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Abstract: In a recent study, the classical problem of a circular loop antenna carrying a uniform current on the Earth's surface 

has been revisited, with a scope for deriving Closed-form formulae for the generated magnetic and electric far fields by a 

vertical magnetic dipole (VMD) located at certain height above the surface of a planar two-layer conducting earth, with a high 

degree of accuracy. The solution is obtained by reducing the field integrals to combinations of known Sommerfeld integrals 

(SIs), which is advantageous over the previous numerical and analytical-numerical approaches, and its usage takes negligible 

computation time. Numerical simulations are performed and illustrated by figures for different values of the frequency to show 

the accuracy of the obtained field expressions and to investigate the behavior of the above surface ground fields in a wide 

frequency range. Results can be used to evaluate numerical solutions of more complicated modeling algorithms, for application 

to mobile communication and will be useful for remote sensing especially when the transmitter is close to the surface. 

Keywords: Far-field, Vertical Magnetic Dipole (VMD) Radiation, Circular Loop Antenna,  

Planar Layered Conducting Earth, Sommerfeld Integral (SI) 

 

1. Introduction 

The need to evaluate the electromagnetic fields radiated by 

horizontal or vertical loop antennas located in layered media 

arises in a variety of applications of scientific interest, 

especially in the areas of electromagnetics [1, 2], close-to 

the-surface radio communication [3, 4], remote sensing and 

geophysical prospecting [4-7]. 

In most cases, these fields may be expressed in terms of 

Sommerfeld-type integrals, which are highly oscillatory in 

nature, with poor convergence properties. This makes 

numerical integration difficult and impractical, especially for 

the surface-to surface propagation case and rather difficult to 

evaluate. So, many approaches have been proposed for 

accurately evaluating the integral representations describing 

the generated electromagnetic field (EMF) components. 

Sommerfeld integrals (SIs) can be evaluated with 

numerical integration routines, but it becomes very tedious 

when the observation point is in the far-field of source, 

because the integrand is rapidly oscillating. Fortunately, in 

the far-field region, we can use either the stationary phase 

method or the saddle-point method to evaluate the integral to 

obtain a far-field expression [1, 5, 8-11], but these methods 

involve lengthy algebra and several transformations. As an 

alternative, Chew [12] presented a method that captures the 

essence of the stationary phase method and derived the far-

field approximations of the integral in a few easily 

remembered steps. Lately, Long et al. [13] developed Chew 

technique and with the help of the complex image theory 

[14], he derived expression of the SI rapidly for the far-field 

depending on the stationary phase-point. Recently, many 

researchers such as Parise et al. [15] studied the problem of a 

large circular loop antenna carrying uniform current and 

situated at the Earth’s surface. They obtained a procedure that 

allows to derive the exact canonical solution to the problem. 

The canonical solution describes all the radiated field 

components, and is valid in both the quasi-static and non-

quasi-static frequency regions, also the computational cost of 

the canonical solution is negligible with respect to that of 

numerical techniques commonly used to evaluate 

Sommerfeld-type integrals. 

The present work focuses on the derivation of Closed-form 

formulae for Electromagnetic far-fields due to a VMD 

(horizontal circular loop antenna) carrying uniform current 
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and lying at a certain height (h) in air on a planar two-layered 

conducting earth. To derive the solutions, firstly we began 

with the wave equation of the scalar magnetic Hertz potential Π to find the electric and magnetic fields as Sl representation. 

Secondly, by the technique [13], we evaluated those 

integrals. The integration was divided into two factors; one is 

the slow factor, while the other one is the rapid factor, and by 

using the complex image theory [14] the reflection 

coefficient was replaced by an exponential function which 

tends to the summation of algebraic series. Then, the closed-

form expressions for the far-field in the first region of the 

medium due to a vertical magnetic dipole in the air obtained 

rapidly. 

The computation method takes into consideration the 

effects of both conduction as well as displacement currents, 

and is well suitable for any position of the source loop either 

in the air or on the surface of the model, in contrary to the 

earlier methods which face convergence problem. The 

physical meaning of the relationships between the vertical 

magnetic field (VMF) and its frequencies were represented as 

a summation of a series of waves which propagate upward 

from the source and another series of waves which propagate 

firstly downward from the source then reflect upward at the 

bottom of the overburden slab, and travel along the same 

path as the former mentioned waves. The results agree with 

those results obtained by using the conventional stationary 

phase method or saddle-point method but it is much easier 

and more quickly. This method can be easily used to 

calculate the far-fields for other similar problems. 

2. Planar Earth Model and Formulation 

The geometry of the VMD (circular loop antenna) and the 

electromagnetic parameters of the planar two-layer 

conducting earth are illustrated in Figure 1. 

 

Figure 1. Layered earth model and measurement system under 

consideration. 

The emitter lies at a fixed height (h) above the earth's 

surface, has area (dA), and carries a current equal to �. The 

air-earth interface is at � = 0 in Cartesian coordinate system 

( �, 	, � ). The earth's adopted model consists of a 

homogeneous overburden slab of thickness (
 ) above the 

half-space. ��, 
� , �� , ��  denote permittivity, permeability, 

conductivity, and propagation constant, where i = 0, 1, 2 

denotes air (−ℎ ≤ � ≤ 0), overburden slab (0 ≤ � ≤ 
), and 

lower half space (
 ≤ � ≤ ∞), respectively. The magnetic 

permeability is taken to be equal to that of free space 

throughout. 

It is well known that the electromagnetic field generated 

by a vertical magnetic dipole can be derived from the 

magnetic Hertz vector Π���(�) at an observation point �(�, �) in 

cylindrical coordinate system (�, �, �) in the air region, due 

to the source, of which only one component Π�(��) in the z-

direction is different from zero [16]. The electric field vector ���(��)  and the magnetic field vector ����(��)  are expressed in 

terms of Π���(��) by the following formulas: 

���(��) = −�	!	
"	∇ × 	 Π���%(��), ����(��) = ∇ × ∇ × 	Π���%(��)  (1) 

The magnetic Hertz vector has only a z-component Π� , and 

it satisfies the Helmholtz wave equation for a time factor &�'( 

(where � = √−1  and !  is the angular frequency of the 

driving source), as is well known. The fields components are 

given by the following formulas [17]: 

�+(�, �) = �!
" ,-.,/	 , �/ = ,0-.,/	,�, �� = − 1 ,,/0	 + 3/ 	 ,,/	4 Π� (2) 

The tangential components of either the electric or 

magnetic field strength must be continuous through the 

boundary surface of the two media, so the Hertz vector and 

its derivative are continuous [10]. Then 

Π�5 = Π�3, 
,-.6,�	 = ,-.7,�	  at z = 0                (3) 

Π�3 = Π�8, 
,-.7,�	 = ,-.0,�	  at z = d                (4) 

A further condition that must be also satisfied is the 

condition of finiteness of the field at the infinity 

(Sommerfeld radiation condition). 

3. The Integral Representation of the Field 

According to Sommerfeld [11], the primary and secondary 

field at the general observation point �(�, �) take the form 

Π9(�, �) = :	;<=> ? @ABCB 	&CA|�EF|	�"(8)(G�)	
G                  (5) 

ΠH(�, �) = :	;<=> ? IJ�(G)&A(�CF) +JK(G)&CA(�CF) LBCB 	�"(8)(G�)	
G      (6) 

Where 
2 2u kλ= −  (the root with positive real part must 

be taken), �"(8)(G�) is the Zeroth-order Hankel function of 

the second kind, and J�K are constant functions which can be 

determined easily from the boundary conditions. 

The non-vanishing components of the electric and 

magnetic fields �+ , �/ , ��  in the three regions can be 

deduced without much labor by substituting from equations 

(2) in equations (5), (6) as follows, considering that the 

regions I and III are infinite upward and downward, 
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respectively, along z-axis: In I-region (air)	−∞ ≤ z ≤ 0: 

�+5(�, �) = C�	'	N6	:	;<=> ? O @A6	BCB &CA6(�EF) + J"(G)	&A6(�CF)P	G	�3(8)(G�)	
G                                    (7) 

�/5(�, �) = C	:	;<=> ? O @A6	BCB &CA6(�EF) + J"(G)	&A6(�CF)P	G	Q"	�3(8)(G�)	
G                                        (8) 

 ��5(�, �) = 	:	;<=> ? O @A6	BCB &CA6(�EF) + J"(G)	&A6(�CF)P	G8	�"(8)(G�)	
G                                              (9) 

In II- region (overburden)	0 ≤ z ≤ 
: 

�+3(�, �) = C�	'	N6	:	;<=> ? O @A7	BCB &A7(�CF) + J3(G)	&CA7(�CF) + J8(G)	&A7(�CF)P	G	�3(8)(G�)	
G                   (10) 

�/3(�, �) = C	:	;<=> ? OC@A7 	BCB &A7(�CF) − J3(G)	&CA7(�CF) + J8(G)	&A7(�CF)P	G	Q3	�3(8)(G�)	
G                      (11) 

��3(�, �) = 	:	;<=> ? O @A7	BCB &A7(�CF) + J3(G)	&CA7(�CF) + J8(G)	&A7(�CF)P	G8	�"(8)(G�)	
G                            (12) 

In III- region (lower half space)	
 ≤ z ≤ ∞: 

�+8(�, �) = C�	'	N6	:	;<=> ? JR(G)	&CA0(�CF)BCB 	G	�3(8)(G�)	
G                                                  (13) 

�/8(�, �) = 	:	;<=> ? JR(G)	&CA0(�CF)BCB 	G	Q8	�3(8)(G�)	
G                                                        (14) 

	��8(�, �) = 	:	;<=> ? JR(G)	&CA0(�CF)BCB 	G8	�"(8)(G�)	
G                                                            (15) 

where	�3(8)(G�) is the first-order Hankel function of the second kind, and �S(3)(−�) = 	 �8(8)(�) (half – circuit relation [18]). 

From the boundary conditions (3), (4) and by using purely algebraic process, we can find explicitly the unknown functions J�(G) as follows: 

J"(G) = @A6 	 O T67ET70	UV0W7X3ET67	T70	UV0W7XY, J3(G) = Z 0[\67] ^	UV\67] _
3ET67	T70	UV0W7X 

J8(G) = Z 0[\67] ^	T70	UV\67V _V0W7X	C1 [W74`3ET67T70	UV0W7Xa
3ET67	T70	UV0W7X , JR(G) = Z b	W7[\67] 	\70] ^	UV\70V XV\70] _

3ET67	T70	UV0W7X                                   (16) 

where 

�"3 = A67VA67] = A6CA7	A6EA7 , �38 = A70VA70] = A7CA0	A7EA0                   (17) 

where �"3  and �38  are Fresnel reflection coefficients at the 

interfaces z = 0, d, respectively. 

Paying attention to equations (7)-(15), we are sure that 

the term of the integral containing &Ac(�EF)  is the direct 

(primary) wave from the source to the observing point. 

This term is important, if the transmitter and receiver are 

set very closely. The other terms are the secondary wave 

which is consisting of two waves, one is incident 

(downward) containing &A6(�CF)  with the positive z-

direction and the other is reflected (upward) containing &CA6(�CF)  with the negative z-direction. The terms 

containing &CA6(�CF)  in first-region and &A0(�CF)  in third-

region are not permitted since they would violate the 

Sommerfeld radiation condition [11] at |�| → ∞. 

4. Estimate of the Integral in the Far-Field 

The scope of this work is to exactly evaluate the field 

components in the far field at the air. To this goal, we focus 

our attention on (9) to estimate ��5  and the other 

components�+5  and �/5  can also estimate in similar way. 

The magnetic field on the first boundary where z = 0, could 

be found using (9) and (16) as follows 

��5(�, 0) = 	:	;<=> ? O@eA6	BCB &CA6F(1 + f")	�"(8)(G�)	
G   (18) 

where 

f"(G) = T67E	T70	UV0W7X3ET67	T70	UV0W7X                        (19) 

Substituting from (18) in (19) and by using easy algebraic 

process, we have 
 

��5(�, 0) = 	:	;<=> ? O@eA6	BCB &CA6F O(3CT76)(3E	T70	UV0W7X)3C	T76	T70	UV0W7X Y 	�"(8)(G�)	
G                                           (20) 
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where �"3 = −	�3". 

Equation (20) can be written in another form as follows 

��5(�, 0) = 	:	;<=> ? O@eA6	BCB &CA6F gZ3CW76VW76] ^(3E	W70VW70] 	UV0W7X)
3C	W76VW76] 	W70VW70] 	UV0W7X h	�"(8)(G�)	
G                                          (21) 

Let us consider i = �3"	�38	&C8A7; = A76VA76] 	A70VA70] 	&C8A7;, and noting that jA76VA76] 	A70VA70] 	&C8A7;j < 1, 
33Cl = ∑ �%B" . 

So the denominator in (13) can be expanded as an infinite series and ��5 turns into 

��5(�, 0) = 	:	;<=> ? O@eA6	BCB &CA6F 	11 − A76VA76] 4 11 + 	 A70VA70] 	&C8A7;4 O∑ 1A76VA76] 	A70VA70] 	&C8A7;4%B" Y �"(8)(G�)	
G             (22) 

According to the complex image theory [14], when the condition |�38| ≫ |�"8| is satisfied, we have 

A76VA76] ≈ 	 &CA6q 	8A6A76] ≈ 1 − &CA6	q	                                                                           (23) 

where r = C	8�A7  

For the case we discuss, there is always |�38| ≫ 80|�"8| for any frequency [10]. Under these conditions and using the first 

formula of (23), equation (22) can be written as 

��5(�, 0) = 	:	;<=> 	(∑ tΦ(v) + Ψ(v) + x(v) + y(v)zB%{" )                                                   (24) 

where 

Φ(v) = ? @eA6	BCB 1A70VA70] 4% &CA6(%qEF)C8A7	%	; 	�"(8)(G�)G	
G	                                                       (25) 

Ψ(v) = ? @eA6	BCB 1A70VA70] 4%E3 &CA6(%qEF)C8A7	(%E3);	�"(8)(G�)G	
G	                                              (26) 

x(v) = ? @eA6	BCB 1A70VA70] 4% &CA6t(%E3)qEFzC8A7	%	;	�"(8)(G�)G	
G	                                                   (27) 

y(v) = ? @eA6	BCB 1A70VA70] 4%E3 &CA6t(%E3)qEFzC8A7	(%E3);	�"(8)(G�)G	
G	                                           (28) 

First, we estimated Φ(v), which can be arranged properly as 

Φ(v) = ? OG8 	1A70VA70] 4% &C8A7%; 	Y	BCB O @A6 	&CA6(%qEF)	�"(8)(G�)	Y 
G                                           (29) 

When � → ∞, the first factor of (18) is slowly varying while the second one is rapidly varying. Using the simple technique 

[13], then equation (29) can be written as Φ(v) = ? J(G)BCB 	ℎ(G, �)	
G                                                                            (30) 

Comparing both equations (29) and (30) we find that the rapidly varying part: 

ℎ(G, �) ≈ &�	/	H(@) ≈ @A6 	&CA6(%qEF)	�"(8)(G�), � → ∞                                                     (31) 

In fact, when � → ∞ and for large values of |G| the Hankel function can be replaced with its asymptotic form [18] 

�S(8)(G�) ≈ | 8>	@	/	&�	1@/C}	~0 C~b4	                                                                           (32) 

Substituting from (32) in (31) we get: 

&�	/	H(@) ≈ @A6 	&CA6(%qEF)	| 8>	@	/	&�	1@/C	~b4
                                                                   (33) 

By comparing both side of (33) we can find that: 
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�(G) ≈ −�	G� − �	(vr + ℎ)��"8 − G8, Q" = �	��"8 − G8 

The location of the stationary phase point G" of ℎ(G, �) is given by �`(G") = 0, then 

,,@ � O−G� − (vr + ℎ)��"8 − G8Yj@{@6 = 0                                                         (34) 

The solution of (34) is: 

G" = /�6T7 , with �% = ��8 + (vr + ℎ)8                                                             (35) 

Most of the contribution to the integral (30) is from the vicinity of the point G = G", if J(G) has no singularities in the 

vicinity of G", then equation (30) becomes Φ(v) = J(�")	? ℎ(G, �)BCB 	
G                                                                     (36) 

Using the well-known Sommerfeld integral: 

UVc��T = 	 38 ? @A 	&C�|�|	�"(8)(G�)	BCB 	
G, where � = ��8 + �8 

Then, we find that the value of the rapidly part in (36) is given by 

? ℎ(G, �)	BCB 	
G = ? @A6 	&CA6(%qEF)	�"(8)(G�)	BCB 	
G = 8	UVc	�6	��T�                                            (37) 

While the slowly varying part in (36) is given by: 

J(G) ≈ G8 	1A70VA70] 4% &C8	A7%	;                                                                           (38) 

By replacing the slowly varying part with its value at the stationary phase point G = G", equation (38) becomes 

J(G") ≈ /0��0T�0 	13C�3E�4% &C8�	�7%	;                                                                        (39) 

where � = �0�7, and the approximation Q3 ≈ �	�3 is used because the stationary phase point ends up begin at G = �". 

Substituting from (37) and (39) in (36), we find that 

Φ(v) = 8�60	/0T�e 13CS3ES4% &C�	�6	T�C8��7%	;                                                                  (40) 

Similarly by using the previous steps we get 

Ψ(v) = 8�60	/0T�e 13CS3ES4%E3 &C�	�6	T�C8��7(%E3)	;                                                         (41) 

x(v) = C8�60	/0T�]7e 13CS3ES4% &C�	�6	T�]7C8��7%	;                                                              (42) 

y(v) = C8�60	/0T�]7e 13CS3ES4%E3 &C�	�6	T�]7C8��7(%E3)	;                                                      (43) 

where 

�%E3 = ��8 + ((v + 1)r + ℎ)8 

Substituting from (40)-(43) into (36), finally yields the value of the vertical magnetic field ��5 as follows 

��6(�, �) = :;<	�60	/0�> � ∑ 13CS3ES4% &C8��7%; 	1 3T�e 	&C��6	T� − 3T�]7e 	&C��6	T�]74 +B%{"∑ 13CS3ES4%E3 &C8��7(%E3); 	1 3T�e 	&C��6	T� − 3T�]7e 	&C��6	T�]74B%{" �                          (44) 

The physical meaning of (44) can be explained as 

follows: The first term represents a series of waves that 

propagate upward from the source and make m round trips, 

then travel along the surface in air and finally arrive at the 
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field point in the air, where 13CS3ES4  is the reflection 

coefficient at the surface of the lower half–space (bottom 

of the overburden slab). The reflection coefficient at the 

overburden surface is regarded as almost unity. The 

second term represents another series of waves, which 

propagate downward from the source first, then reflect 

upward at the surface, and travel along the same path as 

the former mentioned waves. 

5. Results and Discussions 

Using the simple technique [13] to evaluate ��� , we obtain 

a plot of vertical magnetic field versus the different values of 

frequencies. In these curves, we take; the vertical scale is the 

absolute value of the far-field of the vertical magnetic 

component |���| versus the normalized frequencies. These 

plots are drawn with the normalized radial distance OX =

ρ�3(N6�7)70 = 31.6Y  and the normalized overburden 

height 	OD = d�3(N6�7)70 = 3.16Y . The conductivities ratio is 

taken as	O1�0�74 = 100Y, t�3 = 10CRz, while the permittivities 

are t�3 = 10	�"z , t�8 = 100	�"z , and the source height tℎ = 30vz. In these figures, the vertical scale is normalized 

by the factor 1:;<	/0�> 4 to show the absolute value of the far–

field of the vertical magnetic component versus the 

normalized frequencies. To attain the numerical calculation, 

we ascertain that (∑%{"
� ) is a match for	(∑%{"

B ) under the 

conditions shown in Figures. Therefore, we adopt the 5(F 

partial sum (i.e. m = 0, 1, 2----5) instead of the infinite one. 

We observe from these plots that increasing the frequency 

increases the waveguide mode contribution. These plots 

coincide with previous results obtained using other methods. 

 

Figure 2. Variation of the vertical magnetic field |��5| in frequency – domain in the air region at ℎ = 30, v� = 0, r�
	
�JJ&�&��	�r�Q&�	 J	! = 10¡, 10¢. 

 

Figure 3. Variation of the vertical magnetic field |��5| in frequency – domain in the air region at ℎ = 30	v, � = 0, r�
	
�JJ&�&��	�r�Q&�	 J	! = 10=, 10£. 

 

Figure 4. Variation of the vertical magnetic field |��5|  in frequency – domain in the air region at ℎ = 30	v, � = 0, r�
	
�JJ&�&��	�r�Q&�	 J	! =

108", 1083. 
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Figure 5. Variation of the vertical magnetic field |��5| in frequency – domain in the air region at ℎ = 0	v, � = 0, r�
	
�JJ&�&��	�r�Q&�	 J	! = 10¡, 10¢. 

 

Figure 6. Variation of the vertical magnetic field |��5| in frequency – domain in the air region at ℎ = 0	v, � = 0, r�
	
�JJ&�&��	�r�Q&�	 J	! = 10=, 10£. 

 

Figure 7. Variation of the vertical magnetic field |��5| in frequency – domain in the air region at ℎ = 0	v, � = 0, r�
	
�JJ&�&��	�r�Q&�	 J	! = 108", 1083. 

6. Conclusion 

The main purpose of this is to derive Closed–form 

formulae for the far–field excited by the loop source located 

at a height (h) in the air layer of a planar two-layered ground 

rapidly and simply. We apply the technique [13] to evaluate 

Sommerfeld integral with the help of the complex image 

theory [14]. The method hinges on the use of some integral 

identities and the identification of the stationary phase point 

of the integrand. The location of the stationary phase point is 

easily remembered from its physical interpretation. The result 

using this method always agree to the leading order with the 

result using conventional stationary phase method or saddle–

point method. This method is simple, effective and much 

quicker than the rather long methods, it can be also easily 

used to get the far–field formulas for other similar problems. 
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