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Abstract: In this paper, it is proposed and analyzed a new mathematical model and that is developed on the basis of some 

reasonable modification made to the standard epidemic model. The impact of immigration, treatment and the effect of 
vaccination are included in the model. The basic reproduction number is derived using the next generation matrix method. 
Disease free equilibrium point is found and endemic equilibrium state is identified. Numerical simulation study is conducted 
using ode 45 of MATLAB. It has been shown that the solution is positive and bounded. Algebraic expression for the 
reproduction number is constructed. Equilibrium points are identified and their stability analysis is carried out. It is pointed out 
that the disease dies out if the immigration of the infected dogs is controlled and the vaccination and the treatments are 
improved. Otherwise, the disease spreads rapidly in the dog population and it becomes an epidemic. Further, it is also pointed 
out that the impact of infective immigrants on the spread of dog rabies is positive and additive. The details are presented and 
discussed in the text. 
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1. Introduction 

In the present world, immigration has become unavoidable 

activity but it poses a significant risk for disease propagation 

in every population in general and rabies among dog 

populations in particular. The effect of immigration on the 

propagation of diseases will be higher in developing 

countries which normally do not check the complete health 

status of immigrants. Rabies is a fatal viral disease caused by 

the rabies virus. Most countries in both African and Asian 

continents are identified as high – risk areas for human rabies 

[2]. 

The dog rabies disease has been in existence for more than 

three thousand years and thus it is the oldest infectious disease 

known to medical science. Rabies virus has abroad 

mammalian host range. Rabies occurs significantly in more 

than 150 countries and in territories around the world, and it is 

very high in developing countries of Africa and Asia. Poor and 

rural communities are highly vulnerable to rabies due to their 

interaction with domestic animals including dogs [2 – 5]. 

Rabies virus is transmitted in the form of saliva through the 

bite of an infected animal. Dog bites are a major cause of 

rabies in humans, and mass vaccination of dogs could be an 

effective control measure. Children are the most affected 

victims. According to the reports about 40% people bitten by 

infected or rabid animals are children. This is due to the fact 

that the children have higher tendency to play with animals. 

More than 15 million people receive post exposure vaccination 

worldwide to be protected from the disease [6 – 8]. 

Most of the North American and European countries had 

fought against the rabies disease and were successful in 

eradicating the virus. Even than about 61 thousand deaths 

occurred in the year 2010 due to rabies disease world wide as 

reported by the WHO. Of course about 95% of these deaths 

occurred in the African and Asian continents [9 – 12]. 

The first known major outbreak of rabies due to dogs 

occurred in many parts of Ethiopia in the year 1884. The first 

case of rabies epidemic was reported and had a high 

prevalence in Addis Ababa, the capital city of Ethiopia. 

Rabies cases are reported from all regions of Ethiopia, and it 

has persisted for century and more than 2000 people are 
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bitten by dog annually in and around Addis Ababa [13]. 

Most rabies modeling has focused on disease dynamics 

and control within terrestrial mammals e.g., raccoons and 

foxes. Rabies still poses a significant human health problem 

throughout most of Africa, where the majority of the human 

rabies cases results from dog bites. World Health 

Organization WHO statistics indicate that about 55000 

human deaths have been occurring worldwide pre 

dominantly in Africa and Asia. The expenditure on the 

treatment and control exceeds US $500 million annually 

worldwide [14 – 15]. 

Rabies problem not only relates to dogs but also humans. 

Basically the success of control and eradication programs of 

rabies depends on the level of people awareness. There is a 

necessity for changing of behavior that allows the community 

to accept various obligations to impound and bind their dogs. 

Public have to well feed, care and maintain their dogs’ health 

and periodically provide them vaccinations. The rabies can 

attack at all ages and genders [16]. 

Dog rabies is estimated to cause 24,000 human deaths per 

year in Africa, while Africa is the second continent mostly 

affected by the disease. The main cause of transmission of 

rabies to human in Africa is by a bite of a rabid dog. About 

30% to 60% of dog bite victims in dog – endemic areas are 

children of less than 15 years of age. Dogs are the most 

important reservoirs for the rabid virus and have been the 

source of transmitting it to 99% of all reported human cases 

[17 – 18]. 

Transmission of rabies: Any warm – blooded animals 

including humans may become infected with the rabies virus 

and develop symptoms. The virus is transmitted to the victim 

when virus – laden saliva is introduced through a bite or a 

scratch from a rabid animal. In nature it is transmitted from 

animal to animal by means of a bite introducing the saliva 

bearing the virus. Rarely, rabies may be transmitted by viral 

contamination of fresh or already existing wounds. Virus 

may be presented in the saliva and be transmitted by an 

infected animal several days prior to the onset of clinical 

signs. Indirect exposure to saliva of a rabid animal can also 

occur through contact with a pet that has had recent contact 

with a rabid animal. Broken skin or mucous membrane 

exposure to nervous tissue e.g., brain and spinal cord of an 

infected animal may also pose a risk of transmission. After 

thousands of years of reports on rabies, direct person to 

person transmission has not been documented. However, 

there have been cases documented after corneal and solid 

organ transplants from individuals with unappreciated 

infection. Droplet transmission e.g., in a cave with a 

multitude of bats or in a laboratory handling rabies virus, has 

occurred. Rabies is not transmitted through contact with 

blood, urine, skunk spray, or feces of an infected animal. 

Incubation period: The period from the time from infection 

to the onset of symptoms is known as the rabies incubation 

period. During the rabies incubation period, a bite by the 

infected animal does not carry a risk of rabies because the 

virus is not yet in the saliva. The incubation period of the 

disease depends on how far the virus must travel to reach the 

central nervous system. The incubation period varies but 

generally from 3 to 7 weeks. During this time, the rabies 

virus is multiplying within the body. Mainly the disease 

period is divided in to three stages: Prodromal stage, 

Excitative stage, and Dumb or Paralytic stage. 

Prodromal stage: The prodromal period lasts for 1 to 3 

days. At the beginning there will be a change in the behavior 

of animal and that often may be slight in later times and thus 

may be overlooked. The symptoms include shyness, 

nervousness, difficulty in swallowing and sometimes 

salivation. The animal may also stop eating and drinking and 

also prefers to be alone and single. 

Excitative stage: Excitative stage is also known as raging 

fury or mad – dog syndrome stage. This stage is 

characterized by irrational and vicious aggressiveness, 

restlessness, excitement and mania for biting and snapping. 

During this stage the saliva is highly infectious. As the 

disease progresses muscular in coordination and convulsive 

seizures becomes common. That is, the muscles of the body 

and legs begin to tremble making it unable to walk steadily 

and also breathing becomes very difficult. The animals in this 

stage can be found roaming on streets and on highways, 

biting other animals, people and any moving objects and 

swallowing of foreign bodies etc. 

Dumb or Paralytic stage: Animals in dumb stage of rabies 

appear depressed, lethargic and uncoordinated. Gradually 

they become complete paralyzed. If paralysis is prominent, 

this stage is also called silent fury. Paralysis progresses to all 

parts of the body and leads the animal to coma and then to 

death in a few hours later. This stage occurs and appears 

shortly before death. 

Treatment: The first step in treating a person bitten by any 

animal is to wash the wound with soap and water. The 

infection virus dies in dried saliva within a few hours. It is 

also killed by ordinary sunlight, heat, household detergent 

and disinfectants. Pure iodine and hydrogen peroxide 

however have no effect on the virus. If the symptoms begin 

to show up then there is no cure and death is almost certain, 

but treatment involves only supportive care. However, if a 

dog or a person is bitten by a rabid animal and has not yet 

experienced symptoms, there is an extremely effective post – 

exposure treatment. Most of the time, stitches should not be 

used for animal bite wounds. 

Rabies vaccine: Rabies vaccine works in two ways, either 

after or before an exposure. A person infected with rabies and 

does not obtain treatment before occurrence of the symptoms 

dies in a short period after experiencing convulsions and 

other violent nervous symptoms. Dogs continue to be the 

main carrier of rabies in Africa and Asia and are responsible 

for most of the human rabies deaths worldwide. 

Epidemiological models: The earliest account of the 

mathematical modeling of the spread of a disease was carried 

out in 1766 by Daniel Bernoulli. Trained as a physician, 

Bernoulli created a mathematical model to defend the 

practice of inoculating against smallpox. The calculations 

from this model showed that universal inoculation against 

smallpox would increase the life expectancy from 26 years 7 
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months to 29 years 9 months. Inoculation is a kind of 

treatment of a disease and is done by sending in a vaccine 

into the blood [8]. 

Early models of rabies dynamics were similar to early 

models for most other diseases and followed the 

basic	����	frame work. In these models populations are sub 

divided into specific classes corresponding to susceptible	�, 

exposed 	� , infectious 	� , and recovered or removed 

�	 individuals. The dynamics are included through the 

construction of a system of ordinary differential equations. 

These models represent either a single population or linked 

populations. From the mathematical analysis of these models 

a variety of predictions have been drawn concerning 

temporal and spatial patterns [4]. 

Although these foundational ����	 models may have 

lacked the level of mathematical sophistication, there is 

really no need for highly complicated mathematical 

representations since the availability and reliability of data 

were rather limited. For instance, some recent models for 

describing rabies dynamics incorporate explicit spatial 

interactions and account for events that are discrete in 

temporal and special coordinates. These spatially explicit 

models may not have provided much improvement over the 

earliest ODE models used 30 years ago, because early in the 

epidemic, detailed temporal history was not yet available and 

spatial resolution was limited to densities of individuals 

within large regions [4]. 

2. Mathematical Modeling of Rabies 

The mathematical model is formulated using ordinary 

differential equations. Simulation of the model is conducted 

using the computer software MATLAB. 

2.1. Model Formulation 

In this study the existing standard ���� model has been 
modified and constructed an improved and extended model 

called as	�������. For the standard ���� model, the whole 
dog populations categorized into four classes: (i) Susceptible 

class �	refers to the healthy dogs that have not yet caught the 
rabies virus but are likely to contract the disease (ii) Exposed 

class �	refers to the dogs that have been bitten by infected 
dogs but are not made up to be infectious (iii) Infective class 

�	 refers to the dogs infected with rabies virus and are 

contagious make up and (iv) the removed class �	constitute 
dogs which have died from the infection. 

In the modified model 	�������,  dog population is 

categorized into five classes. The notations �	and �	represent 

susceptible and exposed classes 	��  represent infected but 

prodromal stage and �� represent infected furious stage and � 
represent recovery class. 

2.2. 
��
 Model Without Vaccination 

In the standard ���� model, the population is divided into 
four compartments. Dog population in the susceptible 
compartment is neither exposed nor infected by rabies 
disease. But they are very sensitive or easily influenced and 

likely to be affected by or having the chance of receiving the 
disease in future. Dogs that have been bitten by infected ones 
but are not infectious make up the exposed class. Dogs that 
are infected with rabies virus and contagious make up the 
infective class. The removed class constitutes dogs which 
have died of the infection. The proportions of individuals in 

the compartments 	�, �, �, �,  at time 	�,  are denoted 

by	�	���, �	���, �	���	and	�	��� respectively. 

 
Figure 1. Flow diagram of the ���� model. 

The ����  model can be represented by a system of 

ordinary differential equations mentioned as follows: 

��	 ��⁄ � 	�����	 �⁄ �	                        (1) 

��	 ��⁄ � 	����	 �⁄ � � 	λE	                    (2) 

��	 ��⁄ � 	λE	 � 	��                            (3) 

��	 ��⁄ � 	��	                                (4) 

The total population	�	sum of populations of all the four 

compartments		�	 � 	�	 � 	�	 � 	�	 � 	�. Here in (1) to (4) the 

notations used include: �	is the transmission coefficient of 

rabies between dogs, �	is the latency or incubation rate in 

dogs and	�	is the death rate of dogs due to disease. 

2.3. Assumptions of the Proposed Model with Vaccination 

The proposed and modified �������	model can be applied 
on dog rabies and is used compute the population sizes and 
dynamics of susceptible, exposed, infected, recovered due to 
vaccination and removed populations. The model constructed 
with the consideration of the following assumptions: 

(i) The immigration is considered. Hence, the dog 

population under consideration is heterogeneous and 

varying with time. 

(ii) The �	 compartment constitutes dogs which have 
recovered from the infection up on administration of 
the rabies vaccine. This will be called as the recovered 

class	�. 
(iii) A portion ��	of the susceptible population goes to the 

recovered class �	 directly due to pre-exposure 
vaccination. 

(iv) A portion ��	of the exposed population goes to the 

recovered class �	 directly due to post-exposure 
vaccination. 

(v) A portion ��	of the recovered population goes to the 

susceptible class �	 directly due to the waning 
immunity of the rabies vaccine. 

2.4. Mathematical Modeling of the Proposed Model with 

Vaccination 

The compartmental structure of the model and flow 

directions and rates of populations among the compartments 

are shown in the form of a flow diagram as follows: 
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Figure 2. Flow diagram of the proposed ������� model. 

The system of ODE equations representing the ������� 
model can be constructed based on the flow diagram as 
follows: 

�� ��⁄ � � � ���� � ���� �⁄ �	��	 � 	μ��	 � 	��	      (5) 

�� ��⁄ � ���� � ���� �⁄ �	��	 � 	�	 � 	μ��	          (6) 

��� ��⁄ � 	��	 �	 �I�	– 	�#	 � 	μ���	                (7) 

��� ��⁄ � 	#	�� �  �I� � ��	 � 	μ�I�                (8) 

�� ��⁄ � 	��	 � 	��	 �	��	 � 	μ��	                (9) 

The total population is the sum of the populations of all the 

five compartments i.e., �	 � 	�	 � 	�	 � 	�� 	� 	�� � 	�. 
The symbolic notations of the variables and their 

descriptions: ����  is susceptible dog population at time 	� ; 

���� is exposed dog population at time	�; 	����� is infectious 

or prodromal stage dog population at time 	�;  	�����	 is 

Infectious or furious stage dog population at time	�; ���� is 

recovered dog population at time	�. 
The symbolic notations of the parameters and their 

descriptions: �  is transmission coefficient of the disease 

among dogs;	� is latency or incubation rate of the disease in 

dogs; �	is death rate of dogs due to disease; � is vaccination 

rate coefficient; �	is the loss rate of vaccination immunity for 

dogs; % is natural death rate of dogs; #	is rate of propagation 

of furiousness among dogs; �	 is birth rate of dogs;  �	 is 

immigration to prodromal stage dog population; and 	 �	 is 
immigration to furious stage dog population. 

2.5. Positivity of the Solutions of the Modified Model 

In order to show that the general model equations (5) to (9) 
are to be epidemiologically meaningful and well posed, it is 
needed to prove that all the state variables are non – negative. 
This fact has been stated as a theorem and proved in what 
follows. 

Theorem 1 If the initial conditions are non – negative i.e., 

��0� ' 	0, ��0� ' 	0, ���0� ( 	0, �� 	( 	 �0�, �	 ' 	0  then all 

the solutions )����, ����, 	�����, 	�����, ����* of the system of 

the equations (5) – (9) are also non – negative for all	�	 ' 	0. 
 Proof To show that the solution of the dynamical system 
comprising of the equations (5) to (9) is positive it is needed 
to consider and verify each differential equation and show 
that their solutions are positive. 

Firstly, the differential equation (5) �� ��⁄ � � �
)+���� � ����, �⁄ * �	��	 � 	μ��	 � 	��	 can be expressed 

without loss of generality as an inequality as 	�� ��⁄ '
�)+���� � ����, �⁄ * �	��	 � 	μ�� . Up on integrating the 

inequality the analytic solution is obtained as 	���� '
��0�	e./)+0�12314�, 5⁄ *.	�6	3	7�89 . Here ��0�	is integral constant 
and represents initial population of the susceptible 
compartment and hence it is a positive quantity. Now within 

the limit � → ∞	 the analytical solution leads to 	���� ' 0 . 
Hence the solution or the population size of the susceptible 

compartment ����	is always positive. 

Secondly, the differential equation (6) 	�� ��⁄ �
���� � ���� �⁄ �	�� � �	 � 	μ��	 can be expressed without 

loss of generality as an inequality 	�� �⁄ ( �	�� � �	 �
	μ���. Up on integrating the inequality an analytic solution is 

obtained as	���� ( ��0�<.	�=	36	37	�9 . Here ��0� is integral 
constant and represents initial population of the exposed 
compartment and hence it is a positive quantity. Now within 

the limit � → ∞	 the analytical solution leads to 	���� ( 0 . 
Hence the solution or the population size of the exposed 

compartment ����	is always non-negative. 

Thirdly, the differential equation (7) 	��� ��⁄ � �� �
 ��� �	�# � 	μ���	can be expressed without loss of generality 

as an inequality ��� ��⁄ ( �	�# � 	μ�dt.  Up on integrating 

the inequality an analytic solution is obtained as 	����� (
���0�<.	

�@	37	�9	. Here 	���0� is integral constant and represent 
initial population of the prodromal stage infected 
compartment and hence it is a positive quantity. Now within 

the limit � → ∞  the analytical solution leads to 	����� ( 0. 
Hence the solution or the population size of the prodromal 

stage infected compartment 	�����is always non-negative. 

Fourthly, the differential equation (8) ��� ��⁄ � #�� �
 ��� �	��	 � 	μ���	 can be expressed without loss of 

generality as an inequality 	��� ��⁄ ( �	��	 � 	μ���.  Up on 
integrating the inequality an analytic solution is obtained 

as 	����� ( ���0�<.	
�A	37	�9 .  Here 	��	�0�  is integral constant 

and represent initial population of the furious stage 
compartment and hence it is a positive quantity. Now within 

the limit � → ∞  the analytical solution leads to 	��	��� ( 0. 
Hence the solution or the population size of the furious stage 

infected compartment 	�����is always non-negative. 

Finally, the differential equation (9) �� ��⁄ � �� � �� �
	��	 � 	μ��	can be expressed without loss of generality as an 

inequality 	�� �⁄ ( �	��	 � 	μ��� . Up on integrating the 

inequality an analytic solution is obtained as ���� (
	��0�<.	�B	37�9. Here ��0�	is integral constant and represent 
initial population of the recovery compartment and hence it is 

a positive quantity. Now within the limit � → ∞ the analytical 

solution leads to 	���� ( 0 . Hence the solution or the 

population size of the recovery compartment �	���is always 
non-negative. 

Therefore, the solution set )����, ����, �����, 	�����, ����* 
of equations (5) to (9) are all non-negative for all	�	 ( 	0. 

2.6. Boundedness of Solutions of the Modified Model 

In order to show that the solution of general model 
equations (5) to (9) is bounded it is needed to prove that the 

total population size ���� is bounded. This fact is stated in 
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the form of a theorem below accompanied by the proof. 
Theorem 2 All the solutions 

)����, ����, 	�����, 	�����, ����* of the system of the equations 
(5) – (9) are bounded. 

Proof In order to show that the population sizes of each 
compartment are bounded it is preferred to show that the total 

population size of the whole system ����	is bounded. 

The total dog population size ����	of the whole system is 
the sum of the populations of the five compartments and is 

given by 	���� 	= 	���� 	+ 	���� 	+ 	����� 	+ 	����� 	+ 	���� . 
Up on differentiating with respect to time it is 

obtained 	��� ��⁄ � = ��� ��⁄ � + ��� ��⁄ � + ���� ��⁄ � +���� ��⁄ � + ��� ��⁄ �. Making the use of the equations (5)-

(9) the expression for ��� ��⁄ � takes the form as	�� ��⁄ =� − %� − ��� +  ��� +  ��� . Note that here ��� ≤ 0	 and 
hence without loss of generality it can be expressed as �� ��⁄ = � − %� − ��� +  ��� +  ��� ≥ � − %�	 or 

equivalently 		�� �� − %�⁄ � ≥ �� . On integrating the 
foregoing differential inequality on both sides and applying 
the initial conditions its analytical solution is obtained 

as 	���� ≤ �� %⁄ � + )��0� − �� %⁄ �*<.D9 . Now, within the 

limit � → ∞ the analytical solution leads to	���� ≤ � %⁄ . This 
implies that the upper boundary for the total population size ���� is	�� %⁄ �. 

Therefore, any solution to the system of equations (5) – (9) 

is bounded i.e., 0 ≤ )�, �, ��, ��, �* ≤ � %⁄ . 

2.7. Basic Reproductive Number 

The basic reproduction number 	�E  is a threshold 
parameter defined as the average number of secondary 
infections caused by an infectious individual when 
introduced into a completely susceptible population. It is also 
called basic reproduction ratio or basic reproductive rate. If 
more than one secondary infection is produced from one 

primary infection that is, 	�E 	> 	1 then an epidemic occurs. 

When �E < 	1 then there is no epidemic and it means that the 

disease dies out over a period of time. When �E = 	1 then the 

disease becomes endemic, meaning the disease remains in 
the population at a constant rate as one infected dog transmits 
the disease to one susceptible [9]. 

Using the next generation matrix approach 	�E	 can 

calculated. The matrix is a composition of two matrices H 

and	I. The elements in matrix H constitute the new infections 

those will arise, while that of matrix I	constitutes the transfer 

of infections from one compartment to another. Here �E	 is a 

dominant eigenvalue of the matrix	HI.	�. 

The infected compartments are �, ��,	and	��. The rates of 
changes of populations of these compartments are given by 

(6), (7) and (8). From the system (6) – (8), the quantities JK 
and LK are defined as 

JK = M���� + �����00 N	LK = O �� + � + %���# + %��� − �� −  ����� + %��� − #�� −  ���P 
Finding the partial derivatives with respect to �, ��, �� and 

evaluating them at the disease free equilibrium point gives 
the Jacobian matrices as 

H = Q0 � �0 0 00 0 0R 
	I = Q� + � + % 0 0−� # + % −  � 00 −# � + % −  �R 

Here the fact used is �� �⁄ � = 1 which holds good at the 

disease free equilibrium point	�E. Now I	a lower triangular 
matrix and hence its determinant is the product of main 

diagonal elements. Hence, det�I� = 	 �� + � + %��# + % − ��	�� + % −  �� . After some algebraic computation the 

inverse of	I	given as 

I.� =	
STT
TTT
U 1� + � + % 0 0��� + � + %��# + % −  �� 1# + % −  � 0�#�� + � + %��# + % −  ���� + % −  �� #�# + % −  ���� + % −  �� 1�� + % −  ��VW

WWW
WX
 

Now the product of both matrices H	and I.� gives 

HI.� = M �����#% −  �� + ��#�� + � + %��# + % −  ���� + % −  �� ��� + % −  �� + �#�# + % −  ���� + % −  �� �� + % −  �0 0 00 0 0 N 
The eigenvalues of 	HI.�	 are the solutions of the characteristic equation 	|	HI.� − 	�Z| = 	0 . Here �  is an identity 

matrix, 	Z	 are the eigenvalues of 	HI.� . Thus, the eigenvalues 

are	Z� =	 )+���#% −  �� + ��#, +�� + � + %��# + % −  ���� + % −  ��,⁄ *, and	Z� = Z[ = 0. 

By definition, the dominant eigenvalue is the basic reproduction number �E of the model. In the present case, it is clearly 

seen to be 	Z� . Thus, the reproduction number is given 

by	�E = ρ�HI.�� = )+���#% −  �� + ��#, +�� + � + %��# + % −  ���� + % −  ��,⁄ *. 
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2.8. Disease Free Equilibrium Point 

Let �E 	= 	 ��∗, �∗, ��∗, ��∗, �∗�  represents the disease free 

equilibrium point of the modified model	�������. In absence 

of the infection it happens that 	�∗ = ��∗ = ��∗ = 0 . 
Equilibrium points are obtained by setting zero the left hand 
sides of the equations (5) – (9). Now the other components of 

the disease free equilibrium point �E  satisfy the following 
equations: �	–	��	 + 	μ�S∗ 	+ 	��∗ 	= 	0	                    (10) �S∗ − �% + ���∗ 	= 	0	                        (11) 

On solving (14) and (15) the expressions for �∗	and �∗ are 
obtained as �∗ = �� %�� + % + ��⁄ 	                    (12) S∗ =	��% + �� %�� + % + ��⁄ 	               (13) 

Therefore, the disease free equilibrium point can be 

expressed as 		�E = �S∗, 0, 0, 0, R∗� . Here in 	�E , the 

expressions for �∗	 and �∗  are given by (12) and (13) 

respectively. 

3. Stability Analysis of the Model 

In this section the stability analysis of the equilibrium 

points of the model will be considered and made. It has been 

shown that the disease free equilibrium point is locally and 

globally stable. the endemic equilibrium point is also 

identified and formulated. 

3.1. Local Stability Analysis of the Disease Free 

Equilibrium Point 

To determine the stability of the system at the disease-free 

equilibrium point, the linearized system of equations about 

the equilibrium point will be considered. 

Theorem 3: The disease free equilibrium point �E =` a�D3B�D�63D3B� , 0, 0, 0, a6D�63D3B�b	is locally stable if	�E 	< 	1. 

Proof: The Jacobian matrix at the equilibrium point 	�E can 
be expressed as 

c��E� =
ST
TT
TT
U−���� + ���� − �� + %����� + ����0

0−�� + � + %��
−������ � − �# + %�

	
−������0

	�00
0 0 	# 	 � − �� + %� 	0� � 	0 	0 	−�� + %� VW

WW
WW
X
 

Since � = �� = �� = 0  and � �⁄ = 1	 then, the Jacobian 
matrix reduces to c��E�
=
STT
TU−�� + %�00

0−�� + � + %��
−�� � − �# + %� 	−��0 	�000 0 	# 	 � − �� + %� 	0� � 	0 	0 	−�� + %� VWW

WX
 

The characteristic equation of the Jacobian matrix 

is 	|d��E� − Z�| = 0 , where �	is 5 by 5 identity matrix and Z	represents the eigenvalues, takes the form as 

ee
−�f + Z�00

0−�L + Z��
−��−�g + Z� 	−��0 	�000 0 	# 	−�h + Z� 	0� � 	0 	0 	−�i + Z� e

e = 0 

Equivalently the characteristic equation can be expressed 

as 

+�i + Z��f + Z� − ��, j−�L + Z� � �� −�g + Z� 00 # −�h + Z�j= 0 

Here for simplicity the notations used include: f	 =	��	 + 	μ�, L	 = 	 ��	 + 	�	 + 	μ�, g	 = 	 �#	 + 	μ	 −	 ��, h	 =	��	 + 	μ	 − 	 ��	 and 	i	 = 	 ��	 + 	μ� . The characteristic 
equation can be split into two equations as +�i + Z��f + Z� − ��, 	= 0	                      (14) 

j−�L + Z� � �� −�g + Z� 00 # −�h + Z�j = 0	        (15) 

The equation (14) gives two eigenvalues and (15) gives the 
remaining three values. First of all it is to be shown that the 
two eigenvalues of (14) are negative. The equation (14) can 

be expressed in quadratic form as 	Z� + �� + 2% + ��Z +%�� + % + �� = 0. The solutions of this quadratic equation 
are the eigenvalues. The two eigenvalues are real distinct 

negatives provided that if the (i) coefficient of Z  and the 
constant terms are positive (ii) discriminate is positive. The 
first condition holds true because all the parameters involved 
here are positive quantities. However the second condition 

holds true if	�� + 2% + ��� > 4�� + % + ��. 
Now it is to be shown that the three eigenvalues of (15) are 

real distinct and negative. The equation (15) can be expressed 

in cubic form as 	m�Z� = Z[ 	+ 	Z��L	 + 	g	 + 	h� 	+	Z�Lg	 + 	Lh	 + 	gh	 − 	��� 	+ 	Lghn1	– �E	o. 
According to Routh - Hurwitz criteria the three roots of a 

polynomial of order three of the type	 �Z� = Z[ + p�Z� +
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p�Z +	p[ are real distinct negatives if the coefficients satisfy 

the conditions p� > 0, p� > 0	and 	p�p� >	p[ . It is straight 
forward to verify that these conditions are satisfied and hence 
the last three eigenvalues of the Jacobian matrix are also real 
distinct and negatives. 

Clearly it can be observed that the first two conditions of 

Routh – Hurwitz are satisfied in case of m�Z�	and the third 

condition is satisfied provided that �L	 + 	g	 + 	h��Lg	 +

	Lh	 + 	gh	 − 	��� > Lghn1	– �E	o. 
Therefore the disease free equilibrium point of system of 

ordinary differential equations (5) to (9) is locally 

asymptotically stable if	�E 	< 	1 as long as the following two 
conditions on the parameters hold good: 	�� + 2% + ��� > 4�� + % + ��	                  (16) 

�L	 + 	g	 + 	h��Lg	 + 	Lh	 + 	gh	 − 	��� > Lghn1	– �E	o	                                                 (17) 

3.2. Global Stability of the Disease Free Equilibrium Point 

Theorem 4: The disease free equilibrium point �E =` a�D3B�D�63D3B� , 0, 0, 0, a6D�63D3B�b	is globally stable if	�E 	< 	1. 
Proof: By the comparison theorem, the rate of change of 

the variables representing the infected components of the 
model system of differential equations (5) – (9) can be 
rewritten as 

ST
TTT
U�������������� VW

WWW
X
= +H − I, O��������������P − ���� + ��� M1 − ��00 N 

Note that �� �⁄ � = 1  holds good at the disease free 

equilibrium point �E . Thus, the above matrix equation 
reduces to 

STT
TUqrq9q12q9q14q9 VWW

WX = +H − I, O��������������P	                     (18) 

It has been shown that matrix sH	– 	It  in (18) whose 

eigenvalues are located on its main diagonal which real and 
negative. It follows that the linearized differential inequality 

system (18), is stable whenever �E 	< 	1 . 

Consequently 	��, ��, ��� 	= 	 �0, 0, 0�  as �	 → 	∞  and 
evaluating the system of differential equation (5)-(9) 

at 	��	 = 	 �� 	= 	 �� 	= 	0�	 gives 	�E = )���% + ���/�%�� +% + ���, 0, 0, 0, ��/�%�� + % + ���*.  Thus ��∗, �∗, ��∗, ��∗� → �E  and also as � → ∞  the condition 	�E < 1	 implies that the disease free equilibrium point is 
globally asymptotically stable.[15] 

3.3. The Endemic Equilibrium Point of Modified Model 

Endemic equilibrium are steady state solutions where the 
disease persist in the population i.e., all the state variables are 
positive. The rabies infection will persist in the population 
and the endemic equilibrium of the modified model is given 

by 	�� 	= 	 ��∗∗, �∗∗, ��∗∗, ��∗∗, �∗∗�. At this equilibrium point 	��  the right hand sides of the model differential equations 

(5) to (9) vanish. Thus, on using ��	 in equations (5)-(9), 
setting the right hand sides equal to zero and after some 
applying algebraic operations and simplifications the 
following are obtained: 

�∗∗ 	= )���	 + 	�	 + 	μ��#	 + 	μ −  ����	 + 	μ −  ��* )����	 + 	μ −  � + #�*⁄  

�∗∗ =	 �# + % −  ��+��� + %��� + %� − ��� − ��E�� + %�,+	��E	�� + % −  ���� + %�,���	 + 	μ��E+	�E��	�� + % −  ��	�# + % −  �� − ���� + %�	�� + % −  � + #�,  

��∗∗ = +��� + %��� + %� − ��� − ��E�� + %�,+��E	�� + % −  ���� + %�,�E��	 + 	μ�+�E���� + % −  ���# + % −  �� − ���� + %��� + % −  � + #�, 
I�∗∗ =	v α	�E	+��� + %��� + %� − ��� − ��E�� + %�,+��E�� + %�,��	 + 	μ�+�E���� + % −  ���# + % −  �� − ���� + %��� + % −  � + #�,x 

�∗∗ = ���	 + 	μ�	v��E 	+ �# + % −  ��+�� + %��� + %�� − ��� − ��E�� + %�,+�� + % −  ���� + %���E,���	 + 	μ��E+�� + % −  ���E���# + % −  �� − ���� + %��� + % −  � + #�, x
Theorem 5 The positive endemic equilibrium point 	��	of 

the system of equations (5) to (9) is locally asymptotically 

stable if 	�E 	> 	1. 
Proof To determine the stability of the system at the 

endemic equilibrium point 	��,  the linearized system of 
equations (5) to (9) about the equilibrium point will be 
considered. Its Jacobian matrix can be constructed as 

d���� = STT
TU −f��∗∗0

0−L�	
−��∗∗ −��∗∗ 	���∗∗ 	��∗∗ 	0−g 	0 	00 0 	# 	−h 	0	� � 0 	0 	−i VWW

WX
 

Here the notations used are:	f = �����∗∗ + ��∗∗��∗∗� �⁄ −	��	 + 	μ��∗∗; 	v = ��	 + 	�	 + 	μ�; 	w = �#	 + 	μ −  ��; 	h =	��	 + 	μ −  ��; 	y = 	 ��	 + 	μ�; 	��∗∗ =
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����∗∗ + ��∗∗� �⁄ ;	 and ��∗∗ = ��∗∗ �⁄ . Now the 

characteristic polynomial of the Jacobian matrix 	|d���� −Z�| 	= 	0 , where Z	 is the eigenvalues and �  is an identity 
matrix of class five, takes the form as  �Z� = 	Z| 	+ 	}�Z~ 	+ 	}�Z[ 	+ 	}[Z� 	+ 	}~Z	 + 	}|	(19) 

Here in (19), some notations have been used to represent 

the following expressions:  	}� 	= 	i	 + 	f	 + 	L	 + 	g	 + 	h }� 	= 	if	 + 	iLig	 + 	ih	 + 	fL	 + 	fg	 + 	fh	 + 	Lg	+ 	Lh	 + 	gh	 − 	���∗∗ 	− 	�� }[ 	= 	ifL + ifg + ifh + iLg + iLh + igh + fLg+ fLh + fgh + Lgh + ���∗∗�∗∗− ���∗∗�h + # + i + f�− ���L + g + h� }~ 	= 	ifLg + ifLh + ifgh + iLgh + fLgh+ ��∗∗�∗∗�h + i + #� + �����∗∗ 	− 	���∗∗�i�h + #� + f�h + #� + if� 	− ����∗∗�h	 + 	g� 	− 	���Lg	 + 	Lh	+ 	gh� }| 	= 	ifLgh	 + 	���∗∗�∗∗i�h	 + 	#� 	+ 	�����∗∗�h	 + 	#� 
By Routh - Hurwitz criteria the determinant of Hurwitz 

matrix becomes positive if the following conditions hold 

true: 	}� 	> 	0, }� 	> 	0, 	}[ 	> 	0, }~ 	> 	0, }| 	> 	0, }[	}~ 	>	}�	}|, }|	}�	}� 	> 	}[, }| 	> 	}�	}~.  All the parameters of 

the present model are positive. Therefore, (i) }� 	> 	0 if and 

only if 	if	 + 	iLig	 + 	ih	 + 	fL	 + 	fg	 + 	fh	 + 	Lg	 +	Lh	 + 	gh	 > 	���∗∗ 	+ 	��  (ii) }[ 	> 	0  If and only 

if 	ifL	 + ifg	 + ifh + iLg	 + iLh + igh + fLg	 +fLh + fgh + Lgh + ���∗∗�∗∗ 	> 	���∗∗�h + # + f� +	���L	 + g	 + h�  (iii) }~ > 0  if and only if 	ifLg	 +	ifLh	 + 	ifgh	 + 	iLgh	 + 	fLgh	 +	���∗∗��∗∗�h	 + 	i	 +	#� 	+ 	�����∗∗ 	> 	���∗∗�i�h	 + 	#� + f�h	 + 	#� 	+	if� 	+ 	����∗∗�h	 + 	g� 	+ 	���Lg	 + 	Lh	 + 	gh�  (iv) }| 	> 	0  If and only if 	ifLh	 +	����∗∗�∗∗i�h	 + 	#� 	>	���∗∗if�h	 + 	#� 	+ 	��Lgh���∗∗ 	+ 	L� 
When all the conditions for }�, }�,	}[, }~, }|  hold 

and , }�}�}[ > }[� , B ( }�}�}[ > }[�  +}��}~  and n}�}~	– 	}|on}�}�}[	– 	}[� −	}��}~o > 	}|	n}� 	+	}�	– 	}[o� 	+ 	}�}|�  holds. Hence all the roots of the 

characteristic polynomial (19) are negative this verify that the 

system (5) to (9) is locally asymptotically stable if	�E 	> 	1. 

4. Numerical Simulations 

Numerical simulations of the model have been carried out 
using MATLAB inbuilt function ode 45; using the Runge-
Kutta of order four. The main focus of the simulation is to 
investigate the response of model parameters for rabies 

epidemic. In simulating the S	E	I�	I�	R	model equations (5) – 
(9) representing the transmission of rabies disease among 
dogs with vaccination the following parametric values 

selected based on assumptions are used: � = 	0.0198; 	� =

0.079; 	� = 0.089; 	� = 0.5; 	� = 0.09824; 	% =0.0292; 	# = 0.0591; 	� = 0.9897; 	 � = 	 � = 0.02.	 Each 
of these values are numbers per year. The simulation graphs 
are given as figures. 

 
Figure 3. Numerical simulation of dog rabies with � = 0.02 and	 � =  � =0.09. 

In Figure 3 it can be observed that the population sizes of 

the compartments (i) �	 and �	 decrease while (ii) that of ��, ��	and �	increase. However, the variations are of slower 
rates. Thus, the simmulation reveals that the infection spreads 
and the result will be an epedemic. But the spread of the 
epedemic is slower. 

 
Figure 4. Numerical simulation of dog rabies with � = 0.2 and	 � =  � =0.07. 

In Figure 4 it can be observed that the population sizes of 

the compartments (i) �	 and �	 decrease while (ii) that of ��, ��	and �	 increase. However, the variations are of faster 
rates. Thus, the simmulation reveals that the infection spreads 
and the result will be an epedemic. But the spread of the 
epedemic is faster. 
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Figure 5. Numerical simulation of dog rabies with � = 0.46	and  � =  � =0.05. 

 
Figure 6. Numerical simulation of dog rabies with � = 0.62	  and 	 � = � = 0. 

In figures 5 and 6 the population dynamics of �������	 epidemic compartmental model with deffirent 

values of vaccination rates �	 and immigration 

rates		 �	and	 � are simulated. The susceptible and exposed 
dogs decrease. The number of prodromal and forious stage 
dogs are slowly decreasing to zero. The number of recoverd 
stage dogs increases when times. It can be concluded from 
these simulated graphs that as vaccination rate increases 
and immigration rate decreases the epidemic seems dies 
out. 

Some special and main features of the present model are: 
(i) The total dog population is divided into five 

compartments; (ii) the model has �������	  structure; (iii) 
Vaccination is considered; (iv) infective immigration of the 
dog population is considered (v) The dogs mix 
heterogeneously; and (vi) reproductive number depends on 
many parameters. 

5. Conclusions 

In this paper, new mathematical model is proposed to 

study the impact of infective immigrants on the spread of 

dog rabies in a variable size population with a constant 

recruitment of susceptible. Stability analysis and 

numerical simulations on the model shows that the disease 

dies out if the immigration of the infected dogs is 

controlled, the vaccination and the treatments are 

improved. Otherwise, the disease spreads rapidly in the 

dog population and it will become an epidemic. Also 

certain model parameters such as contact rate could 

increase the spread of the disease. 
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