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Abstract: The inclusion of stochastic interest rate is an essential element of any realistic option pricing method. Therefore, 

the purpose of this paper is to incorporate interest rates in the Fourier transform method for pricing European options in 

exponential Levy models. With the assumption of stochastic independence between the underlying log asset price and the 

stochastic interest rate, we obtain a pricing of pure discount bond available in the market. Our method of valuation is to apply 

eigenfunction expansion to the variable that describes the evolution of the interest rate, and Fourier transform to the variable 

that describes the log asset price. 
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1. Introduction 

The first acceptable contribution to the field of quantitative 

modelling of derivative securities is given by Black and 

Scholes [1], in which the price of a European option on an 

underlying asset with price process given by a geometric 

Brownian motion was given in close-form. However, in most 

exponential Levy models and stochastic volatility models, 

analytic formula for the option price does not exist. Hence, 

alternative methods are sought. One of such approaches is the 

Fourier transform and inversion methods, since it has been 

observed that when characteristic function of the density 

function is mapped to the option payoff in Fourier space, 

option prices are easily calculated much easier for some of 

the much complex processes. The idea behind Fourier 

transform is to take an integral of the payoff function over the 

probability distribution function, where the probability 

distribution function is obtained by inverting the 

corresponding Fourier transform. 

In mathematical finance, Fourier transform method was 

first used in Stein and Stein [3] volatility model, to obtain the 

distribution of the underlying asset price. This was followed 

by Heston [2], where through characteristic function, obtains 

an analytical formula for the valuation of European options 

when the volatility of the underlying asset price is stochastic. 

Following these two papers, quite a lot have being written on 

the application of Fourier transform and inversion methods in 

the valuation of more complex contingent claims. For 

example, Carr and Madan [4] introduces fast Fourier 

transform algorithm for the numerical valuation of the 

Fourier integral encountered in option pricing. Since then, 

fast Fourier transform algorithm has become an efficient 

mathematical tool used in mathematical finance in the 

valuation problems, e.g. see [10, 7, 8, 12, 13]. A more general 

pricing framework was developed in Lewis [9] by separating 

the underlying asset price from the option payoff through the 

use of Plancherel-Parseval theorem. Through his method, a 

variety of pricing formula for different types of contingent 

claims can be obtained. For other applications of Fourier 

transform methods to option pricing, see [5, 6, 8] and 

bibliographies therein. 

All the existing Fourier transform methods in option 

pricing known in literature make a simplifying assumption 

that the interest rate in the market remain constant throughout 

the life of the option. This assumption is not generally true, 

especially when pricing options of long maturity, as interest 

rates are bound to change, and this level of change is not 

known before time (that is, it is stochastic). Therefore, the 

contribution of this paper to the existing literature on Fourier 

transform method for option pricing is to incorporate 
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stochastic interest in pricing European style contingent claim 

under the assumption that the underlying log asset price �� is 
an exponential Levy process. Therefore, to price the 

European option, we assume that the interest rate, � , is a 

stochastic function of the Markov process ��: � � �����, 
when state space is D = 
. 

The method of valuation we adopt here is the joint 

application of the Fourier transform and eigenfunction 

expansion. To the best of our knowledge, this is the first time 

the two methods are being applied together. The idea is that 

we use the Fourier transform for the variable �� that models 

the log-asset of the firm, and apply the eigenfunction 

expansion with respect to the variable ��  that describes the 

evolution of interest rate. 

The study of eigenfunction expansion of linear operators 

was motivated by the seminal work of Mckean [14], where 

the spectral representation for the transition density of one 

dimensional diffusion process is obtained. Since then, 

eigenfunction expansion has been shown to be an important 

methodology for derivative pricing. For example, Gorovoi 

and Linetsky [20] models the Japanese interest rate using 

eigenfunction expansion method, to obtain analytical 

solutions for zero coupon bonds and bonds options under the 

Vasicek [19] and CIR [18] processes for the shadow rate. 

Lewis [27] uses eigenfunction expansion to price generalized 

European style options on stocks that pay constant dividends, 

and finds an estimate for the yield curve associated with the 

Merton [26] economy. Davydov and Linetsky [16] develops 

eigenfunction expansion approach for valuing options on 

scalar diffusion processes. Boyarchenko and Levendorskii 

[17] applies eigenfunction expansion to multifactor models 

of interest rate. For more applications of eigenfunction 

expansion method to derivative pricing, see in applying 

eigenfunction expansion, the problem of derivative pricing is 

reduced to that of solving a single eigenvalue-eigenfunction 

equation. Once the equation is solved, the approximate value 

of the derivative can be computed. In this paper, we do not 

do eigenfunction expansions with the infinitesimal generator 

of the pricing semigroup, rather we do expansion with 

infinitesimal generator �� � �
 � ����, �
  is the 

infinitesimal generator of the process �� . This ultimately 

leads to solving an infinite system of disjoint first order 

ordinary differential equation for the bond price, which is 

easy to solve. In this case, we obtain an infinite series that 

gives the bond price. 

The remaining of this article is organized as follows: in the 

remaining part of section one, we discuss the preliminaries, 

which include Fourier transform and characteristic function, 

Levy process and its theory and eigenfunction expansion. In 

section two, our main method for pricing European option 

with stochastic interest rate is presented. This is the joint 

application of eigenfunction expansion and Fourier 

transform. In section three, we process our numerical result, 

discuss the result and conclude the article. 

1.1. Fourier Transform and Characteristic Function 

Let ���� be a piecewise continuous real function which 

satisfies the condition � |����|�� � ∞.�
��  The Fourier 

transform of ����  defined for any complex variable  �  is 

given by 

���� � � ������������
��                         (1) 

This transform is known to exist and is analytic for all � in 

the strip � �  � "#: $ � � � %&, '�()*��� � ��+�,����,�� ��
��

∞ $-� � ��.�,����,�� � ∞.�
��   The inverse of the transform 

through which the function ���� can be recovered is 

���� �  /
01 � ����������,023�

02��  $ � 4 � %.     (2) 

1.2. Brief on Levy Processes 

Levy processes are becoming very popular in 

mathematical finance because they have been discovered to 

describe the observed reality of financial markets more 

accurately than models with Brownian motion such as 

geometric Brownian motion of Black and Scholes [1]. In real 

world, it is known that asset price paths do exhibit jump or 

spikes, and these have to be taken into account in order to 

manage risks efficiently. Moreover, the empirical distribution 

of asset returns exhibits fat tails and skewness. These show 

that the distribution of asset returns are far from being 

normal, as predicted in Brownian motion models. Levy 

processes are known to possess the appropriate properties 

that accurately describe all these properties of asset price and 

its returns in the real world and risk neutral world. 

By definition, a Levy process ��  is stochastic processes 

with stationary and independent increments, and it is 

continuous in probability. A general 1-dimensional Levy 

process can be represented as 

�� � 56 7 4� 7 8� 7 9*:;<�=�;               (3) 

Where 4�  is a 1-dimensional Brownian motion, 5 " 
, 8� 

is a compound Poisson process which includes the jumps of 

�� , and =�; is a compensated compound Poisson process 

which includes the jumps of ��  with " � , ∆��, > 1. The 

characteristic function of the distribution of ��  can be 

represented in the form 

 

The function @ is called the characteristic exponent for �. 

the general form of characteristic exponent of any Levy 

process can be deduced from the Levy. Khintchine formula 

ψ�η� � BC
0 η0 � ibη 7 � F1 7 iη�1G�/,/H��� � eJ�ηKF�d��
\�  (4) 

where O P 0, % " 
, $-� R is a measure on 
\0 satisfying 

S  |�|0, 1&R���� � ∞

\�

 

The triple �%, O0, R� is called the Levy triple for Xt. The 

proof of this Levy – Khintchine formula can be found in 

Cont and Tankov [21]. The known exponential Levy models 

in financial modeling literature correspond to assigning 

different values to O0 $-� R���� . For example, the case 
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where F( ���  is a finite measure and O ≠ 0,  gives rise to 

jump-diffusion Levy processes, e.g. Merton [22] and Kou 

[23] models. The case where R(��) an infinite measure, and 

O = 0, gives rise to pure jump model of infinite activity, e.g. 

Variance Gamma (VG) model of Madan, et al [24], Normal 

Inverse Gaussian model of Barndorff-Nielson [25], etc. As an 

example in this article, we use a VG process whose density 

of jumps is given by 

R(��) = U3�VW���/1(�,3�)(�)�� + U��VX���/1(��,�)(�)�� 

Here, 1(+..) is an indicator function of the interval (a, b). 

The coefficients c+ (respectively, c-) gives the intensity of 

upwards jumps (respectively, downward jumps). The 

characteristic exponent @(η)  of the VG process can be 

obtained using (4): 

@(η) = U[ln(−[� − *η) − ln(−[�) + ln([3 − *η) − ln([3)] 
1.3. Eigenfunction Expansion for the Bond Price 

Consider a pure discount bond that pays the owner a 

certain unit amount of currency at maturity date T. The price 

\(6, ], �) of this bond at time 6 < ] is given by 

\(6, ], �) = ^_,
 `�� � 
(a)bac
d e , � " f�       (5) 

where f�  is the interior of f , and g  is the risk-neutral 

measure chosen for pricing. In the CIR (1985) model, the 

variable �� satisfies the stochastic differential equation 

��� =  (h − i�)�6 + Oj��k�                     (6) 

Where ∝≥ 0i, O > 0 $-� k�  is one dimensional 

Brownian motion. In (6), we assume that the feller condition, 

2h > O0 is satisfied to ensure that the point 0 is not attained 

by the process �� . Applying Feymann-Kac theorem to 

\(6, ], �), we obtain the backward Kolmogorov equation 

op� + �
 − �(�)q \(6, ], �) = 0                (7) 

Subject to \(], ], �) = 1, kℎ��� �
 = (h − i�)p
 +
sC


0 p
0  is the infinitesimal generator of the process �� . We 

assume that �� = �
 −  �(�) is diagonalizable so that we can 

expand 1t(�) into the series 

1t = ∑ Uvwv(�)�vx�                               (8) 

where wv are the orthogonal eigenfunctions of �� $-� Uv are 

the coefficients of expansion given by 

Uv = y/z,{|}~C(�,t)
y{|,{|}~C(�,t),                               (9) 

:  is the measure on f  chosen so that the infinitesimal 

generator ��  becomes unbounded in the Hilbert space 

�0(:, f), with discrete spectrum, and 

y1t , wv} = S 1f(�)wv(�):(�)��
t

 

Is the inner product in �0(:, f). We can now expand the 

bond price \(6, ], �) in the series 

\(6, ], �) = ∑ Uv\v(�)wv(�)�vx�                (10) 

where � = ] − 6 . If we substitute (10) into (7), with p� =
 −p� , we get − ∑ Uvwv(�)(p� + [v)\v(�) = 0�vx� , n= 

0,1,2… Hence 

(p� + [v)\v(�) = 0                           (11) 

Subject to \v(0) = 1. Then, (11) is an infinite system of 

disjoint scalar first order ordinary differential equations for 

\v(�) . This is solved to get \v(�) = ��V|�  for each - . 

therefore, the eigenfunction expansion (10) for the bond price 

becomes 

\(6, ], �) = ∑ Uv��V|�wv(�)�vx�                (12) 

Hence, if the constant of expansion �v converges fast, and 

if the eigenvalues and eigenfunctions are known, then with 

moderately few terms, the series (12) can be truncated 

appropriately to find the approximation to the bond price. 

Suppose the risk-free interest rate is quadratic function of the 

stochastic variable � = �(�) = /
0 $0�0 + $/� + $�, $0 ≠

0, 6ℎ�- �� can be transformed to the operator of the simple 

Harmonic oscillator whose eigenvalues and eigenfunctions 

are well known. The transformed infinitesimal generator 

becomes ��� = −�� − ã�, where � and ã� are constants to be 

determined in the transformation, � = /
0 (�0 − p�0)  is the 

operator of the simple harmonic oscillator. 

The normalized eigenfunctions of �  can be generally 

written as 

@�(�) = Ĥ�(�)��(�)C/0 

With �@��0 = 2��! √�, ∀� = 0,1, …, and the corresponding 

eigenvalues are 

[� = � + 1
2 , � = 0,1,2, … … 

Where Ĥ�(�) = �! ∑ (�/)�(0�)�WC�
�!(��0�)

⌊�/0⌋
�x�  are the Hermite 

polynomials, and ⌊�⌋ = �9((� (�) means the largest integer 

which is not greater than � . it is verifiable that @�(�) =
o/

1q
�
� ���C

C  is the initial eigenfunction that corresponds to the 

initial eigenvalue [� = /
0. 

We use the following theorem from [17] which we state 

without proof. 

Theorem 

1. The eigenfunctions of the transformed infinitesimal 

generator ��� and that of � are the same. 

2. The eigenvalues of ��� $�� �[� − ã�,  where [�  are the 

eigenvalues of � for j = 0,1,2,… 

With these, the eigenfunction expansion for the bond price 

becomes 

\(0, ], �) = ∑ ��@�(�)���V���x�                (13) 
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The detail of this transformation can be found in [17] 

The graph below shows how the bond prices from the 

eigenfunction expansion method approximates closely, the 

bond prices from the analytical solution. 

 

Figure 1. Approximate and Exact Bond Price for T = .5 years. 

2. Pricing European Option with 

Stochastic Interest Rate 

We begin by choosing a risk neutral measure Q, suitable 

for pricing options on the underlying stock or index �� with 

stochastic interest rate �����, where �� is a Levy process of 

exponential type �[�, [3) . In the presence of stochastic 

interest rate, the time 0 < T price of a European option with 

payoff �(�� , ��) and expiry date ] can be written as 

�(6, ], �) = ^_,�,
[�(�� , ��) | �� = �, �� = �]        (14) 

Where �(�� , ��) = �� � 
(a)bac
� �(��). �*-U� ��  $-� �� 

are independent, we can write (14) to be 

�(6, ], �) = ^_,
[�(��) | �� = �)]^_,�[�(��) | �� = �]   (15) 

Where �(��) = ^_,
 `�� � 
(a)bac
� e is the risk neutral value 

of a pure discount bond that pays one unit of currency at 

maturity date ]. 

Define \(0, ], �): =  ^_,
 `�� � 
(a)bac
� e. Then, the value of 

the option can be written as 

�(0, ], �) = \(0, ], �)^_,�[�(��)|�� = �]          (16) 

Suppose there exists some 4 " ([�, [3) such that �(�) ≔
�2��(�)  is integrable, we can decompose H into Fourier 

integral to get 

�(�) = /
01 � ������(�)�����x2 ,               (17) 

With 

��(�) = � ������(�)��ℝ                     (18) 

Putting (16) into the pricing formula (14), we get 

�(0, ], �) = \(0, ], �)^_,� ` /
01 � �� c���(�)�����x2 e    (19) 

We can apply Fubinis theorem to change the order of 

taking expectation and integration to obtain 

�(0, ], �) = \(0, ], �) /
01 � ����^_,�¡��( c� �)���(�)��¢���x2  (20) 

Using the characteristic function for the distribution of X, 

we can write (20) as 

�(0, ], �) = \(0, ], �) /
01 � ������£(�)���(�)�����x2   (21) 

Where @(�) is the so-called characteristic exponent for the 

Levy process X. the payoff for European call and put options 

with strike price K are (�� − ¤) $-� (¤ − ��) respectively. 

Hence, using (18), we have ��(�) = �¥¦W§¨ ©ª �
�(�3�)  for call option 

and ��(�) = �¥¦W§¨ ©ª �
�(�3�)  for put option. The major task in 

applying Fourier transform to pricing European option is the 

evaluation of the integral in (21). To do this, we truncate the 

integral and discretize the integrand. This involves choosing 

a convenient grid �� = *43 + �«, to obtain 

¬ = ­
01 ∑ ������£F��K���F��K�;ℤ                      (22) 

where � " ℤ, 43 > 0, and « is the grid size 

3. Numerical Example 

In this section, we implement the method discussed in We 

consider this paper. We experiment with the following 

parameters: For the Levy process, we use ¯ = 0.45, O = 0 

(since we are considering pure jump process), [/ = −3, [0 =
2, U = 1.5. For the CIR interest rate process, we use h =
1.2, i = 1, O = 1.6428, $0 = 1, $/ = 0.9, $� = 0.0005 . We 

experiment with different stock prices with fixed strike price, 

K = 100 for both European call and put options. The result of 

our calculations are presented in Table 1 and Table 2 for call 

and put options respectively. In this tables, N represent the 

number of simulations used in (22). 

Table 1. Call option values for K = 100, T = 1. 

S/N 20 30 40 50 60 70 80 90 

120 1.3781 1.3745 1.3753 1.3750 1.3751 1.3751 1.3751 1.3751 

150 6.2955 6.3002 6. 2996 6. 2996 6. 2996 6. 2996 6. 2996 6. 2996 

180 11.3756 11.3751 11.3758 11.3759 11.3758 11.3758 11.3758 11.3758 

200 14.7766 14.7728 14.7727 14.7728 14.7729 14.7729 14.7729 14.7729 
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Table 2. Put option values for K = 100, T = 1. 

S/N 20 30 40 50 60 70 80 90 

20 2.9252 2.9255 2.9255 2.9255 2.9255 2.9255 2.9255 2.9255 

40 5.2309 5.2310 5.2312 5.2311 5.2312 5.2312 5.2312 5.2312 

60 5.6639 5.6667 5.6672 5.6672 5.6672 5.6672 5.6672 5.6672 

80 4.2085 4.2084 4.2042 4.2042 4.2043 4.2043 4.2043 4.2043 

 

4. Summary 

Pricing European options with short maturity date on a 

given stock, may not require change in interest rate. But 

when the maturity date is long, it is necessary to consider the 

possibility of stochastic change in the level of interest rate in 

the market. In this article, we have succeeded in 

incorporating stochastic interest rate in the Fourier transform 

method for valuing European-style contingent claim on a 

stock driven by an exponential Levy process. Moreover, the 

tables above reveals that the method of simplified trapezoid 

rule adopted here for evaluating the Fourier integral 

converges fast, thereby allowing the option value to be 

computed fast. 
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