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Abstract: In this paper, the basic principle and definitions for nonlinear integral equation of a crisp function over a fuzzy 

interval have been discussed. a numerical technique method and some algorithm for solving non-linear of crisp valued function 

over fuzzy interval using the domain and range partitions of the membership functions of the fuzzy interval . the numerical 

solution of the crisp function over the fuzzy interval using the LR-type representation of fuzzy interval. Some numerical 

examples are prepared to show the efficiency and accuracy of the methods. 
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1. Introduction 

The basic sciences ( such as engineering , chemistry, and 

physics) construct exact mathematical models of empirical 

phenomena, and then using these models for making 

predictions, while some aspects of real world problems 

always escape from such precise mathematical models, an 

usually there is one elusive inexactness as a part of the 

original model[kandel, 1986]. Scientists have long sought 

ways to use the precision of mathematics to tame the 

imprecision of the real world. It may be seen that in many-

valued logic, topology, and probability theory as different 

attempts to be precise about imprecision [Negoite, 1975], 

[Zadeh, 1965] published his classical paper “fuzzy set theory 

“ which is received more and more attention from researcher 

in wide rang of scientific areas especially in the past few 

years[Dubois, 1980]. 

Nowadays, they are equipped with their owe mathematical 

foundation, rooting from set- theoretic basis and many-

valued logic. Their achievements have already enriched the 

classic two-valued logic with a deep and novel perspective 

and to understand the reasons for the extensive development 

of fuzzy sets, there are two main aspects worthily of being 

mentioned. Firstly, the notion of fuzzy set as a too; for 

modeling intermediate grades of belonging that occur in any 

concept, is very attractive, especially from an application 

point of view. Secondly a variety of tools incorporated in the 

framework of fuzzy sets enables to find a suitable concept to 

cope with the theory of fuzzy sets has one of it’s aims the 

development of a methodology for the formulation and 

solution of problems that are too complex or too ill-defined 

to be susceptible to analysis by conventional techniques 

[Kandel, 1986]. The basic idea of fuzzy sets is easy to grasp, 

let us remind ourselves of two- valued logic, which forms a 

corner stone of any mathematical tool used. A fundamental 

point arising from this logic is that it imposes a dichotomy of 

any mathematical model, in other words taking any object, 

we are forced to assign it to one of two prespecified 

categories (for example, good – bad , black- white , normal – 

abnormal, odd- even, etc). 

Sometime it happened that this process of classification 

may easily performed, since the categories we are working 

with are precise and well-defined, for instance, with two 

categories of natural number as belonging to exactly one 

class. 

Nevertheless, in many scientific tasks, we faced with 

classes that are ill-defined. Consider for instance, such as tall 

man, high speed, significant error, etc. All of these convey a 

useful semantic meaning that is obvious for a certain 

community, however, a borderline between the belonging or 

not of a given object to such a class is not evident. Here, it is 

obvious that two-valued logic, used in describing these 

classes of situations, might be not well suited. A historical 

example appeared in one of the work (Borel , who discussed 

an ancient Greek sophism of the pile of seeds … one seed 



190 Alan Jalal Abdulqader:  Crisp Function of Integral Nonlinaer Equation of the Second Kind  

over the Fuzzy Interval with Application 

dose not constitute a pile nor two three. From the other side 

everybody will agree that 100 million seeds constitute a pile. 

What therefor is the appropriate limit? Can we say that 

325647 seeds don’t constitute a pile but 325648 do?). 

Therefore, even in mathematics we can meet some fuzzy 

notations (example ill-conditioned matrix, sparse matrix). 

Techniques of fuzzy sets and systems theory were applied 

in various domains such as: pattern recognition, decision- 

making under uncertainty, large- system control, 

management science, and others [Dubois, 1980]. 

One of the most important facts of human thinking is the 

ability to summarize information into label of fuzzy sets, 

which bear an approximate relation to the primary data 

[Dubois , 1980]. 

The fuzziness is a type of imprecision that stems from 

grouping of element into classes that do not have defined 

boundaries, such classes called fuzzy set, arises whenever we 

describe the ambiguity, vagueness and ambivalence in the 

mathematical model of empirical phenomena [Kandel, 1986]. 

In general we distinguish three kinds of exactness. 

Generality that a concept applies to a variety of situations. 

Ambiguity that it describes more than one distinguishable 

sub- concept, vagueness, that precise boundaries are not 

defined. All three types of inexactness are represented by 

fussy set. Generality occurs when the universe is not just one 

point, ambiguity occurs when there is more than one local 

maximum of membership function, and vagueness occurs 

when the function take value other than just (0and 1) [kandel, 

1986]. 

In this paper, we construct a new technique to find a 

solution of the NON-linear integral equation of a crisp 

function over a -fuzzy interval. 

���� = ���� + � 	 
��, 
, ��
���
��
��  

2. Fuzzy Sets Theory 

Fuzzy set theory is generalization of abstract set theory; it 

has a wider scope of applicability than abstract set theory in 

solving problems tha involve to some degree subjective 

evaluation [12,19,22]. 

Let X be a space of object and x be a generic element of X, 

a classical set A, A⊆ � is defined as a collection of elements 

or objects x∈ � , such that each element x can either belong 

or not to the set A. By defining a characteristic (or 

membership) function for each element x in X , we can 

represent a classical set A by a set of ordered pairs (x,0) or 

(x,1), which indicates � ∉ �	��	� ∈ �, respectively. A fuzzy 

set express the degree to which an element belongs to a set . 

Hence , for simplicity, the membership function of a fuzzy 

set is allowed to have value between (0 and 1) which denotes 

the degree of membership of an element in the given set ���: �	 → [0,1] , the fuzzy set �$	%&	�	is defined as a set of 

ordered pairs �$ = {��, ������, � ∈ �}  where ������  is called the 

membership function (or MF ) for the fuzzy set [Bezdek, 

1993] 

Remarks 1. 

1- When X is finite set, a fuzzy set on X is expressed as: 

�$ = �����)�|�) + �����+�|�+ + ⋯… + �����.�|�.
= /�����0�|�0

.
01)

 

when X is not finite , we have 

�$ = �����)�|�) + �����+�|�+ + ⋯ …… . . = ∫4������|� 

Or 

�$ = {��, ������, � ∈ �} 
Where the slash(|) is employed link the elements of the 

support with their grades of membership in �$ , and the plus 

sign (+) or the integral playing the role of “union” rather than 

arithmetic sum or integral [14,17]. 

2- The biggest differences between crisp and fuzzy set is 

that the former always have unique memberships, 

where as every fuzzy set has infinite number of 

memberships that may represented it . 

3- Function that map X into the unit interval may be fuzzy 

sets but become fuzzy set when , and only when , they 

match some intuitively plausible semantic description 

of imprecise properties of the objects in X 

3. Basic Concepts 

Let X be a space of object , let �$ be a fuzzy set in X then 

one can define the following concepts related to fuzzy subset �$ of X [1,2,22] : 

1- The support of �$  in the universal X is crisp set , 

denoted by : 

5��$� = {�|������ > 0, ���	788	� ∈ �}. 
2- The core of a fuzzy set �$ is the set of all point � ∈ �, 

such that������ = 1 

3- The height of a fuzzy set �$ is the largest membership 

grade over X , i.e hgt(�$� = 9�:4∈;������ 

4- Crossover point of a fuzzy set �$  is the point in X 

whose grade of membership in �$ is 0.5 

5- Fuzzy singleton is a fuzzy set whose support is single 

point in X with ������ = 1 

6- A fuzzy set �$ is called normalized if it is height is 1; 

otherwise it is subnormal 

7- The empty set <	7&�	�	7�=	��>>?	9=
	, 
ℎ=& ∶���	788	� ∈ �	, �B��� = 0	, 	�4��� = 1	respectively 

8- �$ = C�	%�	7&�	�&8?	%�	������ = �D���� for all x∈ � 

9-  �$ ⊆ C�	%�	7&�	�&8?	%�	������ ≤ �D���� for all x∈ � 

10- �$F  is a fuzzy set whose membership function is 

defined by : 	���G��� = 1 − ������	���	788	� ∈ � 

11- Given two fuzzy sets, �$7&�	C�  , their standard 

intersection , 	�I⨅C�	, 7&�	
ℎ=	9
7&�7��	�&%�&	�$⨆C�  , 

are fuzzy sets and their membership function are 

defined for simplicity for all 
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� ∈ �	, L?	
ℎ=	=M�7
%�&9: 
∀� ∈ �	, ��∪D��� = P7�[�����, �D���] 
∀	� ∈ �	, ��∩D��� = PR&[�����, �D���] 

4. S – Cut Sets 

One of the most important concepts of fuzzy sets is the 

concept of an T-cut and it is variant, a strong alpha- cut, 

given a fuzzy set �$ defined on X and any number T ∈ [0,1], 
the T-cut, �U�	
ℎ=	9
��&V	T-cut , �UW) is the crisp set that 

contains all elements of the universal set X whose 

membership grades in �$  are greater then or equal to (only 

greater than ) the specified value of T	[3,7]. 
�U = {� ∈ � ∶ ����� ≥ T}, ∀� ∈ � 

�UW = {� ∈ � ∶ ����� > T}, ∀� ∈ � 

The following properties are satisfied for all T ∈ [0,1] 

i �� ∪ C�U =	�U ∪ CU 

ii �� ∩ C�U =	�U ∩ CU 

iii �$ ⊆ C�	V%[=9	�$U ⊆ C�U 

iv �$ = C�	%��	�U = CU	, ∀T ∈ [0,1] 
v T ≤ T\	 ∈ [0,1], R�	T ≤ T\		
ℎ=&	�U ⊇ �U^	 
Remarks 2 [11]: 

1- The set of all level T ∈ [0,1], that represent distinct T – 

cuts of a given fuzzy set 

�$	%9	_788=�	7	8=[=8	9=
	��	�$ 
���$� = {T|���(�) = T, ���	9�`=	� ∈ �} 

2- The support of �$ is  exactly the same as the strong T − _�
 of �$ for T = 0	, �aW = 5��$�. 
3- The core of �$ is exactly the same as the T − _�
	of �$ 

for T = 1	, (%. =	�) = _��=	��$�). 

4- The height of �$ may also be viewed as the supremum 

of T − _�
	for which �U ≠ < 

5- The membership function of a fuzzy set �$  can be 

expressed in terms of the characteristic function of it is T − _�
s according to the formula: 

���(�) = 9�:U∈]a,)]P%&	{T, ��c(�)} dℎ=�=  

��c(�) = e 1	%�	� ∈ �U0	, �
ℎ=�f%9=g 
Definition 1 : 

A fuzzy set �$  on R is convex if and only if 

[5,11] : ���(��) + (1 − �)�+) ≥P%&{���(�)), ���(�+)} (2), 	���	788	�), �+ ∈ h	, 7&�	788	� ∈[0,1] 
Remarks 3 [12]: 

i Assume that �$  is convex for all T	7&�	8=
	T =���(�)), ���(�+)  then if �), �+ ∈ �U  and moreover ��) + (1 − �)�+ ∈ 	�U  for any � ∈ [0,1]  by the 

convexity of �$ . Consequently ���(��) + (1 − �)�+) ≥T = ���(�)) = 	P%&{���(�)), ���(�+)}. 
ii Assume that �$ satisfies equation (2), we need to prove 

that 

For any α∈[0,1],A_α  is convex .Now for any x_1,x_2

∈A_α and for any � ∈ [0,1] by equation (2) ���(��) + (1 − �)�+) ≥ P%&{���(�)), ���(�+)}≥ P%&{T, T} = T 

i.e ��) + (1 − �)�+ ∈	�U	, 
ℎ=�=���=	�U	%9	_�&[=�	���	7&?	T ∈ [0,1], �$  is 

convex. 

5. Fuzzy Integration of a Crisp (Real-

Valued) Function over a Fuzzy 

Interval [Dubois, 1982a] 

We shall consider a case for which Dubois and Prade 

[8,20,21] have proposed a fuzzy domain D of the real line R 

assumed to be delimited by two bounds �$	7&�	C�  in the 

following sense 

 

Fig. 1. crisp valued function over a fuzzy interval. 

1- �$	7&�	C�  are fuzzy sets on R, whose membership 

function are ��� and �D�  repectively , from R to [0,1]. 

2- ∀	� ∈ h	, ���(�)(	�=9:=_
%[=8?	�D�(�))  evaluates to 

what extent x can be considered as a greatest lower 
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bound ( respectively least upper bound ) of D 

3- �$	7&�	C�  are normalized fuzzy sets. 

4- �$	7&�	C�  are convex fuzzy set i	%9	�=&�=�	��$, C��, �$	7&�	C�  are assumed ordered in the 

sense that 

7a = R&�	5��$� ≤ 5�:5�C�� = La 

fℎ=�=	5�. � stands for support 

Definition 2 :Let ����  be a real- valued mapping, and 

integerable on the interval 1 = jR&�	5��$�, 5�:	5�C��k, 
ℎ=&	
ℎ=	%&
=V�78	��	 f(u) over 

the domain delimited is defined according to the extension 

principle by: 

�l�4�,m���n� = 5�:4,m∈l:o1∫ p�q�rqst min	{������, �D��?�}    (1) 

To develop an applicable numerical algorithm for 

computing fuzzy integration , it is very important to discuss 

the following useful remarks and propositions. 

Remarks 5: 

1- If one of he bounds is not fuzzy , we consider the 

integral of ����  over [7, C��	79	R�7, C��  and it’s 

membership function can be defined as [Dubois , 1980] 

�l��,D���>� = 5�:m:o1∫ p�q�rqsx �D�?�						           (2) 

= 5�:m:y�m�zy����D�?� 

where F is an anti-derivative of f 

2- If both bounds are fuzzy, then (2.1) can be rewritten as: 

�l���,D���>� = 5�:o1y�m�zy�4� min{������, �D��?�} 
= 5�:4∈{ min{������, 5�:m:o1y�m�zy�4��D��?�}            (3) 

= 5�:4∈{min	{������, �l��,D���n�} 
The following are some of the useful properties: 

Proposition 1.[10,] 

Let |���  be an anti-derivative function of f(x), i.e, |��� = ∫ ������	,4F  for some _ ∈ R  ( the interval of 

integration) denoted |��$�  is the image of the fuzzy set �$	
ℎ���Vℎ	|, defined by the extension principle ∀	> ∈ h, 
�y���} �n� = 5�:4:o1y�4�����4�. 

Moreover , ⊖  denotes extended principle the following 

proposition holds: 

∫ �D��� = |�C�� ⊖ ���$�                           (4) 

Proposition 2. [10,4] 

Let �	7&�	V be two real mapping integerable on interval I, 

(�: R → h, V: R → h� then : 

∫ �� + V�D��� ⊆ ∫ �D��� ⊕ ∫ VD���                         (5) 

where ⊆ denotes the usual fuzzy set inclusion , ⊕ denotes 

the extended addition 

proposition 3.[10,6] 

If �	7&�	V are both either positive or negative integerable 

real mapping ��: R → hW, V: R → hW���	��: R → hz	, V: R → hz�,  then 

the equality holds , i.e 

∫ �� + V�D��� = ∫ �D��� ⊕ ∫ VD���                       (6) 

Proposition 4.[10,15] 

Let i�� 	7&�	i��  be domains of R delimited by fuzzy bounds ��$, �$�  and ��$, C��  respectively , then for any integerable 

mapping 

∫�� ⊆ ∫�� �⨁∫�� �                            (7) 

where i is delimited by ��$, C��, the equality holds if and only 

if �$ is real number 

Proof: 

	 �� = |�C�� ⊝ |��$� 

	 ��� ⨁	 ��� = �|�C�� ⊝ |��$�� ⊕ �|��$� ⊝ |��$�� 

Not that |��$�� ⊖ �|��$� = 0  if and only if �$  is real 

number , otherwise 

��>�= 5�:o1qz�W�z�min	{�y�D�} ���, �y��}��[�, �y�F̃��f�, �y�����
�}} 
≥ 5�:	o1qz� min ��y�D�} ���, �y�����
�� = ��>� 

Since we add the constraint [ = f, and we can drop |��$� 

which is normalized 

Remarks 5.[10,16] 

1- R�7, C�� = |�C�� ⊝ |�7�  is the value of the extended |��� − |�7�	, fℎ=&	� = C�  

Proof : 

Let �  be the membership function of R�7, C��7&�	[	L=	
ℎ=	`=`L=�9ℎ%:	��&_
%�& 

|�C�� ⊖ |�7� 

��>�= 5�:q,�:o1qz�min	{5�:�:q1y������7�, 5�:m:�1y�m��D��?�} 
= 5�:q,�:o1qz�min	{���7�, 5�:m:�1y�m��D��?�} 

= 5�:�,m:y�m�zy���1omin	{���7�, �D��?�} 
where 

|�?� − |�7� = 	 ������m
�  

2- R��$, C�� is the fuzzy value of the extended fuzzifying 

function : 

? = |�C� ⊖ |���, ���	� = �$ 
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6. Numerical Fuzzy Integration of a 

Crisp Function over a Fuzzy Interval 

We shall develop a computational algorithm for computing 

a numerical fuzzy integration of crisp function over a fuzzy 

interval. The basic principle of this technique for continuous 

fuzzy number . The continuous fuzzy number is discretized 

and then converted into discrete fuzzy number so that the 

numerical fuzzy integration over the discrete case can be 

easily implemented . 

Mathematically, we can represent the fuzzy integration: 

R��$, C�� = {	 ������|�$7&�	C� 	7�=	��>>?	&�`L=�9	7&�	�(�)%9	%&
=V�7L8=	D�
��  

valued real function from R to R} 

For discrete fuzzy numbers, we develop the following 

6.1. Fuzzy Integration for Discrete Fuzzy Numbers � general procedure for computing the fuzzy integration 

for discrete fuzzy numbers �	I7&�	C� 	ℎ7[=	L==&	�=[=8�:=�	7&�	79	��88�f9: 

Let the universe set be �,fℎ=&	�$	7&�	C�  are discrete fuzzy 

numbers, 

Then 

�$ = /���(�0)/�0
.

01) 	 , �0 ∈ � 

and 

C� = /�D�(?0)/?0
�

01) 	 , ?0 ∈ � 

Since �$	7&�	C�  are non empty fuzzy sets, then there are &)	7&�	&+ positive integer numbers, such that the support of 

the fuzzy sets �$	7&�	C�  can be given by : 5��$� = {�), �+, …… . , �.)}7&�	5�C�� = {�), �+, … … . , �.+} 
Let 5) = 5��$�	7&�	5+ = 5(C�) 

Then define : 5) × 5+ = ���, ?����0 ∈ 5), ?� ∈ 5+�	, % = 1,2, … . . &), �= 1,2, … . . , &+ 

Then let R��×�� = ∫��×���(�)�� = ∫ �(�)��m�4�                  (8) 

It should be noted that (8) is fuzzy set according to (2) 

where its membership function can be defined as: �l��×�� = 5�:4,m∈��×�� min����(�0), �D�(?�)� , %= 1,2, … . . , &)	, � = 1,2, … . . , &+ 

Let us define 

R0,� = 	 �(�)��m�
4�  

If R0�,�� = R0�,�� , %) ≠ %+, �) ≠ �+.	Then the supermum of this 

membership function of R0�,�� , R0�,��  have been taken. Otherwise, no need for the 

supremum operation. Thus the fuzzy integration is: 

R��$, C�� = {(R��×�� , ��R��×���)|R��×�� = 	 �(�)��}��×��  

Remark 6: 

When R0,� = ∫ �(�)��m�4� = −∫ �(�)��4�m� , fuzzy integrals 

are fuzzy sets with membership function �∫ p(q)rqs�t� (�) = �∫ p(q)rqt�s� (−�) 

6.2. Fuzzy Integration for Continuous Fuzzy Numbers 

For continuous membership function of the fuzzy numbers �$	7&�	C�  one can develop the following. 

When �$	7&�	C�  are continuous fuzzy number then 

�$ = 	 ���(�)\�	, � ∈ �4  

C� = 	 �D�(?)\?	, ? ∈ �4  

Let us define the L.R type to represent the fuzzy numbers �$	7&�	C� , where the membership function are defined as 

follows: 

���(�) = �� �` − �T � , � ≤ `
h  � − `¡ ¢ , � ≥ `g 

�D�(?) =
£¤¥
¤¦�  `́ − ?T́ ¢ , ? ≤ `́
h ¨� − `́¡� © , ? ≥ `́g 

Then �$ = (`, T, ¡)ª{ 

and C� = (`́, T́, ¡� )ª{ 

Discretization of the above continuous fuzzy numbers �$	7&�	C�  can be done in two ways, and as follows: 
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7. Discretization of a Abscissa (« − ¬«­®� 

Let �$�C�� be a continuous fuzzy number and `�`́� be the 

mean value of the fuzzy number �$�C�� with a membership 

value ����`� = 1, ��D��`́� = 1�, T	7&�	¡�T́7&�	¡� �  are left 

and right spreads of ������(�D�����, the membership function 

of the continuous fuzzy number have unsharp boundaries. 

Furthermore , the reference function L (or R) for the fuzzy 

number is decreasing on ]0, +∞[, 
ℎ�9	7
	� → ∞	, 
ℎ=&	������ → 0 

 

Fig. 2. Discretization of a abscissa (� − 7�%9�. 

Step 1 

Since the domain of the membership function which 

depending on LR-type , in general, it’s not bounded, so to 

find the lower limit and the upper limit for the reference 

function L and R respectively to find the boundaries of the 

membership function, then we have 

If � ≤ `�? ≤ `́�,	 the membership function of the fuzzy 

number �$�C�� is define as 

������ = � �` − �T � 7&�	�D�?� = �  `́ − ?T́ ¢ 

Since the membership function 	�	�������D�?��  is 

continuous differentiable and decreasing function, therefore, 

there exists :) ∈ h�M) ∈ h�, such that 

|����:)�| < ±) and |�D��M)�| < ±)∗
 

|��	9�`=	9`788	:�9%
%[=	�=78	&�`L=�	±)7&�	±)∗,³ℎ=&	:)(M)�	 is called the lower bounds 

Similarly, if � ≥ `�? ≥ `́�,		 the membership function of 

the fuzzy number �$�C��	 is define as 

������ = h  � − `¡ ¢7&�	�D�?� = h ¨? − `¡́� © 

Since the membership function 	�	�������D�?��  is 

continuous differentiable and decreasing function, therefore, 

there exists :+ ∈ h�M+ ∈ h�, such that 

|����:+�| < ±+ and |�D��M+�| < ±+∗
 

|��	9�`=	9`788	:�9%
%[=	�=78	&�`L=�	±+7&�	±+∗, ³ℎ=&	:)
(M)�	is called the upper bounds 

Step 2: 

A partition for the continuous fuzzy number �$ centered at 

the mean v , m can be implemented and as follows: Δ: = |�zµ�|¶�  (step length for left interval, where � ≤ `� 

Δ:∗ = |µ�z�|¶�  (step length for left interval, where � ≥ `� 

Where :)= lower limit of the membership function of �$ of step 1 :+=upper limit of the membership function of �$ of step 1 `=mean value of the fuzzy number �$ ·), ·+= large positive number 

Similarly a partition for the continuous fuzzy number C�  

centered at the mean `́ divided into two partitions: ΔM = |�́z¸�|¹�  (step length for left interval, where � ≤ `́� 

Δ:∗ = |¸�z�́|¹�  (step length for left interval, where � ≥ `́� 

Where M)= lower limit of the membership function of C�  . M+=upper limit of the membership function of C�  . `́=mean value of the fuzzy number C�  P), P+= large positive number 

Step 3: 

Let �a = `	�	`=7&	[78�=	��	
ℎ=	��>>?	&�`L=�	�$�, 
then . For the left side discretized of membership function of 

the fuzzy number �$, we have : 

�0 = �a − %∆:, % = 0,1,2, … . , ·) 

with a membership function 

�����0� = ���a − �0T � 

For the right side discretized of membership function of 

the fuzzy number �$, we have : 

�� = �a + �∆:∗, � = 1,2, … . , ·+ 

with a membership function 

�����0� = h��� − �a¡ � 
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Thus the approximate discrete fuzzy number for 

continuous fuzzy number �$ can be rewritten as : 

�$∗ = {��¶� , ���¶���, … . . , ��0 , ���0��, … . , ��a, 1�, 
��), ���)��, … . ��� , ������, … . , ��¶� , ���¶���} 

Similarly , let ?a = `́  (mean value of the membership 

function of C� ), then . For the left side of membership 

function of the fuzzy number C� , we have : 

?0 = ?a − %∆M, % = 0,1,2, … . ,P) 

with a membership function 

�D��?0� = ��?a − ?0T́ � 

For the right side descritized of membership function of 

the fuzzy number C� , we have : 

?� = ?a + �∆M∗, � = 1,2, … . ,P+ 

with a membership function 

�D��?0� = h�m�zm»¼� ) 

the approximate discrete fuzzy number for continuous fuzzy 

number C�  can be rewritten as: 

C� ∗ = {�?¹ , ��?¹���, … . . , �?� , ��?���, … ., 
�?a, 1�, �?) , ��?)��, … . �?0 , ��?0��,… . , ��m , ��?¹���} 

step 4: 

Take the support for the fuzzy number �$∗	7&�	C� ∗ , then we 

have 

5��$∗� = {�a, �), … . , �¶�W¶�} 
5�C� ∗� = {?a , ?), … . , ?¹!W¹�} 

�=
	5) = 5��$∗�	, 5+ = 5�C� ∗�. i=�%&= ∶ 
5) × 5+ = {��0 , ?��|�0 ∈ 5)	, ?� ∈ 5+, % = 0,1, … . ·) + ·+, �= 0,1,2, … ,P) + P+} 
Step5: 

For each (�, ?) ∈ 5) × 5+ ,calculate the integration 

R¾�×¾� = 	 �(�)��¾�×¾�  

as has been discussed �l¾�×¾� = 5�:(4,m)∈¾�×¾�min	{���∗ , �D�∗} 
Step 6: 

Check if R0�,�� = R0�,�� , %) ≠ %+, �) ≠ �+, then the supremum 

of this membership function of R0�,�� , R0�,��  have been take 

Step 7: 

Then the total fuzzy integration is : 

R��$, C�� = {(R0,� , �(R0,�)|% = 0,1, … . , ¿), � = 0,1, … . , ¿+} 
for some positive integers ¿)	7&�	¿+. 

Algorithm 1. Discritization of continuous integral on (x-

Axis) 

The following algorithm describes the necessary steps for 

evaluating the fuzzy interval if integral 

1- For the fuzzy number �$ of equation (1) , compute À) 

(lower limit of the left hand side of the membership 

function � ��z4U � , 7&�	À+(�::=�	8%`%
	��	
ℎ=	�%Vℎ
	ℎ7&�	 of 

the membership function h �4z�¼ �,	 using numerical 

technique to fined . 

2- Let 

Δ: = |4»zµ�|¶�  ,and Δ:∗ = |µ�z4»|¶�  

Where �a = `	(`=7&	[78�=), 7&�	·)	7&�	·+  are 

sufficient large positive integer number 

3- Compute �z0 = �a − %∆À	, % = 0,1,2, … . , ·) 

4- and ���(�0) = �(4»z4�U ) 

5- Compute �0 = �a + (% − ·))∆:∗, % = ·) + 1,·) +2,… . , ·) + ·+ 

and 

���(�0) = h(�0 − �a¡ ) 

6- In order to step 3 and 4 in a vector, one can set the 

following �� = f.�Á� 	, � = −·)	, −(·+ − 1), … ,0,1. , , , , ·+ 

	����f�� = �(4»z��U ) , j=0,1,2, … . , ·) 

����f�� = h  f� − �a¡ ¢ , � = ·) + 1,·) + 2,… . , ·) + ·+ 

we obtain �$ = {�f� , ��f���� = 0,1, … . , ·) + ·+} 
7- Repeat steps 1- 5 for the fuzzy number C�  in equation 

(2.1) , to obtain ?� = fÂ��Á�	 , � = −P), −(P) − 1), … . ,0,1, … … ,P+ 

	����fÂ�� = �(m»z�Â�U ) , j=0,1,2, … . ,P) 

����fÂ�� = h  fÃÄÄÄ − ?a¡ ¢ , � = P) + 1,P) + 2,… . ,P) + P+ 

We obtain C� = {�fÃÄÄÄ, ��fÃÄÄÄ��� = 0,1, … . ,P) + P+} 
8- Let the support of fuzzy number �$	7&�	C�  are : 5) = 5��$� = {fa, f), … . , f¶�W¶�} 
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5+ = 5�C�� = {fÂa, f)ÄÄÄÄ, … . , fÂ¹W¹�} 
9- Compute 

R0,� = ∫ �������Â0�0 	 , ∀	f0 ∈ 5)��$�	7&�	fÂ� ∈ 5+�C��  

and 

��R0,�� = min	{�����f0�, �D��fÃÄÄÄ�} 
10- Sort the value of R0,� calculated in step 9 ascending 

with respect to each R0,�  has its membership function ��R0,�� 

11- If if R0�,�� = R0�,�� , %) ≠ %+, �) ≠ �+  then ��R0,�� =5�:	{���R0),�)�, ��R0+,�+�} 
12- Generate R��$, C�� = {�R0,� , ��R0,��|% = 0,1,2, … . , 
)	, � =0,1, … . . , 
+ 

for positive integers 
)	7&�	
+ which are depending on the 

problem. 

Using the computational above to evaluate the numerical 

fuzzy integration. 

8. Solution of Fuzzy Nonlinear Integral 

Equations 

Our treatment of Crisp nonlinear volterra ntegral equation 

centerel mainly on illustrations of the known methods of 

finding exact , or numerical solution. In this paper we present 

new techniques for solving crisp nonlinear volterra integral 

equations over the fuzzy interval . 

Trapezoidal quadrature method 

This approach solves a crisp nonlinear volterra integral 

equation of the second kind over fuzzy interval and it starts 

by substituting a zeroth approximation �a(�) in the integral 

equation we obtain a first approximation �)(�), and we will 

calculate the evaluate for the �)(�). 

�(�) = �(�) + ∫ 
(�, 
, �(
)�
	D���  =	�(�) = �(�) + RD���     (9) 

RD��� = 	 
(�, 
, �(
)�
	D�
��  

now we approximate the right hand integral with the repeated 

trapezoidal technique, then we get. 

�(�) = �(�) + Å+ 
(�, 
a)|(�a) + ℎ ∑ 
��, 
��|(��) + Å+ 
(�, 
.)|(�.).z)�1)   

+ Å�)+ [Ç(�, 
a)|(�a) + 
(�, 
a)�\a|\(�a) − Ç(�, 
.)�. − 
(�, 
.)�\.|\(�.)]                              (10) 

where Ç(�, 
) = ÈÉ(4,�)È�  

Hence, for � = �a, �), �+, …… , �.in (9) we have : 

This is a nonlinear system of equation and by solving it, we obtain the unknowns �0		���	% = 0,1, … . , &.  Then, with 

trapezoidal rule we can approximate the solution . by substituting � = �0  in equation (10) we have 

�(�0) = �(�0) + Å+ 
��0 , 
a, �(
a)� + ℎ ∑ 
(�0 , 
�, �(
�)).z)�1) + Å+ 
(�0 , 
., �(
.))  

+ Å�)+ jÇ��0 , 
a, �(
a)� + 
��0 , 
a, �(
a)��\(
a� − Ç(�0 , 
., �(
.) − 
��0 , 
., �\(
.)��\(�.)]            (11) 

for i=0,1,…..,n. This is a system of (n+1) equation and (n+3) unknowns. By taking derivative from the equation (9), and setting Ê(�, 
) = ÈÉ(4,�)È4 , we obtain: 

�\(�) = �\(�) + ∫ Ê��, 
, �(
)��
����                                                                              (12) 

Note that if u is a solution of equation (9), then it is also a solution of (12). By using repeated trapezoidal quadrature for (12), 

and placing � = �0 we get: 

�\(�0) = �\(�0) + Å+ Ê��0 , 
a, �(
a)� + ℎ ∑ Ê(�0 , 
� , �(
�)).z)�1) + Å+ Ê(�0 , 
., �(
.))                           (13) 

for i=0,1,…,n-1. Note that in the cases i=0,n-1, from system (13), we obtain two equations. These equations with system (11), 

make the nonlinear system of equation. Before we clarify further, we defined the following notation for simplicity: �0 = �(�0)	, �\0 = �\0(�0), �0 = �(�0), �\0 = �\(�0), 
0� = (�0 , 
�) 

	Ê0� = Ê��0 , 
��, Ç0� = Ç(�0 , 
�) 

And 	�a = �a	 
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	�0 = �0 + / ¨ℎ2
0a + ℎ)+12 Ç0a©�+a.z)
01a + ℎ[/ / 
0��+�].z)

�1)
.z)
01a  

+	∑ �Å+ 
0.z) − Å�
)+ Ç0.z)� �& − 1��+.z).z)01a + Å�

)+ ∑ �
0a�\a��+a�\ − 
0.z)�\.z)��+.z)�\.z)01a ) 

�\a = �\a + ℎ2 Êaa��a�+ + ℎ / Êa��+� + ℎ2 Êa.z)�+.z).z)
�1)  

�\.z) = �\.z) + Å+ Ê.z)a��a�+ + ℎ ∑ Ê.z)��+� + Å+ Ê.z).z)�+.z).z)�1)                                              (14) 

i=1,…..,n-1 

By solving this system with (n+3) nonlinear equations and 

(n+3) unknowns, the approximate solution. Now we will 

determine the equation �1� by using LR-type representation 

for fuzzy interval . 
��, 
�	7&�	����	7�=	_�&
%&���9	��&_
%�&9	���	0 ≤ � ≤7	7&�	0 ≤ 
 ≤ � , the we will determine the value of fuzzy 

interval. 

Example 1 

Consider the following crisp nonlinear integral equation 

over the fuzzy interval ��$, C�� be defined as 

���� = � + ∫ �� − 
���
�+�
4�aI                (15) 

the exact solution of Eq(15) u(x)=x, 

Suppose the �� = 1�  

By using the trapezoidal quadrature method 

�a��� = � 

���� = � + ∫ �� − 
��a�
�+�
4�aI           (16) 

Now we will solve the Eq (16) by using LR-type 

representation for fuzzy interval . �$= Zero fuzzy number 0�  C�  =x fuzzy number �� 

now we suppose the upper limit of integral is equal 1�  (that 

mean �� = 1�) , we will use the algorithm 1 and calculate the 

value of the Discretization of continuous integral on x-axis 

step 1. Let �$  be continuous fuzzy number of the LR-type 

function and as follows, where 

���� = 	�a���+ = ���� = �+, 
h��� = � 

Given the spread number T = 2	, ¡ = 3 and a=b=0(mean 

value of the zero fuzzy number ). Then the membership 

function of he continuous zero fuzzy number can be 

represented as follows. 

�aI��� = Ë��az4+ �+, � ∈ [−2,0])	41+{�tÌ»Í �	4∈[a,Î]
g  

now we calculate , C�  be a continuous fuzzy number of the 

LR-type function as follows: 

��?� = 	?+ 

h�?� = ? 

Given the spread number T\ = 2	7&�	¡\ = 3  and 

a=b=1(mean value of the one fuzzy number ) 

�)I�?� = Ë��)zm+ �+, ? ∈ [−1,1])	m1){�sÌ�Í �	m∈[),Ï]
g  

Thus, the membership functions of the continuous zero 

fuzzy number �aI��� is bounded, where 

:) − 2, :+ = 3 

M) = −1, M+ = 4 

step 2. A partition for the continuous zero fuzzy number can 

be as follows let �a = 0(mean value of zero fuzzy number ). 

For the left hand side, where �a ≥ �, 8=
	·) = 4, 
ℎ=& 

∆: = |4»zµ�|¶� = 0.5 

Also, for the right hand side, where �a ≤ �, 8=
	·+ = 6 

∆:∗ = |µ�z4»|¶� = 0.5 

so, for the left side 

�0 = �a − %∆:	, % = 0,1,2,3,4 

with the membership function 

���0� = � ��a − �02 � = ��02 �+ 

where �a = 0	, T = 2	7&�	� = �+ . The following results of 

table 1 are obtained: 

Table 1. the value of the right hand side for the fuzzy lower bounded. 

i «­ Ò�«­� 
0 0 0 

1 -0.5 0.0625 

2 -1 0.25 

3 -1.5 0.5625 

4 -2 1 

The right hand side 

�0 = �a + %∆:∗	, % = 1,2,3,4,5,6 

with the membership function 

���0� = h �4�z4»Î � = �4�Î �  
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where �a = 0	, ¡ = 2	7&�	h = � . The following results of 

table 2 are obtained: 

Table 2. the value of the left hand side for the fuzzy lower bounded. 

i «­ Ò�«­� 

1 0.5 0.167 

2 1 0.333 

3 1.5 0.5 

4 2 0.667 

5 2.5 0.833 

6 3 1 

Then, the approximate discrete fuzzy number for �$ is 

�$∗ = {��0,	���0��|i=0,1,….,10} 

={(-2,1),(-1.5,0.5625),(-1,0.25),(-0.5,0.0625),(0,0), 

(0.5,0.167),(1,0.333),(1.5,0.5),(2,0.667),(2.5,0.833),(3,1)} 

The graph of continuous fuzzy number �$�0�� and it’s 

discretization �$∗ are shown in the following Fig 3. 

 

Fig. 3. Discretization of a continuous fuzzy number �$ 
Similarly, a partition for the continuous one fuzzy number 

can be as follows ?a = 1 (mean value of one fuzzy number ). 

For the left hand side, where 

where ?a ≥ ?, 8=
	P) = 4, 
ℎ=& 

∆M = |m»z¸�|¹� = 0.5 

Also, for the right hand side, where ?a ≤ ?, 8=
	P+ = 9 

∆M∗ = |µ�zm»|¹� = 0.3 

so, for the left side 

?0 = ?a − %∆M	, % = 0,1,2,3,4 

with the membership function 

��?0� = � �?a − ?02 � = �?02�+ 

where ?a = 1	, T = 2	7&�	� = ?+ . The following results of 

table 3 are obtained: 

Table 3. the value of the right hand side for the fuzzy upper bounded. 

i Õ­ Ò�Õ­� 
0 1 0 

1 0.5 0.0625 

2 0 0.25 

3 -0.5 0.5625 

4 -1 1 

The right hand side 

?0 = ?a + %∆M∗	, % = 1,2,3,4,5,6 

with the membership function 

��?0� = h �?0 − ?a3 � = �?03� 

where ?a = 1	, ¡ = 3	7&�	h = ? . The following results of 

table 4 are obtained: 

Table 4. the value of the left hand side for the fuzzy upper bounded. 

i Õ­ Ò�Õ­� 
1 1.3 0.1 

2 1.6 0.2 

3 1.9 0.3 

4 2.2 0.4 

5 2.5 0.5 

6 2.8 0.6 

C� ∗ = {�?0 , �D��?0�|% = 0,1, … . . ,10} 
={(-1,1),(-0.5,0.5625),(0,0.25),(1,0),(1.3,0.1),(1.6,0.2), 

(1.9,0.3),(2.2,0.4),(2.5,0.5),(2.8,0.6)} 

The graph of continuous fuzzy number C��1��  and it’s 

discretization C� ∗ are shown in the following Fig 4. 

 

Fig. 4. Discretization of a continuous fuzzy number C� . 
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Step 2. Define approximately 

�$ × C� ≅ ���0 , ?����0 ∈ �$∗, ?� ∈ C� ∗	, % = 0,1, … . .10	, � = 0,1, … . ,10} 
And then evaluate the integration on �$ × C� , where . 

R0� = 	 ��0 − ?���É�?��+�?m�
4�

 

��R0�� = P%&{������0�, �D��?��} 
And now we complete the trapezoidal quadrature method 

	�a = �a	 
	�0 = �0 + / ¨ℎ2
0a + ℎ)+12 Ç0a©�+a.z)

01a + ℎ[/ / 
0��+�].z)
�1)

.z)
01a  

+	∑ �Å+ 
0.z) − Å�
)+ Ç0.z)� �& − 1��+.z).z)01a + Å�

)+ ∑ �
0a�\a��+a�\ − 
0.z)�\.z)��+.z)�\.z)01a ) 

�\a = �\a + ℎ2 Êaa��a�+ + ℎ / Êa��+� + ℎ2 Êa.z)�+.z).z)
�1)  

�\.z) = �\.z) + ℎ2 Ê.z)a��a�+ + ℎ / Ê.z)��+� + ℎ2 Ê.z).z)�+.z).z)
�1)  

n=11 and I =o,1,…,n-1 we have 121 values of the the equation with the Minimum membership function and finally we find the �0��� we have 121 values of the equation with membership function . 

j�$, C�k ={[-2,1],[-2,0.5],[-2,0],[-2,-0.5],[[-2,-1],[-2,1.3],[-2,1.6],[-2,1.9],[-2,2.2],[-2,2.5], [-2,3.8], [-1.5,1],[-1.5,0.5],[-1.5,0],[-

1.5,-0.5],[-1.5,-1], [-1.5,1.3],[-2,1.6],[-1.5,1.9],[-1.5,2.2],[-1.5,2.5],[-1.5,3.8], [-1,1],[-1,0.5], [-1,0],[-1,-0.5],[[-1,-1], [-1,1.3],[-

1,1.6],[-1,1.9],[-1,2.2],[-1.5],[-1,3.8],[-0.5,1],[-0.5,0.5],[-0.5,0],[-0.5,-0.5],[[-0.5,-1], [-0.5,1.3],[-0.5,1.6], [-1.5,1.9],[-0.5,2.2],[-

0.5,2.5],[-0.5,3.8], [0,1],[0,0.5],[0,0],[0,-0.5],[0,1],[0,1.3],[0,1.6],[0,1.9],[0,2.2],[0,2.5],[0,3.8],[0.5,1],[0.5,0.5],[0.5,0],[ 0.5,- 

0.5],[0.5,-1],[0.5,1.3],[0,1.6], [0.5,1.9],[0.5,2.2],[0.5,2.5],[0.5,3.8], [1,1],[1,0.5],[ 1,0],[1,-0.5] ,[1,- 

1],[1,1.3],[1,1.6],[1,1.9],[1,2.2],[1,2.5],[1,3.8], [1.5,1],[1.5,0.5],[1.5,0],[1.5,-0.5],[1.5,-1], [1.5,1.3],[1.5,1.6], 

[1.5,1.9],[1.5,2.2],[1.5,2.5],[1.5,3.8],[2,1],[2,0.5],[2,0],[2,-0.5], [2,-1],[2,1.3],[2,1.6], [2,1.9],[2,2.2],[2,2.5],[2,3.8], 

[2.5,1],[2.5,0.5],[2.5,0], [2.5,-0.5],[2.5,-1], [2.5,1.3],[2.5,1.6], [2.5,1.9],[2.5,2.2],[2.5,2.5],[2.5,3.8], [3,1],[3,0.5],[3,0],[3,-

0.5],[[3,-1], [3,1.3],[3,1.6], [3,1.9],[3,2.2],[3,2.5],[3,3.8] }=[−1�, 4�] 
And the value of membership function of interval of crisp integration is for all the interval above as follows: 

�[�I, C×] = Min{0,0,0,0,0,0,0,0,0,0,0,0,0.0625,0625,0625,0625,0625,0625,0625,0625, 

0625,0625,0,0625,0,0.25,0.25,0.25,0.167,0.25,0.25,0.25,0.25,0.25,0.250,0.625,0,25,0.5625,0.5625,0.167,0.333,0.5,0.5625,0.56

25,0.5625,0,0,0.625,0.29,0.5625,1,0.167,0.333,0.5,0.667,0831,1,0,0.0625,0.1,0.1,0.1,0.0.1,0.1,0.1,0.1,0.1,0.1,0,0.0625,0.2,0.2,

0.2,0.2,0.2,0.2,0.2,0.2,0.2,0,0.0625,0.25,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0,0.0625,0.25,0.4,0.4,0.167,0.333,0.4,0.4,0.4,0.4,0,0.062

5,0.25,0.5,0.5,0.267,0.333,0.5,0.5,0.5,0.5,0,0.0625,0.250.5265,0.6,0.167,0.333,0.5,0.6,0.6,0.6} 

step 3. Check if R0),�) = R)+,�+, %1 ≠ �2	, %2 ≠ �2, then 

��R0,�� = 5�:{��R0),�)�, ��R)+,�+�} 
we have the number of crisp nonlinear function over fuzzy integration are 121 values with membership function . 

step 4. Finally, we have the total crisp nonlinear function over fuzzy integration 

R��$, C�� = R�0�, 1�� = e�R0� , ��R0,���¢ |% = 0,1, … . , & − 1 ∈ ·	; � = 0,1, … . , Ç ∈ & − 1} 
Now we will take only one interval to find the value of 

crisp integral �0 over the fuzzy interval, and we will using the 

system of nonlinear integral equation by using trapezoidal 

technique and comparing with the exact solution and 

calculate the absolute error. Table 1 

We will take the first interval [-2,1], let partition for this 

interval 
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Let & = 5	, ℎ = 	 �z�. = )z�z+�Ù = 0.6	we will added 0.6 for 

all step between [-2,1 ] 

Table 5. Compares between the exact solution and quadrature method with 

absolute error. 

x Exact=u(x)=x 
Trapezoidal 

technique 
Absolute error 

-2 -2 -1.942536 0.074641 

-1.4 -1.4 -1.357654 0.042346 

-0.8 -0.8 -0.763452 0.036548 

-0.2 -0.2 -0.183245 0.016755 

0.2 0.2 0.197621 0.002379 

0.6 0.6 0.558754 0.041746 

1 1 0.998001 0.001499 

The table 5 discuses between the numerical method and 

exact solution is successes to find the value of the crisp 

nonlinear integral equation over fuzzy interval with a small 

absolute error . Similarly we can find the all interval above 

when n=5 that mean we will have 605 results for all interval 

and if n=10 that mean we will have 1210 value . 

9. Conclusion 

In this paper, a numerical method based on quadrature 

methods has been proposed to approximate the solution of 

crisp nonlinear integral equation of a second kind over fuzzy 

interval. In this method, the problem of solving crisp 

nonlinear integral equation over fuzzy interval reduced to a 

problem of solving a system of algebraic equation. The 

recommendation for future work we will defined the value of 

crisp nonlinear integration equation over fuzzy interval over 

µ-axis, Illustrative examples are prepared to show the 

efficiency and simplicity of the method. 
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