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Abstract: Cholera was prevalent in the U.S. in the 1800s, before modern water and sewage treatment systems eliminated its 

spread by contaminated water. Cholera is an acute intestinal infectious disease caused by the bacterium vibrio cholerae. We 

propose and analyse a mathematical model for cholera considering quarantine. Quarantine plays an important role to control 

the disease. Our goal is to control the disease through the quarantine even if infected population again becomes suscepted. 

Determine two equilibrium points of the model: disease-free and endemic. Also basic reproduction number Rq is obtained. 

Reproduction number plays as a key role for analyzing stability for disease-free and endemic equilibrium points. Stability has 

been discussed for both equilibrium points using Ruth-Hurwitz criterian. We concluded that the disease-free and endemic 

equilibria are locally asymptotically stable if Rq<1 and Rq>1 respectively. Also, Numerical simulations are carried out for the 

model. From the graphically representation it is more clearly seen that when the disease becomes dies out and when it 

persistence. 
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1. Introduction 

Cholera is an infection of the small intestine by some 

strains of the bacterium Vibrio cholerae. When the bacteria 

attaches to the small intestine’s walls, human’s body begins 

to secrete large amounts of water that lead to diarrhea and 

rapid loss of fluids and salts. Contaminated water supplies 

are the primary source of cholera infection. Uncooked fruits, 

vegetables, and other foods can also contain the bacteria that 

cause cholera. Cholera is an ancient disease that continuous 

to cause epidemic and pandemic infection despite ongoing 

efforts to limit its spread. Wang J. and Modnak C. have been 

formulated a cholera mathematical model with control 

measures which represents a coupling between multiple 

transmission pathways of cholera and multiple control 

measures [9]. In spite of the recent progress of medical 

sciences, cholera still remains as a severe global threat in 

view of more morbidity or mortality and its currently 

spreading in countries such as Zimbabwe and other parts of 

the world. Das P. and Mukherjee D. focused to the role of 

lytic bacteriophage in the cyclic behavior of cholera 

outbreaks [4]. Emvudu Y. and Kokomo E. considered a 

cholera epidemic mathematical model of a closed population 

in [5]. A nonlinear delayed SIRS cholera mathematical model 

with immigration for the spread of the disease with carriers in 

the environment have been proposed and analyzed by 

Agarwal M. and Verma V [1]. One useful method to control 

the spread of infectious diseases is to isolate some infectives, 

in order to reduce transmissions of the infection to 

susceptibles. Pang Y. et al. discussed the dynamics of a 

stochastic SIQS epidemic model [8]. The cholera outbreak 

began in 2010 in Haiti reminds us the importance of cholera 

prevention, treatment and control that has eliminated the 

disease from much of the developed world. Chun I. and Fung 

H. gave a brief introduction of the cholera transmission 

dynamic models and discussed that how the models can be 

modified and focused on the model structure, impact of 

water, sanitation using modeling and model misspecification 

and parameter uncertainty [2]. Authors proposed a SVR-B 

cholera model with vaccination [3]. A mathematical model of 

cholera has been proposed to see the impact of vaccination, 

therapeutic treatment on the transmission dynamics of 
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cholera infection in a varying population [6]. Many 

mathematical models have been proposed by many 

researchers to investigate the complex epidemic and endemic 

behavior of cholera. The effects of vaccination on the 

transmission of cholera models are also studied by many 

authors. Nirwani N. et al. proposed a SIQR-B cholera 

epidemic model. They studied and analyzed the effects of 

quarantine and incidence on the spread of cholera disease [7].  

2. The Mathematical Model 

We have referred Nirwani N. et al. [7] and modified it by 

adding transmission rate Iω . Considered an SIS cholera 

epidemic model with quarantine effect. In the model human 

population is divided into classes containing susceptible ( S ), 

infectious ( I ), quarantine ( Q ) and recovered ( R ) 

individualsat time t . The pathogen population at time t is 

given by ( )B t . Now consider the total number of population 

at time t is 1S I Q R+ + + = . When there is an adequate 

contact of a susceptible with an infective, the susceptible 

becomes infected and leaves the class S . Hence infected 

individuals enter the class I  of infectious people and have a 

full disease case of an infectious disease. After sometime, 

infected people leaves the class I . There are two possibilities 

for the infected peoples: (1) Upon recovery they enter the 

class R  and (2) goes back through an immediate returning 

path Iω to the susceptible class. There are two ways to 

recover the infected peoples: Firstly, they can be recovered 

directly with the transmission rate Iα and secondly, they can 

be recovered through quarantine class Q with transmission 

rate Iδ  which imposed the disease and then move to class 

R with transmission rate Qε , otherwise they will be 

susceptible again. This model is called an SIS model with 

quarantine effect. 

The flow of individual is depicted in the following transfer 

diagram (Figure 1): 

 

Figure 1. Transfer diagram for SIS cholera model. 

The symbols are used here stands for 

1µ = Natural human birth and death rate, 

1β , 2β  = Contact rates for the human-environment & 

human-human  

interactions respectively, 

1α , 2α  = Constant rates, 

1d , 2d  = Disease related death rate constant in I & Q  

respectively, 

α  = Recovery rate from the disease, 

δ  = Transmission rate between compartments I to Q , 

ε  = Transmission rate between compartments Q to R , 

η  = Rate of human contribution to the growth of the 

pathogen, 

2µ = Death rate of the pathogen in the environment, 

ω  = Disease transmission rate from compartment I to S . 

All parameters are assumed nonnegative. 

3. Formulation of the Model 

The differential equations corresponding to the transfer 

diagram are 

1 2
1 1

1 21 1

dS S B S I
I S

dt B I

β βµ ω µ
α α

= + − − −
+ +

 

1 2
1 1

1 2

( )
1 1

dI S B S I
d I

dt B I

β β µ δ α ω
α α

= + − + + + +
+ +

 

2 1( )
dQ

I d Q
dt

δ ε µ= − + +                     (1) 

1

dR
I Q R

dt
α ε µ= + −  

2

dB
I B

dt
η µ= −  

Since equations first, second, third and fifth of system (1) 

are independent of the variable R , therefore, the system can 

be rewritten as 

1 2
1 1

1 21 1

dS S B S I
I S

dt B I

β βµ ω µ
α α

= + − − −
+ +

 

1 2
1 1

1 2

( )
1 1

dI S B S I
d I

dt B I

β β µ δ α ω
α α

= + − + + + +
+ +          (2) 

2 1( )
dQ

I d Q
dt

δ ε µ= − + +  

2

dB
I B

dt
η µ= −  

The feasible region of human population D corresponding 

to the system (2) will be 

{( , , ): 0, 0, 0, 1}D S I Q S I Q S I Q= ≥ ≥ ≥ + + ≤  

and the feasible region of pathogen Ω will be  

{ : 0}B BΩ= ≥  

Thus, the proposed model is mathematically well posed 

and is epidemiologically reasonable, since all of the fractions 

remain between 0 and 1.  
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4. Derivation of the Model 

4.1. Equilibrium Points 

There are two types of equilibrium points: disease-free and 

endemic. First of all, we determine disease-free equilibrium 

points. 

4.1.1. Disease-free Equilibrium (
0E ) 

All the equations of the  system (2) equate to zero, then the 

system of equations becomes  

1 2
1 1

1 2

0
1 1

SB SI
I S

B I

β βµ ω µ
α α

+ − − − =
+ +

 

1 2
1 1

1 2

( ) 0
1 1

S B S I
d I

B I

β β µ δ α ω
α α

+ − + + + + =
+ +

          (3) 

2 1( ) 0I d Qδ ε µ− + + =  

2 0I Bη µ− =
 

Assume that if the disease is not occurring, then 0I = . 

Now, from equations third and fourth of system (3), we 

have 

0Q = and 0 .B =  

At 0I =  and 0B =  from equation first of system (3), we get

1S = . 

Thus, the disease-free equilibrium is
0 (1,0,0,0)E = .  

 

4.1.2. Endemic Equilibrium (
*E ) 

Here, we find the endemic equilibrium points and discuss 

the uniqueness of the points. For this, the system (2) can be 

written as 

* * * *
* *1 2

1 1* *
1 2

0
1 1

S B S I
I S

B I

β βµ ω µ
α α

+ − − − =
+ +  

* * * *
*1 2

1 1* *
1 2

( ) 0
1 1

S B S I
d I

B I

β β µ α δ ω
α α

+ − + + + + =
+ +

        (4) 

* *
2 1( ) 0I d Qδ µ ε− + + =  

* *
2 0I Bη µ− =

 

From equations third and fourth equation of system (4), we 

get the values of 
*Q  and 

*B  such that  

*
*

1 2( )

I
Q

d

δ
ε µ

=
+ +

 and 
*

*

2

I
B

η
µ

=  

From first  and second equation of system (4), we get 

*
* 1 1 1

1

( )d I
S

µ µ α δ
µ

− + + +
=

 

Again, from second equation of system (4), 

* * *1 2
1 1* *

2 1 2

( ) 0
1

S I d I
I I

β η β µ α δ ω
µ αη α
 

+ − + + + + = 
+ + 

       (5) 

Substituting the value of 
*S  in equation (5), 

*
1 1 1 *1 2

1 1* *
12 1 2

( )
( ) 0.

1

d I
d I

I I

µ µ α δβ η β µ α δ ω
µµ α η α

  − + + +   + − + + + + =  
+ +    

 

It means that either 
* 0I = or 

*
1 1 1

1 2
1 1* *

12 1 2

( )
( ) 0.

1

d I
d

I I

µ µ α δβ η β µ α δ ω
µµ α η α

 − + + +   + − + + + + = 
+ +  

 

But in case of endemic
* 0I ≠ , so we have  

*
1 1 1

1 2
1 1* *

12 1 2

( )
( ) 0.

1

d I
d

I I

µ µ α δβ η β µ α δ ω
µµ α η α

 − + + +   + − + + + + = 
+ + 

 

Or 
*

1 1 1 1 1

1 1 2
* *

2 1 2

( ) ( )

1

d I d

I I

µ µ α δ µ α δ ω
µ β η β

µ α η α

− + + + + + + +=
 

+ + + 

. 

We assume that * *
1 2( ) ( )g I g I= , 

where
*

* 1 1 1
1

1

( )
( )

d I
g I

µ µ α δ
µ

− + + +
=  and

* 1 1
2

1 2
* *

2 1 2

( )
( ) .

1

d
g I

I I

µ α δ ω
β η β

µ α η α

+ + + +
=
 

+ 
+ +  

 

Now, for determining the uniqueness of *I , we assume 

that
*I I= , then  

1 1 1
1

1

( )
( )

d I
g I

µ µ α δ
µ

− + + += and
1 1

2

1 2

2 1 2

( )
( )

1

d
g I

I I

µ α δ ω
β η β

µ α η α

+ + + +
=
 

+ + + 

. 

If 0I = , then 1(0) 1g = and 2 1 1
2

1 2 2

( )
(0)

( )

d
g

µ µ α δ ω
β η β µ
+ + + +

=
+

. 
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If 0I > then 1( ) 0g I < and 2 ( ) 0g I > .  

Thus, we see that 2 ( )g I  is increasing function for 0I ≥ . 

Hence, basic reproduction number qR  is given by

1

2

(0)

(0)
q

g
R

g
= .  

or 

1 2 2

2 1 1

( )
.

( )
qR

d

β η β µ
µ µ α δ ω

+
=

+ + + +
                         (6) 

When 1qR > , then 2 1(0) (0) 1g g< =  that is 2 (0) 1g < . 

Hence, there is a unique solution of *I  to the equation 
* *

1 2( ) ( )g I g I=  

Thus, endemic points are given by  

* * *
* *1 1 1

1 1 2 2

( )
( , , , )

d I I I
E I

d

µ µ α δ δ η
µ ε µ µ

− + + +
=

+ +
, 

where *I  can be determine by * *
1 2( ) ( )g I g I= . 

4.2. Stability Analysis 

In this section, we have analyzed the stability of disease-

free and endemic equilibrium by proving the theorem 1 and 

theorem 2 respectively. 

4.2.1. Stability of Disease-free Equilibrium 

Theorem 1. If 1qR < , then the disease-free equilibrium is 

locally asymptotically stable.

 Proof. The variational matrix will be 

1 1 2 1
1 2 2

1 2 2 1

20 1 1 1
1 12 2

1 2 2 1

1 2

2

0
1 1 (1 ) (1 )

( ) 0( ) .
1 1 (1 ) (1 )

0 ( ) 0

0 0

B I S S

B I I B

SB I S
dJ E

B I I B

d

β β β βµ ω
α α α α

ββ β βµ α δ ω
α α α α

δ ε µ
η µ

− − − − − + + + + + 
 
 + − + + + +=

+ + + + 
 − + + 
 − 

 

At disease-free equilibrium points, the matrix will be  

1 2 1

2 1 1 10

2 1

2

0

0 ( ) 0
( )

0 ( ) 0

0 0

d
J E

d

µ ω β β
β µ δ α ω β

δ ε µ
η µ

− − − 
 − + + + + =
 − + +
 

−  

. 

Now, the characteristic equation will be 

0( ) 0J E z I− = . 

1 2 1

2 1 1 1

2 1

2

0

0 ( ) 0
0.

0 ( ) 0

0 0

z

d z

d z

z

µ ω β β
β µ δ α ω β

δ ε µ
η µ

− − − −
− + + + + +

⇒ =
− + + +

− −

 

On simplification, we have 

2
2 1 1 2 1 1 2

2 1 1 2 2 1

( ) ( ){ ( )

( ) ( )} 0.

d z z z d z

d

ε µ µ µ µ δ α ω β
µ µ δ α ω µ β β η
+ + + + + + + + + + −

+ + + + + − + =
 

It is clear that there are four eigen values corresponding to 

the characteristic equation. First two are given by 1z µ= −
and 1 2( )z dε µ= − + +  which are negative.

 

Remaining two eigen values are obtaining by the following 

equation 
2

2 1 1 2

2 1 1 2 2 1

( )

( ) ( ) 0 .

z d z

d

µ µ δ α ω β
µ µ δ α ω µ β β η

+ + + + + + −
+ + + + + − + =  

which can be written as
 
2

1 2 0z a z a+ + =  

where, 

1 2 1 1 2( )a dµ µ δ α ω β= + + + + + − , 
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2 2 1
2 2 1 1 2 2 1 2 1 1

2 1 1

( ) ( ) ( ) 1
( )

1 .q

a d d
d

R

µ β β ηµ µ δ α ω µ β β η µ µ δ α ω
µ µ δ α ω

 += + + + + − + = + + + + − + + + + 

= −
 

where,
1 2 2

2 1 1

( )
1.

( )
qR

d

β η β µ
µ µ α δ ω

+
= <

+ + + +
 

Hence, it is clearly seen that 

1 0a > , 2 0a > and 1 2 0a a > . 

Thus, by the Routh-Hurwitz criteria the disease-free 

equilibrium is locally asymptotically stable if 1qR < . 

4.2.2. Stability of Endemic Equilibrium 

Theorem 2. If 1qR > , then the endemic equilibrium is 

locally asymptotically stable.

 Proof. The variational matrix will be 

* * * *
1 2 2 1

1* * * 2 * 2
1 2 2 1

* * * *
* 1 2 2 1

1 1* * * 2 * 2
1 2 2 1

2 1

2

0
1 1 (1 ) (1 )

( ) .( ) 0
1 1 (1 ) (1 )

0 ( ) 0

0 0

B I S S

B I I B

B I S S
J E d

B I I B

d

β β β βµ ω
α α α α

β β β βµ δ α ω
α α α α

δ ε µ
η µ

 − −− − − 
+ + + + 

 
 = + − + + + +
 + + + +
 − + + 
 − 

 

This matrix can be written as 

1 1 2 3

1 2 1 1 3*

2 1

2

0

( ) 0
( )

0 ( ) 0

0 0

J J J

J J d J
J E

d

µ ω
µ δ α ω

δ ε µ
η µ

− − − − 
 − + + + + =
 − + +
 

−  

 

where,

 

* *
1 2

1 * *
1 21 1

B I
J

B I

β β
α α

= +
+ +

, 
*

2
2 * 2

2(1 )

S
J

I

β
α

=
+

and 
*

1
3 * 2

1(1 )

S
J

B

β
α

=
+

. 

Or

1 1 2 3

1 3*

2

0

0
( )

0 0

0 0

J J J

J K J
J E

L

µ ω

δ
η µ

− − − − 
 
 =
 −
 − 

 

where, 2 1 1( )K J d µ α δ ω= − + + + +  and 1 2( )L dε µ= + + .  

Then the characteristic equation is given by 

*( ) 0J E Iλ− = . 

1 1 2 3

1 3*

2

0

0
( ) 0.

0 ( ) 0

0 0

J J J

J K J
J E

L

µ λ ω
λ

δ λ
η µ λ

− − − − −
−

⇒ = =
− +

− −
 

Or 1 1 2 1 1 3 1 2 1 2 2 1 3( )[ ( ) ( ) ( ) ( ) ( ) ( ) ] 0.L J K J J J J J J Jλ µ λ λ µ λ µ λ η ω µ λ µ λ η+ − + + − + − + + − + + + + =  

It means that either 0L λ+ =  or
 

1 1 2 1 1 3 1 2 1 2 2 1 3[ ( ) ( ) ( ) ( ) ( ) ( ) ] 0.J K J J J J J J Jµ λ λ µ λ µ λ η ω µ λ µ λ η− + + − + − + + − + + + + = This means that one eigen 

value 1 2( )dλ ε µ=− + +  is obtained which is negative and remaining are obtained by the following equation  

2
1 1 2 2 1 1 3 1 2

1 2 2 1 3

( ) ( ) ( ) ( )

( ) ] 0.

J K K J J J

J J J J

µ λ µ λ λµ λ µ λ η ω µ λ
µ λ η

⇒ − + + + − − − + + − +
+ + + =

 

On simplification, 

3 2
2 1 1 2 1 1 1 1 2 3 1 1 2

1 2 2 1 3 1 2 1 1 2 1 1 3

( ) ( ( ) ( ) )

( ) ( ) 0.

K J K K J J J J J J

J J J J J K J J J

λ λ µ µ λ µ µ µ µ η ω
µ η ωµ µ µ µ η

+ − + + + + − − + + + − − +
+ + − − + − + =

 

Now, substitute 2 1 1( )K J d µ α δ ω= − + + + + and on solving, we obtain
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3 2
1 2 1 1 2 1 2 1 1 1 2 1 2

2 1 1 2 3 1 2 1 1 1 1

1 2 2 3 1 2

( 2 ( ) ) [ ( ) ( )

( ( ) ) ] ( ) ( )

( ) 0.

d J J J J J d J

J d J J J d

J J J

λ µ µ α δ ω λ µ µ µ α δ ω
µ α δ ω µ η ω λ µ µ µ α δ ω

µ µ η ωµ

+ + + + + + + − + + + + + + + + −
− − + + + + − − + + + + + +
− + − =

 

Or 3 2
1 2 3 0a a aλ λ λ+ + + =  

where, 

1 1 1 2 1 22 ( ) ,a d J Jµ δ α ω µ= + + + + + + −

2 1 2 1 1 1 2 1 2

2 1 1 2 3 1

( ) ( )

( ( )) ,

a J J J d J

J d J J

µ µ µ α δ ω
µ α δ ω µ η ω

= + + + + + + + −
− − + + + + − −

3 2 1 1 1 1 1 2 2 3 1 2( ) ( ) . ( ) .a J d J J Jµ µ µ δ α ω µ µ η ω µ= + + + + + − + −  

It is clearly seen that 1 0a > , 2 0a > , 3 0a >  and 

1 2 3 0a a a− > . 

Hence, by Routh-Hurwitz criteria, the endemic equilibrium 

is locally asymptotically stable. 

5. Numerical Analysis and Graphical 

Representation 

In this section, I have analyzed the model numerically and 

graphically by considering the set of parameters values. From 

practical point of view, numerical solutions are very 

important beside analytical system.  

Case I 

5
1 1 1 2

2 1

2

(0) 80000, (0) 20000, (0) 40000, (0) 50000, (0) 200000,

9.13 10 / , 0.00025 / , 5 , 0.00015 / ,

10 , 0.015 / , 0.2 / , 0.1 / , 0.05 / ,

0.013 / , 2 / / /

S I Q R B

day day days day

days d day day day day

d day cells litre day pe

µ β α β
α α δ ε

η

−

= = = = =

= × = = =
= = = = =
= = 2, 0.01/ , 0.2 / ,

0.097 1.q

rson day day

R

µ ω= =
= <

 

 

Figure 2. SIS cholera model with Quarantine effect when 1qR < . 

Figure 2 shows that S(t) and R(t) approaches to its steady state value while I(t), Q(t) and B(t) approaches zero as time 

progresses, the disease dies out. 

Case II  



 American Journal of Applied Mathematics 2019; 7(5): 145-151 151 

 

5
1 1 1 2

2 1

2

(0) 80000, (0) 20000, (0) 40000, (0) 50000, (0) 200000,

9.13 10 / , 0.0025 / , 5 , 0.0015 / ,

10 , 0.015 / , 0.2 / , 0.1 / , 0.05 / ,

0.013 / , 5 / / /

S I Q R B

day day days day

days d day day day day

d day cells litre day pers

µ β α β
α α δ ε

η

−

= = = = =

= × = = =
= = = = =
= = 2, 0.03 / , 0.05 / ,

1.14 1.q

on day day

R

µ ω= =
= >

 

 

Figure 3. SIS cholera model with Quarantine effect when 1qR > . 

Figure 3 shows that S(t) and R(t) approaches to its steady 

state value while I(t), Q(t) and B(t) approaches zero as time 

progresses, the disease becomes endemic. 

6. Conclusion 

Cholera was prevalent in the U.S. in the 1800s, before 

modern water and sewage treatment systems eliminated its 

spread by contaminated water. Cholera outbreaks are still a 

serious problem in other parts of the world. At least 150,000 

cases are reported to the World Health Organization each 

year. Cholera was first spread in Russia in 1817, after few 

years in Europe, and from Europe to North America and the 

rest of the world. In this paper, we have considered an SIQR 

cholera epidemic model of Nirwani N. et al. [7] and 

converted into SIS cholera epidemic model with quarantine 

effect which is a generalized form.  

I have found disease-free and endemic equilibria for the 

model and analyzed the stability criteria for the both 

equilibria. I have seen that the disease-free equilibria and 

endemic equilibria arelocally asymptotically stable by Routh 

- Hurwitz criteria if Rq<1 and Rq> 1 respectively. It plays an 

important role in controlling the disease. Also, numerical 

simulations are carried out for the model with graphical 

representation for ordinary differential equation and 

numerically found that if Rq<1, the disease dies out and if 

Rq>1, the disease becomes endemic. This can be more 

clearly seen in the graphs. 
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