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Abstract: Micropolar fluid behavior on MHD free convection and mass transfer with constant heat and mass fluxes is 

studied numerically. Finite difference technique is used as the main tool for the numerical approach. Micropolar fluid behavior 

on MHD steady free convection and mass transfer with constant heat and mass fluxes have been considered and its similarities 

solution have been obtained. Similarity equations of the corresponding momentum, angular momentum, temperature and 

concentration equations are derived by employing the usual similarity technique. The dimensionless similarity equations for 

momentum, angular momentum, temperature and concentration equations solved numerically by explicit finite difference 

technique. With the help of graphs the effects of the various important parameters entering into each of the problems on the 

velocity, microrotation, temperature and concentration profiles within the boundary layer are separately discussed. 
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1. Introduction 

The concept of micropolar fluid deals with a class of fluids 

that exhibit microscopic effects arising from the local 

structure and micro motions of the fluid elements. These 

fluids contain dilute suspension of rigid macromolecules with 

individual motions that support stress & body moments and 

are influenced by spin inertia. Micropolar fluids are those, 

which contain micro-constituents that can undergo rotation, 

the presence of which can affect the hydrodynamics of the 

flow so that it can be distinctly non-Newtonian. It has many 

practical applications, for example analyzing the behavior of 

exotic lubricants, the flow of colloidal suspensions or 

polymeric fluids, liquid crystals, additive suspensions, human 

& animal blood, turbulent shear flow & so forth. The theory 

of micropolar fluids was proposed by Eringen in 1966. In this 

theory, the local effects arising from the microstructure and 

the intrinsic motion of the fluid elements are taken into 

account. Physically, the micropolar fluid can consist of a 

suspension of small, rigid cylindrical elements such as large 

dumbbell-shaped molecules. The theory of micropolar fluids 

is generating a very much-increased interest & many 

classical flows are being re-examined to determine the effects 

of the fluid microstructure [6].  

Peddision & McNitt (1970) applied the micropolar 

boundary layer theory to the problems of steady stagnation 

point flow, steady flow over a semi-infinite flat plate [10]. 

Gorla (1992) investigated the steady boundary layer flow of a 

micropolar fluid at a two dimensional stagnation point on a 

moving wall and claimed that the micropolar fluid model is 

capable of predicting results which exhibit turbulent flow 

characteristics, although it is difficult to see how a steady 

laminar boundary layer flow could 'appear' to be turbulent 

[7]. Takhar & Soundalgekar(1985) have studied the effects of 

suction & injection on the flow of a micropolar fluid past a 

continuously moving semi-infinite porous plate [14]. 

Mohammadein & Gorla (1996) analyzed the effects of 

magnetic field on the laminar boundary layer mixed 

convection flow of a micropolar fluid over a horizontal plate 

[9]. However the work by Rees & Bassom (1996) on the 

Blassius boundary layer flow over a flat plate suggests that 

much more information about the solution of boundary layer 

flows of a micropolar fluid can be obtained [12]. Char and 

Chang (1995) studied the laminar free convection heat 

transfer of a micropolar fluid past an arbitrary curved surface 
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using the cubic spline collocation numerical method. They 

showed that the flow field admits similarity solutions when 

the power functions for the stream-wise variations of the wall 

temperature and the body shape configurations are constants, 

and their sum of them is equal to unity [2]. El-hakien et al. 

have studied about Joule heating effects on 

magnetohydrodynamics (MHD) free convection flow of a 

micropolar fluid in 1999 [3]. EI-Amin (2001) has studied 

about MHD free convection and mass transfer flow in 

micropolar fluid with constant suction. He was to find out the 

problem of free convection with mass transfer flow for a 

micropolar fluid bounded by a vertical infinite surface under 

the action of a transverse magnetic field [4]. Rahman & 

Sattar (2006) have studied about MHD convective flow of a 

micropolar fluid past a continuously moving vertical porous 

plate in the presence of heat generation/absorption [11]. In 

this work they have extended the work of El-Arabawy (2003) 

to a MHD flow taking into account the effect of free 

convection & micro rotation inertia term which has been 

neglected by El- Arabawy [5]. In 2012 Micropolar fluid 

behavior on steady MHD free convection and mass transfer 

through a porous medium with constant heat and mass fluxes 

has been studied numerically by Haque et al. [8]. They have 

used Nachtsheim–Swigert iteration technique as the main 

tool for the numerical approach. 

Therefore the aim of this research is to investigate the 

micropolar fluid behavior on MHD free convection and mass 

transfers flow with constant heat and mass fluxes. The 

problem is solved by finite difference method in case of two-

dimensional steady flow and obtained results are shown 

graphically as well as in tabular form.  

2. Mathematical Formulation 

The generalized Continuity equation, Momentum 

equation, Angular Momentum equation, Energy equation and 

Concentration equation in three dimensional are formed on 

the basis of Ohm’s law and Maxwell’s equation with study of 

Magneto Fluid Dynamics (MFD). The steady MHD free 

convection and mass transfer flow of an electrically 

conducting viscous incompressible micropolar fluid through 

an infinite vertical plate 0y =  has been considered. The flow 

is assumed to be in the x -direction which is taken along the 

plate in the upward direction and y -axis is normal to it. The 

microrotation is ( )0,0,= ΓG , where ( )0,0,Γ  be the 

components of microrotation and the component Γ  is the 

angular velocity acting in z-direction (the rotation of Γ  is in 

the xy plane). The temperature and the species concentration 

at the plate are constantly raised from 
w

T and 
w

C to T∞ and C∞  

respectively, which are thereafter maintained constant, where 

T∞ and C∞  are the temperature and species concentration of 

the uniform flow respectively. A uniform magnetic field B  is 

imposed to the plate ( 0y = ) to be acting along axisy  which 

is assumed to be electrically non-conducting. The level of 

concentration of foreign mass is assumed high so that the 

thermal diffusion and mass diffusion are considered. The 

magnetic field is of the form 
0

B (0, , 0)B=  and the magnetic 

lines of force are fixed relative to the fluid. The equation of 

conservation of charge .J 0∇ =  gives yJ = constant, where 

, ,J ( )x y zJ J J=  is the current density, the direction of 

propagation is considered only along axisy  and does not 

have any variation along the axisy −  and the derivative of J 

with respect to y namely 0
yJ

y

∂
=

∂
. Since the plate is 

electrically non-conducting, this constant is zero and hence 

yJ = 0 at the plate and hence zero everywhere.  

 

Fig. 1. Boundary layer development on a heated vertical plate. 

With reference to the above assumptions, continuity 

equation, momentum equations, angular momentum 

equation, energy equation and concentration equation 

become 
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Since the plate occupying the plane 0y =  is of semi-

infinite extent and the micropolar fluid motion is steady, all 

physical quantities will depend only upon x and y. The 

boundary layer flow is driven by the buoyancy forces (Fig.1). 

The constant property conditions of the gravity force act in 

the negative x-direction. Also with one exception, assume the 

micropolar fluid to be incompressible. The exception 

involves accounting for the effect of variable density in the 

buoyancy force (so called Boussinesq’s approximation), 

since it is the variation that induces micropolar fluid motion. 

The x-component momentum equation (2) reduces to the 

boundary layer equation if the only contribution to the body 

force is made by gravity, the body force per unit volume is 

 
x

F gρ= − , where g is the local acceleration due to gravity. 

There is no body force in the y-direction ( 0
P

y

∂ =
∂

 i.e. 

( )P P x=  and 0yF = ). Hence the x-pressure gradient at any 

point in the boundary layer must equal to the pressure 

gradient in the quiescent region outside the boundary layer. 

However, in this region 0u v= = . Therefore the x-

component of the momentum equation become  
P

g
x

ρ∞
∂ = −
∂

, 

where ρ∞  is the density of the surrounding fluid at 

temperature T∞ . For small differences, the density difference 

term ( )ρ ρ∞− is related to the temperature and mass 

differences ( )T T∞−  and ( )C C∞−  respectively through the 

volume expansion coefficient β  and the volumetric 

coefficient 
*β  by the relation 

( ) * ( )T T C C
ρ ρ β β

ρ
∞

∞ ∞
−

= − − − −  

Therefore 

( ) *1
( )x

P
F g T T g C C

x
β β

ρ ∞ ∞
∂− = − + −
∂

             (8) 

Thus mathematically the problem reduces to a two 

dimensional problem. With the help of equation (8), the 

equations (1)-(7) become 

0
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The viscosity of the fluid and the small thickness of the 

boundary layer δ are considered to be small. Let 1ε <<  be 

the order of magnitude of δ , i.e. ( ) 1O δ ε= << . Let the 

order of magnitude of u , x  and Γ  are one, i.e. ( ) 1O u = ,

( ) 1O x = , ( ) 1O Γ = . The order of magnitude of v  and y are 

considered to be ε  i.e., ( )O v ε= , ( )O y ε= .  

Hence 1
u
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v
O

y

 ∂ = ∂ 
, 

2

2
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,
2

2 2

1
O

y ε
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 within the 

boundary layer. Since the boundary layer and the thermal 

boundary layer are same in this case, let δ  be the thermal 

boundary layer thickness and 1ε <<  be the order of 

magnitude of δ , i.e., ( ) 1O δ ε= << . Let the order of 
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magnitude of T and C  are one, i.e., ( ) 1O T = . 

Hence 1
T

O
x
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, 

2

2
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 within the boundary layer. 

The steady two dimensional MHD free convection and 

mass transfer micropolar fluid flow, past a semi-infinite 

vertical porous plate is considered. The x-axis is taken along 

the heated plate in the upward direction and the y-axis normal 

to it. The plate is immersed in a micropolar fluid of 

temperature T. A magnetic field B of uniform strength is 

applied transversely to the direction of the flow. The 

magnetic Reynolds number of the flow is taken to be 

sufficiently small enough, so that the induced magnetic field 

can be neglected in comparison with applied magnetic field 

so that ( )0B 0, ,0B= , where 0B  is the uniform magnetic 

field acting normal to the plate. The flow configuration and 

the co-ordinate system are shown Fig.1. Within the frame 

work of the above noted assumptions, the flow of a steady 

viscous incompressible micropolar fluid flow subjected to the 

Boussinesq approximation can be written in the following 

form:  

Continuity Equation 

0
u v

x y

∂ ∂+ =
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                                (15) 

Momentum equation 
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Angular momentum equation 
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Concentration equation 

2 2

2 2

m T

m

p s

DC C C T
u v D
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κ∂ ∂ ∂ ∂+ = +
∂ ∂ ∂ ∂

                (19) 

The boundary conditions for the problem are: 

at 0, 0, 0, 0, 0, 0t u v T C= = = Γ = = = everywhere  (20) 

0, 0, 0, 0, 0   at x 0

0 0, 0, 0, 1, 1    at y 0

0, 0, 0, 0, 0   at y  

u v T C

t u v T C

u v T C

= = Γ = = = =
> = = Γ = = = =
 = = Γ = = = → ∞

      (21) 

where ,u v  are the velocity components in the ,x y  direction 

respectively, υ  is the kinematic viscosity, g is the 

acceleration due to gravity, ρ  is the density, β  is the 

coefficient of volume expansion, 
*β  is the volumetric 

coefficient of expansion with concentration. T , 
w

T  and T∞  

are the temperature of the fluid inside the thermal boundary 

layer, the plate temperature and the fluid temperature in the 

free stream, respectively, while C, 
w

C , C∞  are the 

corresponding concentrations. Also κ  is the thermal 

conductivity of the medium, Q is the constant heat flux per 

unit area,
m

D  is the coefficient of mass diffusivity, pc  is the 

specific heat at constant pressure, 
m

T  is the mean fluid 

temperature,
s

c  is the concentration susceptibility, σ ′  is the 

electrical conductivity, Γ  is the microrotation component, χ  

is the vortex viscosity, γ  is the spin gradient viscosity,  j is 

the microinertia per unit mass, m is the coefficient of mass 

flux per unit area and s is a constant (when 0s = , we obtain 

0Γ =  which represents no-spin condition i.e., the 

microelements in a concentrated particle flow close to the 

wall are not able to rotate. The case 1/ 2s =  represents 

vanishing of the anti-symmetric part of the stress tensor and 

represents weak concentration. In a fine particle suspension 

of the particle spin is equal to the fluid velocity at the wall. 

The case 1s =  represents turbulent boundary layer flow) and 

other symbols have their usual meaning.  

3. Solution Technique  

Since the solutions of the governing equations (15)-(19) 

under the initial conditions (20) & (21) will be based on the 

finite difference method it is required to make the said 

equations dimensionless. For this purpose we now introduce 

the following dimensionless quantities: 

2

2
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, , , , ,

, ,

o o o

o o

w w

xU yU tUu v
X Y U V

U U

U T T C C
T C
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τ
υ υ υ

υ
∞ ∞

∞ ∞

= = = = =

Γ − −
Γ = = =

− −

 

Using these relations we have the following dimensionless 

equations  

0
U V

X Y
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                             (22) 
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U U U U
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X Y YYτ
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 American Journal of Applied Mathematics 2015; 3(3): 157-168  161 

 

2

2
2

U
U V

X Y YY
λ λ

τ
∂Γ ∂Γ ∂Γ ∂ Γ ∂+ + = Λ − Γ −
∂ ∂ ∂ ∂∂

         (24) 

( )
22 2

2 2

1
1c f

r

T T T T U C
U V E D

X Y P YY Yτ
∂ ∂ ∂ ∂ ∂ ∂ + + = + + ∆ + ∂ ∂ ∂ ∂∂ ∂ 

 (25) 

2 2

02 2

1

c

C C C C T
U V S

X Y S Y Yτ
∂ ∂ ∂ ∂ ∂+ + = +
∂ ∂ ∂ ∂ ∂

          (26) 

With boundary conditions 

0, 0, 0, 0, 0, 0 everywhereU V T Cτ = = = Γ = = =      (27) 
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We attempt to solve the governing second order nonlinear 

coupled dimensionless partial differential equations with the 

associated initial and boundary conditions. For solving a 

transient free convection flow with mass transfer past a semi-

infinite plate, Callahan and Marner(1976) used the explicit 

finite difference method which is conditionally stable [1]. On 

the contrary, the same problem was studied by Soundalgekar 

and Ganesan(1980) by an implicit finite difference method 

which is unconditionally stable [13]. The only difference 

between the two methods is that the implicit method being 

unconditionally stable and is less expansive from the point of 

view of computer time. However, these two methods 

produced the same results. 

From the concept of the above discussion, the explicit 

finite difference method has been used to solve equations 

(22)-(26) subject to the conditions given by (27) and (28). 

To obtain the difference equations the region of the flow is 

divided into a grid or mesh of lines parallel to X and Y axis is 

taken along the plate and Y-axis is normal to the plate. Here 

we consider that the plate of height ( )max 100X =  i.e. X varies 

from 0 to 100 and regard ( )max 25Y = as corresponding to 

Y → ∞ i.e. Y varies from 0 to 25. There are m = 125 and n = 

125 grid spacing in the X and Y directions respectively. It is 

assumed that ,X Y∆ ∆ are constant mesh sizes along X and Y 

directions respectively and taken as 0.8(0 100);X x∆ = ≤ ≤
0.2(0 25)Y y∆ = ≤ ≤ , with the smaller time-step 0.005τ∆ = . 

Now , , andU T C′ ′ ′Γ denote the values of , , andU T CΓ  

at the end of a time-step respectively. Using the explicit finite 

difference approximation we get the difference equations in 

the following forms:  

Continuity equation 
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Momentum equation 
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Angular momentum equation 
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      (31) 

Energy equation 

( )
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  (32) 

Concentration equation 

( )

( )
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 (33) 

And the initial and boundary conditions with the finite 

difference scheme are 

0τ =   
0

0 0 0 0
,, , , ,0, 0, 0, 0, 0i ji j i j i j i jU V T C= = Γ = = =  (34) 

0τ >

0,0, 0, 0, 0,

,0,0 ,0 ,0 ,0

,, , , ,

0, 0, 0, 0, 0

0, 0, 0, 1, 1

0, 0, 0, 0, 0

Where,

n
n n n n

jj j j j

n
n n n n

ii i i i

n
n n n n

i Li L i L i L i L

U V T C

U V T C

U V T C

L

= = Γ = = =

= = Γ = = =

= = Γ = = =
→ ∞

 (35) 

Here the subscripts i and j designate the grid points with x 

and y coordinates respectively and the superscript n 

represents a value of time, where 0,1,2,.....n nτ τ= ∆ = . 

From the initial condition (34), the values of , , andU T CΓ  

are known at 0τ = . During any one time-step, the 
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coefficients ,i jU and ,i jV appearing in equations (29)-(33) are 

treated as constants. Then the end of anytime step τ∆ , the 

new velocity U , the new temperature T ′ , the new 

microrotation ′Γ the new concentration C ′ at all interior 

nodal points be obtained by successive applications of 

equations (30), (31), (32) and (33) respectively. This process 

is repeated in time and provided the time-step is sufficiently 

small, , , , andU V T CΓ should eventually converge to values 

which approximate the steady state solution of equations 

(22)-(26). 
 

4. Results and Discussions 

In this paper, the effects of Micropolar fluid behavior on 

MHD free convection and mass transfer flow with constant 

heat and mass fluxes have been investigated using the finite 

difference technique.  To study the physical situation of this 

problem, we have computed the numerical values by finite 

different technique of velocity, micrirotation, temperature 

and concentration at the plate. It can be seen that the 

solutions are affected by the parameters namely, 

Microrotation parameter (∆) , Spin gradient viscosity 

parameter (�)  and the vortex viscosity parameter (λ) , 

Grashof Number (��) , Modified Grashof Number (��) , 

Prandtl number (��) , Magnetic parameter (M), Eckert 

Number (Ec), Dufour Number (Df), Schimidt Number (Sc), 

and Soret Number (So). The main goal of the computation is 

to obtain the steady state solutions for the non-dimensional 

velocity U, temperature 	
 , concentration C′ and 

Microrotation ′Γ  for different values of Microrotation 

parameter (∆), Spin gradient viscosity parameter (�) and the 

vortex viscosity parameter (λ) , Grashof Number (��) , 

Modified Grashof Number (��) , Prandtl Number (��) , 

Magnetic parameter (M), Eckert Number (Ec), Dufour 

Number (Df), Schimidt Number (Sc), and Soret Number (So). 

For this computations the results have been calculated and 

presented graphically by dimensionless time τ	 = 	10 up to 

τ	 = 	80. The results of the computations show little changes 

for τ	 = 	10 to τ	 = 	60. But while arising at τ	 = 	70 and 80 

the results remain approximately same. Thus the solution for 

τ	 = 	80 are become steady-state. Moreover, the steady state 

solutions for transient values of U, 	
, �
 and ′Γ  are shown 

in figures (2-33), for time τ	 = 	10, 20, 30, 40, 50, 60, 70, 80 

respectively. Figures (2-9) show the velocity profile for 

different values of Grashof Number (�� = 0.10, 0.20, 0.30)  

at time τ	 = 	10, 20, 30, 40, 50, 60, 70, 80 respectively. From 

these figures are observed that the velocity increases with the 

increase of Grashof Number (��) . When it arising atτ	 =
	70	���	80, the solutions become steady-state. The effects of 

temperature are shown in figures (10-17) for different values 

of Prandtl Number (��) , at time 

τ	 = 	10, 20, 30, 40, 50, 60, 70, 80   respectively. It is seen 

from these figures that the temperature decreases with the 

increase of Prandtl Number(��). The concentration effects 

are shown in figures (18-25) for different values of Schmidt 

Number (Sc), at time τ	 = 	10, 20, 30, 40, 50, 60, 70, 80  

respectively and is clear from these figures that the 

concentration decreases with the increase of Schmidt 

Number (Sc). The results remain approximately same while 

arising at time τ = 70 and 80. Effects of microrotation are 

shown in Figures (26-33) for different values of Spin 

gradient viscosity parameter ( )Λ at time 

τ	 = 	10, 20, 30, 40, 50, 60, 70, 80   respectively. It is seen 

from these figures that the microrotation decreases with the 

increase of Spin gradient viscosity parameter ( )Λ . 

 

Fig. 2. Velocity profile for different values of Grashoff number (Gr) at time 

τ=10. 

Fig. 3. Velocity profile for different values of Grashoff number (Gr) at time 

τ=20. 

0 10 20
0

0.1

0.2

U

Y

Gr = 0.10, 0.20, 0.30

0 10 20
0

0.1

0.2

0.3

0.4

0.5

Gr = 0.10, 0.20, 0.30

Y

U



 American Journal of Applied Mathematics 2015; 3(3): 157-168  163 

 

 

Fig. 4. Velocity profile for different values of Grashoff number (Gr) at time 

τ=30. 

Fig. 5. Velocity profile for different values of Grashoff number (Gr) at time 

τ=40. 

 

Fig. 6. Velocity profile for different values of Grashoff number (Gr) at time 

τ=50. 

Fig. 7. Velocity profile for different values of Grashoff number (Gr) at time 

τ=60. 

 

Fig. 8. Velocity profile for different values of Grashoff number (Gr) at time 

τ=70. 

Fig. 9. Velocity profile for different values of Grashoff number (Gr) at time 

τ=80. 
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Fig. 10. Temperature profile for different values of Prandtle number (Pr) at 

time τ=10. 

Fig. 11. Temperature profile for different values of Prandtle number (Pr) 

at time τ=20. 

 

Fig. 12. Temperature profile for different values of Prandtle number (Pr) at 

time τ=30. 

Fig. 13. Temperature profile for different values of Prandtle number (Pr) 

at time τ=40. 

 

Fig. 14. Temperature profile for different values of Prandtle number (Pr) at time 

τ=50. 

Fig. 15. Temperature profile for different values of Prandtle number 

(Pr) at time τ=60. 
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Fig. 16. Temperature profile for different values of Prandtle number (Pr) at time 

τ=70. 

Fig. 17. Temperature profile for different values of Prandtle number 

(Pr) at time τ=80. 

 

Fig. 18. Concentration profile for different values of Schmidt number (Sc) at time τ 

= 10. 

Fig. 19. Concentration profile for different values of Schmidt 

number (Sc) at time τ = 20. 

 

Fig. 20. Concentration profile for different values of Schmidt number (Sc) at time τ 

= 30. 

Fig. 21. Concentration profile for different values of Schmidt 

number (Sc) at time τ = 40. 

0 10 20
0

0.2

0.4

0.6

0.8

1

Pr = 0.71, 1.0, 7.0

T

Y
0 10 20

0

0.2

0.4

0.6

0.8

1

Pr = 0.71, 1.0, 7.0

T

Y

0 10 20
0

0.2

0.4

0.6

0.8

1

Y

C

Sc = 0.7, 1.0, 2.0

0 10 20
0

0.2

0.4

0.6

0.8

1

Sc = 0.7, 1.0, 2.0

Y

C

0 10 20
0

0.2

0.4

0.6

0.8

1

Sc = 0.7, 1.0, 2.0

Y

C

0 10 20
0

0.2

0.4

0.6

0.8

1

Y

C

Sc = 0.7, 1.0, 2.0



166 Lasker Ershad Ali et al.:  Investigate Micropolar Fluid Behavior on MHD Free Convection and Mass Transfer Flow with 

Constant Heat and Mass Fluxes by Finite Difference Method 

 

Fig. 22. Concentration profile for different values of Schmidt number (Sc) at time τ 

= 50. 

Fig. 23. Concentration profile for different values of Schmidt 

number (Sc) at time τ = 60. 

 

Fig. 24. Concentration profile for different values of Schmidt number (Sc) at time τ 

= 70. 

Fig. 25. Concentration profile for different values of Schmidt 

number (Sc) at time τ = 80. 

 

Fig. 26. Microrotation profile for different values of Spin gradient viscosity 

parameter ( Λ ) at time τ = 10. 

Fig. 27. Microrotation profile for different values of Spin gradient 

viscosity parameter ( Λ ) at time τ = 20. 
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Fig. 28. Microrotation profile for different values of Spin gradient viscosity 

parameter ( Λ ) at time τ = 30. 

Fig. 29. Microrotation profile for different values of Spin gradient 

viscosity parameter ( Λ ) at time τ = 40. 

 

Fig. 30. Microrotation profile for different values of Spin gradient viscosity 

parameter ( Λ ) at time τ = 50. 

Fig. 31. Microrotation profile for different values of Spin gradient 

viscosity parameter ( Λ ) at time τ = 60. 

 

Fig. 32. Microrotation profile for different values of Spin gradient viscosity 

parameter ( Λ ) at time τ = 70. 

Fig. 33. Microrotation profile for different values of Spin gradient 

viscosity parameter ( Λ ) at time τ = 80. 
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5. Conclusion 

Micropolar fluid behavior on MHD free convection and 

mass transfer flow with constant heat and mass fluxes have 

been investigated in this work. The resulting governing 

dimensionless coupled non-linear partial differential 

equations are numerically solved by an explicit finite 

difference method. The results are presented for different 

values of important parameters as the Grashoff Number, 

Prandtle numbe, Schmidt number and Spin gradient viscosity 

parameter with the fixed value of Modified Grashoff 

Number. The obtained important findings are listed below: 

i The velocity profiles increase with the increase of 

Grashoff Number (Gr). Particularly, the fluid velocity 

gradually increases with the increase of time. 

ii The temperature profiles decrease with the increase of 

Prandtle number (Pr). Particularly, due to increase of 

time the fluid temperature is shifted to upward 

direction. 

iii The concentration profiles are also decrease with the 

increase of Schmidt number (Sc). Particularly, due to 

increase of time the concentration is shifted to upward 

direction too. 

iv Finally the Microrotation profiles decrease with the 

increase of Spin gradient viscosity parameter ( Λ ). 
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