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Abstract: The aim of this paper is to develop a computer oriented program for analyzing duality of a Linear Program (LP) by 

the programming language MATHEMATICA. Also we will show the efficiency of our program by analyzing the duality with 

numerical examples. 
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1. Introduction 

Linear Programming (LP) has a wide range of applications 

including agriculture, industry, transportation and other 

problems in economics and management sciences. Linear 

programming is programming in science of planning which 

deals with situations where a number of resources, such as 

men, materials, machines are to be combined to yield one or 

more products. Usually programming is a common word 

which is related to computer developments. When it’s 

required to solve any LP problems, in practice is too difficult. 

But using computer programming it’s easy to solve. 

Sometimes, we need to change the data values of the solution 

and this type of changes brings the concept of Duality in linear 

programming. 

2. Linear Programs 

We first briefly discuss the general LP problems. Consider 

the standard LP problem as follows, 

Maximize 		� = ��                  (1) 

Subject to �� = �                   (2) 

� ≥0                          (3) 

where � = (
�, 

, ⋯ , 
� , 	
���, ⋯ , 	
�) is an � × � 

matrix, � ∈ ℝ�, �, � ∈ ℝ� . Let � = (��, 	�
, ⋯ , 	��)be any 

non-singular sub-matrix of�	and ��be the vector of variables 

associated with the columns of �. The general properties and 

solution procedures of LP problems can be found in [1] and [2]. 

Also we can be found a history of LP in [3]. We will now 

concentrate our discussion into duality theory. 

3. Duality Theory 

From both the theoretical and practical point of view, the 

theory of duality is one of the most important tools for 

developing computational procedures that take advantage of 

the relationships between the primal and dual problems .The 

basic idea behind the duality theory is that every linear 

programming problem has an associated linear program called 

its dual problem .The original problem is called primal 

problem also gives a solution to the dual problem and 

vice-versa. On the other hand, the most famous duality theory 

for multiobjective linear programs is due to Isermann (see 

[4,5]). Isermann's dual solutions also verify some primal-dual 

relations and measure the primal sensitivity if the Pareto 

solutions of the program are restricted to be basic feasible 

solutions of the primal feasible set. 

Weak duality property: If � is a feasible solution for the 

primal problem and �  is a feasible solution for the dual 

problem, then�� ≤ ��. 

Strong duality property: If �∗is an optimal solution for the 

primal problem and �∗  is an optimal solution for the dual 

problem, then��∗ = �∗�. 

Thus, these two properties imply that�� < ��for feasible 

solutions if one or both of them are not optimal for their 

respective problems, whereas equality holds when both are 
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optimal. [6] 

4. Complementary Slackness Condition 

The Theorem of Complementary Slackness [7] is an 

important result that relates the optimal primal and dual 

solutions. To state this theorem, we assume that the primal is a 

normal max problem with variables�� ,�
, ⋯ ,�� and � ≤
	constraints. Let�� ,�
, ⋯ ,�� be the slack variables  for the 

primal. Then the dual is a normal min problem with 

variables�� ,�
, ⋯ ,�� and �	 ≥  constraints. Let �� ,�
, ⋯,�� 

be the excess variables for the dual. A statement of the 

theorem of Complementary Slackness as follows. Let 

� = [���
 ⋯	��]" be a feasible solution and � =
[���
 ⋯	��] be a feasible dual solution. Then � is primal 

optimal and � is dual optimal if and only if 

�#�# =0	($ =1, 2, …	, �)              (4) 

�&�& =0	(' =1, 2, …	, �)              (5) 

From (4), it follows that the optimal primal and dual 

solutions must satisfy 

$()primal slack >0 implies $() dual variable=0    (6) 

$()dual variable> 0 implies $() primal slack =0    (7) 

From (5), it follows that the optimal primal and dual 

solutions must satisfy 

'()dual excess >0 implies '() primal variable =0   (8) 

'()primal variable> 0 implies '() dual excess = 0    (9) 

From (6) and (8), we see that if a constraint in either the 

primal or dual is non-binding (has either �# >0 or �& >0), 

then the corresponding variable in the other (or 

Complementary) problem must equal 0.  

5. Dual Simplex Method 

Dual Simplex Method of solving a LP Problem is one of the 

methods of solving a LP problem in which the theory relating 

to primal problem has been developed with the help of the 

properties of its dual problem. That is why, the method is 

known as Dual Simplex Method (DSM). In this method we try 

to move from infeasible optimality to the feasible optimality. 

Using this method, we are able to solve many problems 

without using artificial variables. Now we will discuss the 

dual simplex algorithm as follows: 

STEP (0) The problem is initially in canonical form and all 

�&̅ ≤0. 

STEP (1) If �,# ≥  0, $	 =	1, 2 , … ,� , then stop, we are 

optimal. If we continue, then there exists some �,# <0. 

STEP (2) Choose the row to pivot in (i.e., variable to drop 

from the basis) by: 

�,- = 	.$�${b,1|	b,1 <0} 

If a,56 ≥ 0, ' =1, 2, …,� then stop; the primal problem is 

infeasible (dual unbounded). If we continue, then there exists 

a,56 <0 for some '	 = 1, 2, …,�. 

STEP (3) Choose column s to enter the basis by: 

�7̅/
,-7 = .$�'	{�&̅/
,-& < 0} 

STEP (4) Replace the basic variable in row 9 with variable 

�  and re-establish the canonical form (i.e., pivot on the 

coefficient
,-7). 

STEP (5) Go to step (1). 

6. Main Program 

In this section, we discuss our computer oriented program 

with its algorithm. We have used the programming language 

Mathematica [8]for developing our computer oriented 

program for duality theory. For our program we need an LP 

problem which is solved by any method. 

6.1. Algorithm 

Input:�	 = 	 (
#&), � × �real matrix, �	 = (��, �
, … …��) 

a set of constants and� = (��, �
, … . . . , ��) a set of cost vector 

components. 

Step 1: Express the LP to its standard form. 

Step 2: Find all m × n  sub-matrices of the coefficient 

matrix � by setting n	 − 	m variables equal zero. 

Step 3: Test whether the linear system of equations has 

unique solution or not. 

Step 4: If the linear system of equations has got any unique 

solution, find it. 

Step 5: Dropping the solutions with negative elements. 

Determine all basic feasible solutions. 

Step 6: Calculate the values of the objective function for the 

basic feasible solutions found in step 5. 

Step 7: For the maximization of LP, the maximum value of 

� is the optimal value of the objective function and the basic 

feasible solution which yields the optimal value is the optimal 

solution. 

Now we develop a Mathematica code for solving LP 

problems. 

6.2. Mathematica Code for Solving LP 

Now, we present our computer codes of Mathematica for 

analyzing duality theory. We have written the following codes 

using Mathematica 5.2. Our computer oriented program is 

presented as follows: 
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<<LinearAlgebra`MatrixManipulation` 

basic[AA_,bb_]:=Block[{m,n,pp,ss,ns,B,v,vv,var,vplus,vzero,BB,RBB,sol,new,sset,bs},{m,n}=Dimensions[AA];pp=Permutati

ons[Range[n]]; 

ss=Union[Table[Sort[Take[pp[[k]],m]],{k,1,Length[pp]}]]; 

ns=Length[ss];B={}; 

For[k=1,k<=ns,k=k+1,v=Table[TakeColumns[AA,{ss[[k]][[j]]}],{j,1,m}]; 

vv=Transpose[Table[Flatten[v[[i]]],{i,1,m}]]; 

B=Append[B,vv]]; 

var=Table[x[i],{i,1,n}]; 

vplus[k_]:=var[[ss[[k]]]]; 

vzero[k_]:=Complement[var,vplus[k]]; 

sset={};For[k=1,k<=ns,k=k+1,BB=B[[k]];RBB=RowReduce[BB]; 

If[RBB==IdentityMatrix[m],sol=LinearSolve[BB,bb],sol={}]; 

If[Length[sol]==0||Min[sol]<0,new={},new=sol; 

sset=Append[sset,{vplus[k],new}]]]; 

bs[k_]:=Block[{u,v,w,zf1,f2},      

u=sset[[k,1]];v=sset[[k,2]];w=Complement[var,u]; 

z=Flatten[ZeroMatrix[Length[w],1]]; 

f1=Transpose[{u,v}];f2=Transpose[{w,z}]; 

Transpose[Union[f1,f2]][[2]]]; 

Table[bs[k],{k,1,Length[sset]}]] 

optimal [AA_, bb_, cc_]:= Block[{vertex, val, opt, pos, optsol, lpsoln},  

vertex = basic [AA, bb]; 

val = Table[vertex[[k]].c, {k, 1, Length[vertex]}]; 

opt = Min/Max[val]; 

pos = Flatten[Position[val, opt]]; 

optsol = vertex[[pos[[1]]]]; 

lpsoln = {optsol, opt}; 

Print ["The optimal value of the objective function is ",  lpsoln[[2]]]; 

Print ["The optimal solution is ", lpsoln[[1]]]] 

 

Now we will compare and discuss the following numerical 

examples with the methods discussed in section 4, 5 and with 

our developed program discussed in section 6.2. 

7. Numerical Illustrations 

In this section, we use two different examples to illustrate 

our computer oriented program. 

7.1. Example 1 

A factory manufactures three products, which require three 

resources - labor, materials, and administration. The unit 

profits on these products on these products are $10, $6 and$4 

respectively. There are 100 of labor, 600 ?� of material, and 

300 ℎ9  of administration available per day. In order to 

determine the optimal product mix, the following LP model is 

formulated, 

Max � =10�� +6�
 +4�B  

Subject to�� 	+ �
 + �B ≤100     (labor) 

10�� +4�
 +5�B ≤600   (material) 

2�� +2�
 +6�B ≤300(administration) 

��,�
, �B ≥ 0 

where, �� , �
  and �B are the daily production levels of 

products 1, 2 and 3 respectively [9] and the dual of the above 

problem is 

MinC =100�� +600�
 +300�B 

Subject to�� +	10�
 	+2�B ≥	10 

�� +	4�
 	+2�B ≥	6 

�� +	5�
 	+6�B ≥	4 

��, �
	, �B 	≥		0 

The solution of the problem can be found from any existing 

technique[10] as, the optimal primal solution is �� =100/3, 

�
 = 200/3, �B = 0 , �� = 0 , �
 = 0 , �B = 100 and Max 

� =2200/3. The optimal dual solution is �� =	10/3 , �
 =
	 2/3 , �B 	=	 0 , �� 	=	 0, �
 	=	 0 , �B 	=	 8/3  and 

MinC =2200/3  

From the Complementary Slackness condition, (4) reduces 

to ���� =	�
�
 = �B�B = 0, which is indeed satisfied by the 

optimal primal and dual solutions. Again, from the 

Complementary Slackness condition, (5) reduces to ���� =
	�
�
 =	�B�B = 0, which is also satisfied by the optimal 

primal and dual solutions. 

According to the dual simplex algorithm discussed in 

section 5.1, the dual simplex method cannot be applicable for 
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the primal problem, then it is impossible to solve the LP by 

using dual simplex method and also for the dual problem we 

can solve this with the help of dual simplex method. The 

optimum feasible solution is �� =	10/3, �
 =	2/3, �B 	=	0, 

�� 	=	0,�
 	=	0,�B 	=	8/3  and MinC =2200/3. 

Now we will illustrate this numerical example with our 

computer technique. 

If we write the Mathematica code written in section 6.2 with 

opt = Max[val];in place ofopt = Min/Max[val];for this 

particular factory problem (primal problem) given with all 

input data values as bellow: 

A={{1,1,1,1,0,0},{10,4,5,0,1,0},{2,2,6,0,0,1}}; 

b={100,600,300}; 

c={10,6,4,0,0,0}; 

basic[A,b] 

optimal[A, b, c] 

Now, if we run the above program, we will appear the 

following output as:  

{{175/6,275/6,25,0,0,0},{100/3,200/3,0,0,0,100},{42,0,36

,22,0,0},{60,0,0,40,0,180},{0,75,25,0,175,0},{0,100,0,0,200,

100},{0,0,50,50,350,0},{0,0,0,100,600,300}} 

The optimal value of the objective function is 2200/3 

The optimal solution is {100/3,200/3,0,0,0,100} 

We get the same solution as in previously discussed 

methods.  

Now to get the solution of the dual problem with opt = 

Min[val];in place ofopt = Min/Max[val] in the Mathematica 

code written in section 6.2, we have to change only input as: 

A={{1,10,2,-1,0,0},{1,4,2,0,-1,0},{1,5,6,0,0,-1}}; 

b={10,6,4}; 

c={100,600,300,0,0,0}; 

basic[A,b] 

optimal[A, b, c] 

Now, if we run the program, we will appear the following 

output as: 

{{10/3,2/3,0,0,0,8/3},{10,0,0,0,4,6},{0,2/3,5/3,0,0,28/3},{

0,3/2,0,5,0,7/2},{0,0,5,0,4,26}} 

The optimal value of the objective function is 2200/3 

The optimal solution is {10/3,2/3,0,0,0,8/3} 

7.2. Example 2 

Consider, the following problem 

Max � =	3�� +	5�
 

Subjectto 3�� +	2�
 ≤18 

�� ≤ 4 

�
 ≤ 6 

��, �
 ≥0 

And the dual of the above problem is 

MinC =	18�� +	4�
 	+6�B	

s. t.  3��+ �
 ≥	3 

2��+�B ≥	5 

��,�
,�B ≥ 0 

The solution of the problem can be found from any existing 

technique as: The optimal primal solution is �� =2,�
 =6, 

�� =0, �
 =2, �B =	0 and Max �	 =36.The optimal dual 

solution is �� =1,�
 = 0, �B = 3, �� = 0, �
 = 0 and Min 

C =36. Now, from the Complementary Slackness condition, 

(4) reduces to ���� =	�
�
 = �B�B =  0, which is indeed 

satisfied by the optimal primal and dual solutions. Again, from 

the Complementary Slackness condition, (5) reduces 

to���� =	�
�
 =	0, which is also satisfied by the optimal 

primal and dual solutions. 

According to the dual simplex algorithm discussed in 

section 5.1, the dual simplex method cannot be applicable for 

the primal problem, then it is impossible to solve the LP by 

using dual simplex method and also for the dual problem we 

can solve this with the help of dual simplex method. The 

optimum feasible solution is �� =1,�
 =0, �B =3, �� =0, 

�
 =0 and Min C =36. 

Now we will illustrate this numerical example with our 

computer technique.  

If we write the Mathematica code written in section 6.2 with 

opt = Max[val];in place ofopt = Min/Max[val];for this 

particular factory problem (primal problem) given with all 

input data values as bellow: 

A={{3,2,1,0, 0},{1,0,0,1, 0}, {0, 1, 0, 0, 1}}; 

b={18,4,6}; 

c={3,5,0,0, 0}; 

basic[A,b] 

optimal[A, b, c] 

Now, if we run the above program, we will appear the 

following output as:  

{{2,6,0,2,0},{4,3,0,0,3},{4,0,6,0,6},{0,6,6,4,0},{0,0,18,4,6}

} 

The optimal value of the objective function is 36 

The optimal solution is {2,6,0,2,0} 

We get the same solution as in previously discussed 

methods.  

Now to get the solution of the dual problem with opt = 

Min[val];in place ofopt = Min/Max[val] in the Mathematica 

code written in section 6.2, we have to change only input as: 

A={{3,1,0,-1,0},{2,0,1,0, -1}}; 

b={3, 5}; 

c={18,4,6,0,0}; 

basic[A,b] 

optimal[A,b,c] 

Now, if we run the program, we will appear the following 

output as: 
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{{1,0,3,0,0},{5/2,0,0,9/2,0},{0,3,5,0,0}} 

The optimal value of the objective function is 36 

The optimal solution is {1,0,3,0,0} 

By our program, we can analyze the duality theory of 

various LP problems by changing only input values. Finally, 

we can say that, our computer oriented program with 

Mathematica for analyzing duality theory of an LP problem is 

more efficient than any method. 

8. Conclusion 

The program developed by us is a powerful program, 

because we can analyze the duality theory of any LP problem 

by this program in one click with entering some necessary data 

values. Hand calculation is very tough and time consuming for 

analyzing duality theory of an LP problem with large number 

of variables and constraints, where we can do the same by our 

program within a second by one click. Nowadays, the world is 

being ruled by the fastest. So we must try to finish our job as 

fast as we can. If we can find a way to solve a problem in a 

very short time, then what will we use the time consuming 

methods? Many practical problems formulated as linear 

programs run into hundreds of constraints and thousands of 

decision variables. Computer technique is the best way to 

analyze with such a large amount of data values. We can 

analyze the duality theory of any kind of problem by our 

program, no matter how big it is or solved by which method. 
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