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Abstract: The main scope of this paper is to present an alternative to tackle the problem of the non symmetries arising in the 

solution of the nonlinear couple consolidation problem based on a combination of different stress states. Being originally a non 

symmetric problem, it may be straightforward reduced to a symmetric one, and the conditions in which this reduction may be 

carried out, are addressed. Non linear saturation-suction and permeability-suction functions were regarded. The geometric 

model was developed considering an updated lagrangian description with a co-rotated Kirchhoff stress tensor. This description 

leads to a non-symmetric stiffness matrix and a simple alternative, using a symmetric constitutive matrix, is addressed to 

overcome this situation. The whole equation system was solved using an open finite element code FECCUND, developed by 

the authors. In order to validate the model, various examples, for which previous solutions are known, were solved. The use of 

either a strongly non linear and no symmetric formulation or a simple symmetric formulation with accurate prediction in 

deformation and pore-pressures is extremely dependent on the soil characteristic curves and on the shear efforts level, as well. 

A numerical example show the predictive capability of this geometrically non linear fully coupled model for attaining the 

proposed goal. 

Keywords: Finite Element Analysis, Hypoelastic Formulations, Non Saturated Soil Model,  

Saturation-Suction Relationship Introduction 

 

1. Introduction 

Soil consolidation research is commonly carried out by the 

application of the finite element method to specific 

mathematical models. These models have undergone a 

continuous evolution during the last years, so that important 

achievements towards the prediction of porous media 

behavior were attained, based on a robust mathematical 

framework [15, 17, 24]. 

From Biot [2] pioneer work, many approaches for 

consolidation analysis have been made. For the non saturated 

case, Ghaboussi et al [5] presented a two-phase model; Lewis 

et al [12] and Pietraszezak et al [19] developed some of the 

earlier three phase models, and, Ng and Small [18] tackled 

ordinary problems using similar methods. The non isothermal 

analysis in saturated models is included in Masters et al [14] 

among others. 

More recently and based on Hassanizadeh and Gray [6, 7, 

8], environmental geomechanics topics were faced by 

Schrefler [21], among some others. Klubertantz et al [10] 

worked on models with miscible and immiscible pore fluids, 

addressing domains of applicability for each case. 

Mroginski et al. [16] described a kind of odd relationship 

that bonds the vertical displacements and the degree of 

pollutant saturation.  

Different degrees of heterogeneity were considered in [1] 

as well as in [23]. In the former, a horizontal multilayered 

soil with anisotropic permeability undergoing square load 

was analyzed whilst in the later a first order homogenization 

on RVE was adopted to overcome the heterogeneous issue. In 

[20], the physical interpretation of the three characteristic 

behaviors of homogenized dual-porosity is evaluated along 

with memory effects.  

Regarding with the mathematical framework of the 

aforementioned models, one controversial topic is the degree 

of saturation as the main coupling element between water – 

air fields [9] and the induced matric suction variation. From 

the present review, it comes up that the suction change gives 



32 Héctor Ariel Di Rado et al.:  A Strategy for Solving the Non Symmetries Arising in Nonlinear Consolidation of  

Partially Saturated Soils 

to the governing equations a highly non-linear characteristic 

and lead to the loss of symmetry in the isothermal case.  

Khalili and Khabbaz [9] presented a mathematical 

approach for isothermal partially saturated media relied on a 

stress state decomposition though regardless the saturation 

and the induced matric suction coupling effect. For this issue 

was subject of large controversial in Di Rado et al. [4] the 

evidence of the highly non linear effect that saturation-

suction coupling effect renders to the constitutive model and 

its influence on the symmetry loss of the main system 

equation for the isothermal case, were properly settled down. 

Besides, one noteworthy feature of the model is that it may 

be used to discern when the additional costs in terms of 

processing time and computational memory due to the lost of 

symmetry is justified and when not, relied on a consistent 

mathematical background. 

With respect to the geometric description, there are many 

approaches toward the numerical solution of geometrical 

nonlinear problems. However, any approach must preserve 

the mechanical principles and the energy requirement. Here, 

it was assumed that there is not a strain energy function and, 

hence, a rate independent hypoelastic co-rotated Kirchhoff 

stress with large strains and displacement model, was 

adopted. Interest of this formulation remains [13] because it 

offers a straightforward extension of the small strain 

plasticity theory, it is not restricted to isotropic materials and 

meets the frame indifference principle [22]. In contrast, this 

kind of model leads to a somewhat awkward implementation 

due to the appearance of non symmetric matrices and 

deformation-dependent constitutive tensors. Therefore, a 

proposal to overcome the drawback due to the loss of 

symmetry in the stiffness matrix is addressed in [3]. 

2. Partially Saturated Soil Governing 

Equations 

The present approach, may be depicted as a three element 

set, namely, a deformation model, a water flux model and an 

air flux model. A whole description was addressed in [4]. 

The coupling between the flow and the deformation fields 

is established by means of the introduction of parameters that 

connect the water and air phase pressures to the change in the 

deformation matrix.  

From reference [4], the following equations may be 

regarded: 

2.1. Mechanical Equilibrium 

Using the Cauchy rate tensor, the stress equilibrium is 

given by: 

�� ′�� = ���� − �	
����� − �

� ����                   (1) 

with �	 = ��� − ���/�  and �
 = 1 − ��/� , being �� =
1/�� the compressibility of soil structure with respect to a 

change in matric suction 
� = 
� − 
� , � = 1/��  is the 

drained compressibility of the soil structure. �� = 1/�� is the 

compressibility of the soil grains. �� = �1 − ���� is the bulk 

modulus of the overall skeleton with α being the Biot 

constant. �� = ����/����� + �����  is the soil structure 

compressibility with respect to matric suction. 

Moreover, �� ′��  is the effective stress rate, ����  is the total 

stress rate, 
��  and 
� �  are the water and gas pressure rate 

respectively, ��  and ��  the gas and water phase saturation 

respectively. Also consider that �� = ��/��  and �� = ��/��  

where �� is the pore-water volume, �� is the pore-air volume 

and �� , is the void volume. 

Considering a non restricted stress-strain relationship, 

yields: 

�� ′�� =  ��!"ε�!"                             (2) 

The constitutive tensor  ��!"  should be elastic or 

elastoplastic with the limitations pointed out in section 1. The 

equilibrium equations in rate form are given by: 

������,� + %�� = 0                          (3) 

Combining Eqs. (1), (2) and (3), the following equation 

governing the soil deformation is obtained: 

� ��!"ε�!"�,� + �	
�,�� + �

�,�� + %�� = 0         (4) 

2.2. Water Phase 

Regarding the water phase, the next equation holds 
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where )� is the coefficient of permeability, n is the porosity, *� is the water specific weight, '� is the water density. 

2.3. Air Phase 

Carrying out similar modifications than those performed in the water phase and adding the relationship ��� = 
�� 0�� 0
�⁄ =
−
�� 0�� 0
�⁄  the follows: 
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in which E∗  is the air phase transmission coefficient, '�  is 

the air density, P is the absolute pressure. 

2.4. Coupling of the Mechanical Equilibrium with the 

Fluid Phases 

Gathering Eqs. (4), (5) and (6) it is obtained: 

� ��!",�!"�,� + �	
�,�� + �

�,�� + %�� = 0 
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��,� = 0 

Equations (7) stands for a system of partial differential 

equations for the solution of the isothermal consolidation 

problem obtained by a combination of several stress 

situations applied on a soil system. This formulation leads to 

non symmetrical matrices when the finite elements method is 

applied and may be straightforward reduced to a formulation 

with symmetric matrices adjusting only the saturation 

indicator [4]. 

3. The Geometrical Model 

In Eqs. (7), C��!" , stands for an elastic constitutive tensor. 

When geometric non linearity is under consideration, this 

tensor must be replaced for a non linear one. In the following 

sections, this situation is addressed. 

3.1. The Weak Form of the Equilibrium Equation for Dry 

Soil 

In reference [3], the following equation for the weak form 

of the equilibrium equations, was conveyed: 

L �MN  P + L P�: ∇vU�V� 0W�X� Y⁄ = L  b� ['' W�X�U�V� + L t̃� v 0^W�X�_U�V�                               (8) 

where b�  and t̃�  are the rate of change of body and traction 

forces, respectively, at the configuration W�X� with boundary 

^W�X�, P is Kirchhoff stress tensor, L ≡ ∇v = ^v/^x is the 

spatial velocity gradient and MNP  is the Lie derivative of 

Kirchhoff stress tensor. Introducing in Eq. (8) the 

forthcoming constitutive equation: 

MNP�� = C��!"b D!"                                  (9) 

being Cd the corresponding associated constitutive tensor and 

D the spatial rate of deformation tensor, leads to: 

L �L: �L P + Cd: D�U�V� 0W�X� Y⁄ = L �v b� ' 0W�X�U�V� + L �v te� 0^W�X�_U�V�                        (10) 

3.2. Hypoelastic Material Description 

Hypoelastic descriptions of constitutive relationships 

should be conveniently adopted in order to preserve the 

material frame indifference principle and, when it is required, 

anisotropic characteristics. If the elastic response is carried 

out in the spatial or deformed configuration, using Eq. (10) 

with a constant constitutive tensor, the objectivity requires Cd 

being invariant under a rigid body motion of the reference 

configuration [22] and only isotropic materials meet this 

requirement. To overcome this restriction the constitutive 

relationship should be formulated in a co-rotational 

configuration:  

Pe� = Cf d: Dg or Pe��� = Cf hijkb : Dgjk                     (11) 

where Pe = Rm τ R  is the co-rotational Kirchhoff stress, 

Dg = Rm D R is the co-rotational rate of deformation tensor, 

with R being the orthogonal rotational tensor, obtained from 

the polar decomposition of the deformation tensor F= R∙U 

(where U is the right stretch tensor, which is symmetric). As 

co-rotated magnitudes remain invariant to rigid body motion, 

no restrictions are imposed to Cf b.  

In reference [3], the relationship between the Lie 

derivative of Kirchhoff stress tensor and the co-rotational 

Kirchhoff stress was addressed. Furthermore and for the non 

symmetry arising in the constitutive equations is too strong a 

disadvantage, an alternative that avoids this situation was 

addressed through the following expression:  

 p��!"d = q��q�6q!=q"r e�6=rd −  p��!"���            (12) 

The previous is used in Eq. (10) instead of Cb, leading to a 

symmetric stiffness matrix. 

3.3. The Non Lineal Stress Problem in Non Saturated Soils 

The general soil stress problem is commonly tackled 

through an additive decomposition of the efforts on those 

over the solid phase and over the fluid phase. Bearing in 

mind the specific case of partially saturated soil, the problem 

may be carried out in two different ways: Using the additive 

decomposition of either the Jaumann stress rate of the 

Kirchhoff tensor or the Lie derivative of Kirchhoff tensor [3]. 

For the second alternative is a little more straightforward, the 

attention will be focused in this one. At the outset and relying 

on Eq. (1), the additive decomposition of the Kirchhoff stress 

tensor is considered: 

P = Ps + �	P� + �
P� = Ps + Y�	
�t + Y�

�t     (13) 

Substituting Eq. (13) on the expression for the lie 

derivative of the Kirchhoff stress tensor MNP = P� − LP − PL, 

and performing the time derivative, leads to: 
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MNP = CbD + Ym�mmD��	
� + Ym�	
�� + Ym�mmD��

� + Ym�

� �                                           (14) 

where m = {1, 1, 1, 0, 0, 0}. In the above equation, the 

constitutive Eq. (9) is strictly applied to the solid phase 

(effective stress). In place of the constitutive tensor Cb, Eq. 

(12) may be used: For Biot constant, the subsequent 

expression must be regarded. 

� = 1 − mmCv bm 9 )�x                               (15) 

3.4. The Weak Form of the Equilibrium Equation for Non 

Saturated Soil 

An equivalent form of Eq. (8) for non saturated soils may 

be carried out regarding the stress decomposition yielded in 

the precedent paragraph.  

L �L: �L P + Cd: D + Y I�I: D��	
� + Y I�	
�� + Y I�I: D��

� + Y I�

� ��U�V� 0W�X� Y⁄ = L �v b� ' 0W�X�U�V� + L � v te� 0^W�X�_U�V�        (16) 

For the geometric non linearity to be included in the non 

saturated consolidation phenomena, the above equation 

should be used in place of first of the system (7). 

4. Finite Element Discretization 

The weak form of equations (7) may be derived using the 

general Galerkin method. After applying the finite element 

method, the following discrete system at element level is 

presented:  

K u|� +  C��p|� � + C��p|� � = F� �
C�� u|� + P��  p|� � + Q��p|� � + H��p|� = F� �

C�� u|� + Q��  p|� � +  P��p|� � + H��p| � = F� �
     (17) 

being u|� , p|� �  and p|� �  the nodal velocity, water and air rate 

pressure vectors, respectively.  

All the matrices and vectors derived in the previous may 

be found in Di Rado [25]. 

5. Numerical Examples 

This example was added in order to show the ability of the 

model developed in the previous sections to solve 

geometrically non linear problem in non-saturate soils. The 

example consists on a strip footing under uniform load. 

The problem data are: Wide 10m, Depth 5m, Young’s 

modulus E= 1000 kPa, Poisson’s ratio ν= 0.4, Permeability k 

= 8.64 E10−5 m/day, Void ratio e= 0.9 and Load Q = 10 

kN/m. 

 

Figure 1. Surface settlements and water pore pressure for the 20th day. 

In Fig. 1 it can be observed the deformation of the soil 

skeleton and water pore pressure corresponding to 20 day 

after the load application, considering small (left side) and 

large strain situation (right side). 

6. Conclusions 

A general formulation and the numerical solution for non 

saturated soils consolidation were presented. The whole 

system was incorporated into a Galerkin finite element model. 

The governing equation, in terms of displacement and fluid 

pressures, result in coupled nonlinear partial differential 

equation. The use of either complex or simple symmetric 

formulations with accurate prediction in deformation and 

pore-pressures is strongly dependent on the soil characteristic 

curves, their derivatives and the shear stress order. The 

approach presented here, make possible to easily switch 

between both kinds of formulations according to the data. 
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