* + (Dyd — Doy )n? — day| — d?,
= Dyn* 4+ 2D5dn? + (Dyn? — a1)? > 0,
sz - CTQL = (Bn + Cn)(Bn - CTL)7
B,, + C,, = D1 Dyn* — Dyayn® + asfh,
B, — C,, = D1Dan* + (2D1d — Daar)n? — 2a1d — a3y
Suppose condition (A) holds. It is obvious that B,, + C,, > 0. Furthermore, if —2c1d — @281 > 0, then B,, —C,, >0, V n €
Np; if —2a3d — a8y < 0, sinceBy — Cy = —2a1d — ap8; < 0, then there exists N € N, such that B,, — C,, < 0 when

n < Nand B, — C, > 0when n > N. So we get that if (4) and —2a;1d — a2 81 > 0 hold, then Eq. (7) has no positive root
forVn € Ny ; and if (A) and —2c1d — as 81 < 0 hold, Eq. (7) has a positive root

- %[2Bn 4 d2— A2 /(A2 2B, — PP —4(B —C2)]

when n < N, which means that Eq. (6) also has a positive root

1
wn = ——1\/2B, +d? — A2 + \/(AZ —2B, — d?)? — 4(B2 - C2
ﬂ\/ V( )2 —4( )

Lemma 2.3. If (A) and —2c1d — aeB1 < 0 hold, then there exist N € N, such that Eq. (5) has a pair of conjugate pure
imaginary roots 4w, when T =73 (n < N, j =0,1,2,---), where

1 *
— (arccos a—* + 2j7r> , b* >0
Wn c
=1 o (®)
— <27r — arccos — + 2j7r) , b* <0
Wn, c

here a* = (dA,, + Cp)w? — B,,Cy, b* = w(A,C,, —dB,,) — dw?, ¢* = C2?+ d*w?.
Furthermore, we have Lemma 2.4. Re(dA\/d7)| __; >0
Proof. Since (5), we know that

22X + Ay — de > — 7(Cp — dA)Ae-AT]ji (= AN,

T

which leads to

A\ 2+ A, —de 7
<dr> T MG, —dNe A X
B 20+ A, d T
T AN+ A0+ B, AC,—dN) XN

substituting 7 = 77 into the above formula, we have

dy\ 21w, + A, d 7J

Re | — =R — _n

¢ (dT)T_TWJ" ¢ [—Mn(—w% +wpA, + Bp)  wy(Cp —1dw,)  w,
A2 1 2(w2 — By) &2

T OAZWZ 4+ (W2 - B2)? 2+ C2
A2 2B, —d*+2w?
o d?w2 + C?

> 0.

Denoting 7, = min{72}(0 < n < N), we come to the main conclusion for this section:
Theorem 2.5.For system (1), suppose that condition (A) holds,
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(i) If —2a1d — @281 > 0, then E,(uy,vy) is locally asymprotically stable for ¥V T € [0, +00);

(i) If —2ci1d — a1 < 0, then E,(u, v.) is locally asymptotically stable when T € [0, 7.) and unstable when T > 7,; and
system undergoes Hopf bifurcation at E, (u.,v.) whenT =73(0 <n < N,j =0,1,2,---).

The bifurcating period solutions are spatially homogenous when T = Tg (j=0,1,2,---);
The bifurcating period solutions are spatially non-homogenous when v = 75(0 <n < N, 7 =0,1,2,---).

3. Properties of Hopf Bifurcation

Basing on the discussion in the previous section, we find that under some condition system (1) undergoes Hopf bifurcation,
which means that system (1) has bifurcating period solutions. This section, using theory of partial differential equation from Wu
[26] and Hassard [27], we study the properties of bifurcating period solutions.

Letting @(t, x) = u(rt,z), v(t,z) = v(rt,z), and removing the ” — ” for convenience, expanding system (2) around the
origin, we get the following equation:

augt, ) Dy Ault, z) + tlonu(t, z) — anv(t 2) + asu®(t, ) + asu(t, 2)o(t )
+ asud(t, x) + agu®(t, z)v(t, z) + O(4)] ©
‘%Sé ) DyAu(t2) + Tl do(t 2) + Brult — .2) + do(t — 7, 2) + Baud(t — 1,2)
+ Bau(t — Lz)w(t — 1,2) + Bau(t — 1,2) + Bsu?(t — 1, z)v(t — 1,2) + O(4)]
where
T AV —a AV —a
TR e M e w? T et T et
P2 = _(aTZi)3’ = f/;*)‘z’ Pa= (acfi)v 5=G +a£)3
Let

ul(t) = U(t, ')a vl(t) = ’U(t, ')7 U= (u17u2)T
then system (9) can be written as the following abstract ordinary differential equation in the phase space C = C([—1,0], X)

dU(t)
dt
Here L : C'— X, F :(C — X are defined as

= 7DAU(t) + L:(Uy) + F(Uy, ) (10)

_ a1¢1(0) - Oé2¢2<0)
Le(¢)=¢ < —d1(0) 4 Bro1(—1) + doo(—1) )

and

F(¢,e) =eDAG+ Le(9) + f(d, ) f(¢,€) = (T +¢)

,€)
( asd3(0) + aad1(0)d2(0) + 015¢§’(0) + ap7(0)¢2(0) + O(4) ) (1
Bod?(—1) + B3p1(—1)da(—1) 4+ Bag3(—1) + B3 (—1)p2(—1) + O(4)

where ¢ = (¢1,¢2)" € C.
Consider the following linear equation

dU(t
% =T7DAU(t) + Lz(Us) (12)
When 7 = 7, system (9) has pure imaginary roots, denoted as A = {iw7, —iwT}, what’s more, A are also eigenvalues of the

following functional differential equation.

dz(t)
dit

= —%Dnzz(t) +L;.(Zt). (13)
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By Riesz representation theorem, there exists a 2 x 2 matrix 7™ (6,7) (—1 < 6 < 0), whose elements are of bounded variation
functions, such that

0

—7Dn%p(0) + Lz (¢) = ) dn™(6,7)¢(0).

For V¢ € CNCt and ¢ € C N C?, define the operator A(¢) and A* respectively as follow

46 (6)
A(E)6(0) = { o fel-1,0)
f,1 dﬁ(97 €)¢(0)a 6 =0,

di(s)
A*(s) = { o ds »s € (0,1,
Jo,(=€)dn(&,0),s = 0.

Define the bilinear form

0 0
(6.1) = $(0)(0) — / [ ple= 00, 7p(e)as
—1Je= (14)

—v0o0+7 [ et (05 ) e

where ¢ € C([-1,0],R?), ¢» € C([0,1],R*). Then A(0) and A* are adjoint operators, and +iw7 are eigenvalues of
A(7) and A*. Let P and P* are center subspaces of A(7) and A* associated with A = {£iw7} respectively, then P* is the
adjoint space of P, and dimP = dimP* = 2.

By a straightforward computation, we can get that

p1(0) = (1,6)7e“7(0 € [-1,0]), p2(6) = p1(0)

and

q1(s) = (0,1)e™7(s € [0,1]), g2(s) = p1(s)

are bases of A(7) and A* associated with A = {£iw7}, where

1
f = 7(0(1 — D17L2 — i(I)),
s
1
n = —[—d — Dyn® + dcos @7 + i(w + dsinw7)].
s

Taking
Re(ei&ﬁ'Q)

2106) = 511(0) + 1m0 = ( perceiors) )

) cos(wTh)
— a—Q[(Oq — D1n2) cos(wTh) + wsin(w70)]

Im(eiw‘l‘@)

22(0) = 5101(0) = 120 = ( ptions) )

1 sin(w70)
= 072[(061 — D1n2) sin(c?ﬁ&) — 0 COS((Z)?H)]
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and
Ui(s) = =[q1(s) + g2(s)] = (Re(ne*id)‘?O),Re(efiaﬁe))

= (1[(—d — Dyn? + d cos(w7s)) cos(wTs) + (@ + dsin(w7s)) sin(w7s)], cos(cm’s))

Wa(s) = %[(h (5) — q2(s)] = (Im('r]efi“iﬁs)’lm(efiw'm))

= (ol[(d + Dyn? — dcos(wTs)) sin(w7s) + (@ + dsin(w7s)) cos(@Ts)], — Sin(wTs))

then (®q, o) and (U, U5) are bases for P and P* respectively.
By (14), we have

1
All::(Wf7¢1)=:5&;py-+%7p-dw%snmw%ﬂ

-1
My := (U], ®;) = 2—[2@ + dwTp + T sin(wT))

Q2
1
Ms := (03, 91) = —[20 — dwTd — T sin(w7)]
2a2
1
M4 = (\I/;,(I)Q) = 7[7_"}/5 — dwT Sin((Iﬁ')]
20[2
where L L
v =a; — Din?® — Dyn?,  p=cos(w7) + SIIIEL:)T), 0 = cos(wT) — Lnf(ciﬁ).
wT wT
Define

o) =m0 - (Gh3 (o)

and choose ¥ = (U, Uy)T = (U*, ®)~1W*, then we have (¥, ®) = I,, and

N 1 —D2n2
o MMy — MoMs (&%)
= (Tl, Tg)

4 (). 8-

¢ foi=c1Bh + B2, c=(c1,02)" € C([-1,0],X)

W1(0) —1W2(0)

(M3 + Myi) — w(My + Mi), My + M3i>
Take f, = (81, 52). here

and denote

For u = (u1,us), v = (v1,v2), u,v € X, define inner product as
1 [7 1 ("
(u,v) = 7/ w v de + f/ UgUad.
T Jo T Jo

For ¢ € C = C([-1,0], X), define (¢, f,,) = ((¢, f}), (¢, f2))T, then we get the center subspace of Eq. (12)

PonC(¢) = (Y, (@, fr) - fr, ¢ €C,

and we can decompose space into C' = PonC @ PsC, where PsC'is the complementary space of PonC in C.

15)

Let A7 be the infinitesimal generator of the semigroup induced by solutions of Eq. (13), then (2) can be written as the abstract

ODE
du ()

at :A.,*—Ut‘FR(Ut,&“)

where
- 0, 6 €[-1,0)
R(Uy,¢e) = { F(Uy,e), =0

(16)



Gang Zhu and Chunyan He: Stability and Hopf Bifurcation Analysis of Delayed Rosenzweig-MacArthur 171

Model with Prey Immigration

We can decompose the abstract equation into

€
Ut:(I)( > 'fn+h(x17$255)a
X2

where
<x1> - (\Ij7 <Ut7fn>)3 h(x17x275) € PSCa h(0,0,0) = 07 Dh(0’070) =0.
T2

Solutions of (10) on the center manifold are

t
Utzé xl( ) 'fn+h($17$2,0) (17)
(1)
Let z(t) = x1(t) — iz2(t), then we have
2(t) = iwT2(t) + g(z, 2)
where
9(2,2) = (V1(0) — 1W2(0))(F(Uy,0), fn)
Substitute z(t) into (17), we get
*) z+Zz
X1 t _ 2 - 1 _
(I)<.132(t)> “fn = (@1, P2) i(z22) fn—i(pyz-f—mz) fn
2
and ( )
z+z i(z—2
h 0)=~h 0
($1;$27 ) < 2 3 9 ) >
then U, can be changed into the following form
1 o z4+2zZ i(z—2Z 1 o _
U=y +713) - fo ot (555 552 0) i Sns ) 4 W)
Let
22 z2 22 z2
Wi(z,z) = Wzog + Wiizz + W02? +00y g(z,2) = 9205 T 9nzZ+goos oo (18)

then by (11) and (18) we get
— 2 1
(F(U,0), fn) = % < —21S§<; a—fﬁgf) ) ;/ cos®(nx)dx

T2Z (203 +a(6+E) \ 1 3

T ( 26y + B3(€ + ) >w/ cos” (nz)da
772 as + asé 1 3

T ( BT (B, + B3¢) >7r/ cos e

as < (Wﬁ)(o) + 2W2%>(o)> cos(nz), Cos(nx)>

raa (GO + W0+ S+ SW0) ) costna) cos(ro) )
(3asz + ap€ + 2a6€)(cos® (nx), cos(nz))

+7222 | B <<e_i‘”W1(11)(—1) ¢ <1>(—1)> cos(nx),cos(nx)>

# 0 (gm0 + WD (1) ) cosla) costne) )

+ B3 <(ei‘” (Wz(g)(—l) + fWé?(—l))) cos(nx), cos(nx)

oo\H

(384 + Bs& + 2B58) (cos® (na), cos(n))
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Since fow cos®(nx)dx = 0 whenn # 0, combining with (15), we have

- ) O, n 7& 0
920 = o2 = { g[’rl(ag + Eay) + Toe 29T (By +EB3)], n=0

07 n;éO
9112{ [T1(2a3 + (€ + &) ay) + T2(282 + (€ +€)B3)], n=0

= =

as <(2Wﬁ>(0) + Wz(é)(O)> cos(n), cos(na:)>

o =Ty | +au( (W20 + 1) + 5L 0+ (D (0) ) coston). costus) )

+ %(3053 + g€ + 2068) (cos® (na), cos(na))

B2 <<2e*i"_ﬁW1q)(fl) + ei‘:ﬁWQ%)(fl)> cos(nx), cos(n:z:)>

LAY, + B3 < (eiw W2 (1) + EWg(S)(—l))> cos(n), COS(M)>

(384 + Bs€ + 28B56)(cos® (nx), cos(nx))

4
Here we need to compute Wao (), W11(6), 6 € [-1,0].
By (18) '
W(Z, 2) = WQOZZ:: + an'z + Wllzé + WOQZZL + .
= A; W+ H(z,2)
2 52
A»T-W(Z7 2) = A‘T'WQO% + A»f-WllZE + A»T—W()Q? +
here
22 z2
H(Z, 5) = Hg()? + Hy12Z + HOQ? +
= XOF(Ut7O) - (I)(\I/’ <X0F(Ut7 0)7 fn>) ! fn
SO

(21T — A7)Woo = Hag, —A;Wi = Hyy, (=207 — A7)Woo = Hoa,
here we need to find out Hy(6) and Hy; ().
When 6 € [—1,0), we know that
H(z,z) = —®(0)¥(0)(F(U,0), fn)  fu

(p1(0) +p2(0) pr(0) —pa(0) [ ¥1(0)
__< 1 2 2 ’ 1 2i - )(\112(0)> <F(Ut70)7fn>fn

= *1[p1(9)(‘1’1(0) —i%3(0)) + p2(0)(¥(0) +1W2(0))[(F (U, 0), fn) - fn

2
1 1 22
= 0O+ 20)0) £ — 21O+ pa(On) - £,
1 =2
- 5(1’1(9)902 + p2(0)g20) - fn%
so we have
B 0, n=1,23".
Hzo(6) = { —2(p1(0)g20 + p2(0)go2) - fo, n=0
B 0, n=1,23"..
Huu(6) = { —L(1(0)g11 + p2(0)311) - fo. n=0

0 n=1223. ...
H 0 = ) )~y
l(®) { —5(p1(0)g02 + p2(0)g20) - fo, n=0

19)
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when 6 = 0, H(z, 2)(0) = F(U,0) — ®(V, (F(U,0), f)) - fn, sO we have

T a3 + asd _

=) 2 ( €257 (B, + Bat) )COSQ(”‘””)’ n=hnd
20(0) = ¢ _

% < e—2ig7§(;2a_igﬁ3£) ) - %(pl(H)gzo +p2(0)go2) - fo,  nm=0

T ( 203+ as(§+E) _

4( 26, + Bs(€ +6) )COS (na), n=L23,
HII(O) - T 23 + 044(5 + f) 1

Z ( 262"’53(5"’5) ) _§(p1(9)gll +p2( )gll) an n=20

By the definition of A; and (19),we have

. L 1 _
Wag = AzWao = 2i0TWoo + 5(]91920 +p2goz) - fn, —1<60<0

therefore
1 7l [
Wao(0) = 5— (9201)1(9) + @pzw)) < fo + EyeBieT?
207 3
where
Wa0(0), n=1,23,---
El = 1 a
Wao(0) — or (920171(0) + g%m(o)) - fo, n=0

furthermore, by the definition of A;, we have

2iw0T {2;7 <g20p1(0) + ggﬂpQ(O)) “fo+ El} —7DA { (920]71(0) + %2]?2(0)) “fo+ E1]

_ L(?) |:2i <920p1(9) + ‘(jgﬂpQ(Q)) - fo+ Ele2iwfr:|
B g ( e*mg?(;zafﬁgg) ) - %(m(e)gzo + p2(0)goz) - fo

notice that
TDA[p1(0) - fo] + L(7)[p1(0) - fo] = iwTp1(0) - fo
TDA[p2(0) - fo] + L(7)[p2(0) - fo] = —iwTp2(0) - fo

we get
%No7Ey — FDAE, — L(7)(Eye?@70) = T ( 08 g > cos?(nz)
2\ e 97 (Be + B3€)
and
E = ( 210+ Dlﬁzzia; o - 20[2 —2iwT >_1 ( 723? * oad ) ‘COSQ(nx)
—Bie 2iw + Dan? + d — de e (B2 + B3€) 2
Since
W11(9) = %[pl(o)gn +p2(0)g11] - fns
then
Wia(0) = 5= (2(0)gu1 — pr(O)gn) + o

similarly we get

B — ( Din? — ag as )_1 ( 203 + au (€ +€) ) cos?(nx)
2 —b1 Don? 282 + B5(§ + &) '
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Therefor g2; can be expressed by the parameters in
system (1). Thus, we can compute the following quantities:

c1(0) = ﬁ(gmgn —2|gn1* - %|902|2) + g%
- Recl (0)
H2 = TReN(7)
B2 = 2Reci(0)
Imeq (0) + peImN (7)
n = - —

wT

which determine the properties of bifurcating periodic
solutions at the critical value 75. The direction and stability
of Hopf bifurcation in the center manifold can be determined
by uo and (5 respectively. In fact, if uo > 0(pe < 0),
then the bifurcating periodic solutions are forward (backward);
the bifurcating periodic solutions on the center manifold are
stable (unstable) if B2 < 0(82 > 0); and Ty determines

-3 y
\ 0 0 .

the period of the bifurcating periodic solutions: the period
increases (decreases) if 75 > 0(T < 0).
4. Numerical Simulations

We choose a set of parameters as follows:

(a) a=1, b=04, d= 04,k =4,
7":6,/1:27 191:27 D2=05

then E, = (4.06559,0), E, = (0.25,9.03125). Basing on
the analysis previously, we get

By —Cy <0, Bn—Cn>0(n21)

which means that Hopf bifurcation occurs only when n =
0 and 7§ = 0.2727.

Vit

t

Figure 1. When T = 0.25 < 1y, the positive equilibrium of system (1) is asymptotically stable with parameters given in (a), and

the initial value is (0.3,9).

Figure 2. When T = 0.4 > 79, the spatial homogeneous periodic solution bifurcating from the positive equilibrium of system (1)

with parameters given in (a), and the initial value is (0.3,9).
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5. Conclusion

In this paper, we consider the diffusive Rosenzweig-
MacArthur model with a constant delay 7 due to the gestation
of predator. We find that if condition (A) holds, then stability
of the positive equilibrium E, (u.,v,) was influenced by the
choose of the parameters. With the parameter set (a) as
shown in section 4, we find that E, (u.,v.) loses its stability
and an spatial homogenous orbitally asymptotically stable
periodic solution arises from the Hopf bifurcation when the
delay T passes through some critical value 7). This shows the
important influence of the time delay 7 to the system.
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