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Abstract: This paper is devoted to the development of positivity and monotonisity preserving linear spline techniques, namely, 

techniques which are based on ideas applied in the field of high order TVD (Total Variation Diminishing) methods for numerical 

solving compressible flow equations. Third and fifth degrees polynomial splines are constructed. Third degree splines include 

two variants, namely, monotonisity preserving and positivity preserving splines. These splines may be considered as 

modifications of classical cubic spline and may be identical to this spline for “good” data. These splines get shape preserviation at 

the cost of reducing smoothness till C^1. To restore C^2smoothness fifth degree polynomial splines are considered, which are 

constructed as a sum of base cubic shape preserving splines and fifth degree terms, which are chosen to provide continuity of the 

spline second derivative. These C^2fifth degree polynomial splines are observed to preserve monotonisity or positivity for all 

considered data with these properties. 
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1. Introduction 

It is known that high accuracy interpolations are connected 

with possible producing of undesirable oscillations near points 

of interpolated function discontinuities or points of 

discontinuities of the finction first derivative. The problem of 

interpolations constructing, which do not produce oscillations, 

may be considered as a part of the more total problem of 

interpolations constructing, which preserve the data shape. 

Data may be positive, constrained, monotone, convex 

according to their shapes. For example, some substances in 

chemistry, physics or biology [1,2] are always positive. There 

are processes in these sciences which are described by 

monotonically increasing or decreasing curves. Constrained 

data are available in stock markets, where stock prices often 

move in increasing or decreasing channels. Convex 

interpolations look more natural and pleasant for convex data. 

Piesewise interpolation schemes may be classified as local, 

which may be calculated in any subinterval independently of 

other subintervals, and global, which calculation involves 

solving the system of I or I*k equations, I – number of 

interpolation knots. 

First class contains, for example, monotonisity preserving 

piecewise cubic Hermite interpolations [1,3], trigonometric 

splines [4,5]. Second class contains, for example, B-splines 

[6,7], rational splines [8-10], discrete hyperbolic tension 

splines [11,12], monotonicity preserving cubic spline [13], 

based on limitation of some terms in equations for the spline 

coefficients definition. This limitation uses ideas damping 

undesirable oscillations applied in calculations of 

gasdynamics flows by high order methods [14]. Recent paper 

is devoted to the development of this approach, which allows 

to receive linear equations, providing shape preservation. 

Below classical cubic spline is described in a form, convenient 

to the term limitation application. Next section is devoted to 

representation of monotonisity preserving C
1
 cubic spline [13]. 

Fifth degree polynomial C
2
spline is described in section 4. 

Section 5 is concerned with positivity preserving cubic spline. 

2. Splines 

Let {(x i ,u i ),i =0,1,2,3,...,I} be the given set of data points 

defined over the interval [0,a], where 0 = =x 0 <x 1 <x 2 <,...,< 

x I  = a. Conditions s(x i )=u i , and, at inner knots 0<i<I, 

s'(x i +0)=s'(x i -0), s''(x i +0)=s''(x i -0), are used. We deal 

here with spline derivative values s’(x i ) = v i , 0 ≤ i ≤ I. Since 

the first derivative is a piecewice second degree polynomial, 

this function may be written in the subinterval ],[ 1 ii xx −  as 

follows 
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s’(x)=v 1−i (1-ξ ) + v i ξ  + c(1-ξ ) ξ , ξ =(x-x 1−i )/h 2/1−i , 

h 2/1−i = x i - x 1−i , 

c – any constant, which may be defined after integrating of 

this formulae. If to take into account interpolation conditions 

s(x 1−i )=u 1−i , s(x i )=u i , next expression may be received: 
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This expression garantuies continuity of the spline first 

derivative. The spline second derivative may be written as 

follows 
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If to use this formulae and the similar formulae for the 

neighbouring subinterval [х i ,x 1+i ], the second derivative 

discontinuity jump ∆ s''(x i ) may be received: 
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Next designations are used below 

h i = 2h 2/1−i h 2/1+i /( h 2/1−i +h 2/1+i ) , δ 2/1+i = 

(3) 
 = (u 1+i  -u i )/h 2/1+i , Z 2/1+i = δ 2/1+i / h 2/1+i . 

The continuity requirement for the spline second derivative 

∆ s''(x i ) =0 leads to the equation, relating three consecutive 

values of the spline first derivative v 1−i , v i , v 1+i : 

v 1−i /h 2/1−i +4v i /h i +v 1+i /h 2/1+i =3(Z 2/1+i +Z 2/1−i ).  (4) 

If to assume zero values of the spline second derivative at 

interval ends, next relations may be received 

2v 0 +v
1
=3δ 2/1 , 2v

I
 +v

1−I
=3δ 2/1−I .         (5) 

So, a closed linearly independent system of equations for 

calculations of spline derivative values v i , 0 ≤ i ≤ I, is derived 

for nonuniform knot spacing. It is known that cubic spline 

may produce undesirable oscillations near points of 

interpolated function discontinuities or discontinuities of the 

first derivative. For example, the classical cubic spline 

interpolant to data [11], reported in table 1, is shown in figure 

1. 

 

Table 1. Data [11]. 

x i  u i  

0. 10. 

2. 10. 

3. 10. 

5. 10. 

6. 10. 

8. 10. 

9. 10.5 

11. 15. 

12. 56. 

14. 60. 

15. 85. 

We observe intervals where spline increases, and intervals 

where spline decreases, while data increase everywhere. The 

cubic spline scheme, preserving monotonicity of monotonic 

data, is described below. 

 

Fig. 1. Classical cubic spline, data [11]. 

3. Monotonisity Preserving Cubic Spline 

The problem of undesirable oscillations producing exists 

both in the field of interpolation techniques and in the field of 

high order methods for compressible flows calculations. There 

is a popular approach, started in [14], to overcome this 

producing of undesirable oscillations, based on limitation of 

some terms in finite difference equations for solving 

gasdynamic problems. A similar approach was suggested for 

the spline constructing in [13]. 

To define monotonisity preserving spline we need in the 

function-delimitator: 

Delim(b,y)=max[-b, min(b, y)], b>0 .          (6) 

Here y – an argument, which should be limited, b – a 

parameter–delimitator. Let us define the discrete function Z 

not only in points x 2/1+i =(x i +x 1+i )/2 (see form. (3)), but also 

in points x i : 

Z i = Delim[|Z 2/1+i |, Z 2/1−i ].           (7) 
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Next resulting equations for spline first derivative values 

were suggested in [13]: 

v 1−i p i /h 2/1−i  +2(3-p i )v i / h i +v 1+i p i /h 2/1+i = R i ,  (8) 

R i =3Delim[p i (|Z 2/1+i |+|Z 2/1−i |), (Z 2/1+i +Z 2/1−i )],  (9) 

p i = min[1, 2 (2|Z i |)/(|Z 2/1+i |+ |Z 2/1−i |)],     (10) 

where the discrete function Z is calculated by formulas (3), 

(7). If to take into account end conditions (5) and the 

definition (3) for parameters h i , it is easy to establish, that the 

coefficient matrix of the system (5),(8) is diagonally dominant 

and thus invertible. Therefore a unigue solution of this system 

exists. It may be shown [13], that these equations produce 

monotonisity preserving spline. Namely, next theorem is 

proved in [13]: 

Theorem 1. If data u i , 0 ≤ i ≤ I, are decreasing, δ 2/1+i ≤ 0, 

(increasing, δ 2/1+i ≥0 ), then cubic spline, defined on the basis 

of formulas (5),(8)-(10), is a decreasing, s’(x) ≤ 0, (increasing, 

s’(x)≥0) continues function with the continues first derivative. 

To illustrate monotonisity preservation by this spline, we 

consider again data [11], reported in table 1. Figure 2 shows 

spline (5), (8)-(10), which is increasing in agreement with 

theorem 1.  

 

Fig. 2. Monotonisity preserving spline, data [11]. 

To study the monotonic spline application to data without 

single direction of increasing or decreasing the composite 

function u=y
0

(x), 0 ≤ x ≤ 1, defined by formulas (11)-(13), is 

considered. This function includes triangular, rectangular and 

parabolic regions (see fig.3). 

y
0

=min[(x-0.1)/0.1, (0.3-x)/0.1], 0.1 ≤ x ≤ 0.3,   (11) 

y
0

= 1, 0.4 ≤ x ≤ 0.6,             (12) 

y
0

=[1-(x-0.8) 2 /0.01] 2/1 , 0.7 ≤ x ≤ 9.      (13) 

 

Fig. 3. The composite function.  

Fig. 4 shows spline (8)-(10) applied to the composite 

function. It may be observed that extrems of data and spline 

differ and intervals of spline negative values exist. The spline 

scheme preserving the data positivity is considered in section 

5.  

 

Fig. 4. Monotonisity preserving spline, the composite function.  

4. Fifth Degree Polynomial С² Spline 

It should be noted, that if p i ≡1, then equations  (4) and (8) 

are identical, since it is easy to see, that Delim[b, x] ≡ x  when 

|x|≤b, consequently, the right side of the equation (8) may be 

transformed to the form R i =3(Z 2/1+i +Z 2/1−i ) – the equation 

(4) right side. Parameters p i become less unit near points of 

discontinuities of the interpolated function or it’s first 

derivative. In this case the equation (4), which is equivalent to 

the continuity condition for the spline second derivative, is not 

satisfied and we have С¹ interpolation. We have C² 

interpolation in intervals, where the relation p i =1 is true, 

which is equivalent to the inequality 

2 2 |Z i |/(|Z 2/1+i |+ |Z 2/1−i |)≥1. 

If to take into account formulas (3) and (7), this inequality 

may be rewritten as follows 

2  min[|δ 2/1+i |,|δ 2/1−i |] ( h 2/1−i +h 2/1+i )≥ 

≥ (| δ 2/1+i |/ h 2/1+i + | δ 2/1−i |/ h 2/1−i ) h 2/1−i h 2/1+i . 
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If to consider the case |δ 2/1+i |≥|δ 2/1−i |, h 2/1−i =h 2/1+i , 

the last inequality may be transformed to the form  

| δ 2/1+i |≤ |δ 2/1−i | (2 2 -1) ≈ 1.8|δ 2/1−i | 

This inequality is true for “good” interpolated functions 

nearly everywhere (namely, outside visinities of extrema 

points u’=0), thus spline provides С² interpolation nearly 

everywhere. In a total case, when the interpolated function has 

discontinuities or discontinuities of the first derivative, spline 

is C¹ continues. To increase the spline smoothness and to 

provide continuity of the spline second derivative, a fifth 

degree additional term is used here. Let next formulae is used 

instead of the formulae (1): 

S (x)=s(x)+ξ 2  (1-ξ ) 2 [ q i ξ - q 1−i  (1-ξ )]r 2/1−i , (14) 

where s(x) is spline (8)-(10). This expression contains two 

families of  parameters  q i , 0 ≤ i ≤ I, and  r 2/1−i ,  0<i ≤ I. 

Parameters q i are chosen to provide continuity of the spline 

second derivative, parameters r 2/1−i are chosen to minimize 

undesirable oscillations, which may be resulted from fifth 

degree term addition. The formulae (14) leads to the 

expression 

S''(x i -0)=s''(x i -0)+2q i r 2/1−i /h
2

2/1−i . 

Similarly, if to consider the subinterval [x i ,x 1+i ], next 

expression may be derived 

S''(x i +0)=s''(x i +0)- 2 q i r 2/1+i  h
2

2/1+i  

If to subtract the previous relation from the last one, the 

second derivative continuity condition  

S''(x i +0)-S''(x i -0)=0 

leads to the formulae 

q i =0.5 ∆ s''(x i ) /( r 2/1+i /h
2

2/1+i + r 2/1−i /h
2

2/1−i ), 

where ∆ s''(x i ) is given by the expression (2). This formulae 

may be dealt only at inner knots, 0<i<I. Zero values of 

parameters  q i are used at end knots i=0 and i=I. Trial 

calculations show, that the choice   

r 2/1+i =|Z 2/1+i | h
2

2/1+i =|u 1+i  -u i |          (15) 

provides absence of undesirable oscillations. Other choices, 

for example, the choice r 2/1+i = h
2

2/1+i , may provide 

significant oscillations appearing. The written above choice of 

parameters r 2/1+i  leads to formulas  

q i =0.5 ∆ s''(x i ) /( |Z 2/1+i |+|Z 2/1−i |),  0<i<I,   (16) 

q 0 =0,  q
I
=0.                  (17) 

So, we have received spline, which has the С² smoothness 

similarly to classical cubic spline. But recent spline does not 

produce undesirable oscillations. It is empirical fact and 

monotonisity preserving is not proved.  Fig. 4 shows third 

and fifth degree splines applied to step function data: 

u(0.0)=0.0. u(1.0)=0.0, u(3.0)=1.0, u(4.0)=1.0. Both splines 

are monotonic, C²-spline looks more pleasant, to our opinion.  

 

Fig. 5. Monotonisity preserving cubic spline and C² fifth degree spline, step 

function interpolation.  

C² fifth degree spline is applied also to data [11] (see table 1) 

and to Radio chemical data (see table 2). Both data are 

monotonic. Monotonic curves are observed in both cases. 

Third degree and fifth degree splines are similar, differences 

between these splines are located near break points of 

interpolated functions (see, for example, fig. 5). 

5. Positivity Preserving Cubic Spline 

To present this spline, we need in the more complicated 

definition of parameters p i , then the definition (10): 

If Z 2/1+i Z 2/1−i ≤0 then p i =0 else      (18) 

p i =min[1, 2 (2|Z i |)/(|Z 2/1+i |+ |Z 2/1−i |)], 

These parameters are used in equations (8)-(9). To study 

property of spline (8)-(9),(18) we should note that if  

Z 2/1+i Z 2/1−i ≤ 0,  then  p i =0 and hence the equation (8) 

yields the relation v i =0, which may be considered as a new 

end condition. So, to study positivity preservation of new 

spline (8),(9),(18) we should investigate autonomously spline 

properties for each interval of monotonisity of discrete data. 

Let the left end of the monotonisity interval is placed at the 

knot x j , the right end at the knot x J . End conditions of three 
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type are possible for this interval, due to the location of this 

interval in the global interval [0,a]: 

2v j +v 1+j = 3δ 2/1+j , v J =0, if j=0 and J<I,   (19) 

v j =0, 2v J  +v 1−J =3δ 2/1−J , if j>0 and J=I,    (20) 

v j =0, v J  =0, if j>0 and J<I.          (21) 

Тheorem 2. Splines, defined by formulars (8),(9),(18),(19), 

(8),(9),(18),(20) or (8),(9),(18),(21) are continues functions 

with continues first derivatives, and if discrete data are 

decreasing, δ 2/1+i ≤ 0, (increasing, δ 2/1+i ≥0) throughout the 

interval [x j ,x J ], 0=x 0 ≤ x j , x J ≤ x I =a, then splines are 

decreasing, s’(x) ≤ 0, (increasing, s’(x)≥0) throughout this 

interval.   

The continuity of splines and its first derivative is followed 

from the formulae (1). To investigate monotonisity 

preservation by new splines we should consider two cases. In 

the first case extremas are at neighbouring knots, x 1−J  and 

x J . If to differentiate the formulae (1) and to substitute to the 

resulting formulae relations v i=v J =0, v 1−i =v 1−J =0, we may 

receive s’(ξ )=6ξ (1-ξ )(u J  -u 1−J )/h 2/1−J , 0 ≤ ξ ≤ 1, for 

the mentioned subinterval. Since ξ (1- ξ )≥0, expressions 

s’(ξ ) and (u J  -u 1−J )/h 2/1−J  have the same sign, thus spline 

is increasing (decreasing) if u 1−J ≤ u J  (u 1−J ≥u J ) through 

the subinterval [x 1−J , x J ]. 

Wnen the monotonisity interval contains three or more 

knots, we should investigate the equation (8), added by 

relations (9), (18) and end conditions (19), or (20), or (21). 

Proof of monotonisity preservation by spline is nearly the 

same for all end conditions. The proof plan is next. We 

establish some limitations on values of the spline first 

derivative at interpolation knots. These limitations allow to 

prove, that the spline first derivative has necessary sign at 

every point of the monotonisity interval. Which limitations 

should be done? Of course, a first limitation is positivity of 

spline first derivative values at interpolation knots for 

increasing data and their negativity for decreasing data. A 

second limitation is a limitation on moduli of these values. A 

converging iteration is defined for solving equations (8)-(9). 

We prove that if necessary limitations are defined by starting 

first derivative values, these limitations are satisfied for all 

iteration numbers. 

For example, let be the case of end conditions (20) and 

increasing data u i . We suppose stricly increasing data, 

u i -u 1−i >0 becouse if for some knot u i -u 1−i =0, then it is 

possible to consider a less monotonisity interval with stricly 

increasing data. It is easy to see, that if data u i  are stricly 

increasing, that is to say Z 2/1−i >0, Z 2/1+i >0, then 

|Z 2/1+i |=Z 2/1+i , |Z 2/1−i |=Z 2/1−i , beside of it, the function 

Delim in formulas (7), (9), (18) has positive arguments and 

thus may be transformed, Delim(a,b) =min(a,b). As a result, 

the formulae (18) may be written as follows 

p i = min[1, 2 2 min(Z 2/1+i ,Z 2/1−i )/(Z 2/1+i +Z 2/1−i )]. 

If to substitute this expression to the formulae (9) and to 

omit again modulus signs |, next expression may be recieved 

R i  =3min{min[ (Z 2/1+i + Z 2/1−i ), 

2 2 min(Z 2/1+i ,Z 2/1−i ) ],( Z 2/1+i +Z 2/1−i )}, 

Since a consecutive application of the function min is 

equivalent to a single application of this function to a list of all 

arguments, next equation may be derived instead of the 

equation (8) 

v 1−i p i /h 2/1−i +2(3-p i )v i / h i +v 1+i p i /h 2/1+i = 

=3min(2 2  Z 2/1−i , Z 2/1−i + Z 2/1+i ,2 2  Z 2/1+i ). 

If to substitute parameters Z to this equation from the 

definition (3) and if to place iteration indexes k and k-1 to this 

equation and to end relations (20), the Yacoby iteration may be 

defined by equations 

v
k

i
2(3-p i )/h i = 3min(2 2 δ 2/1−i /h i ,  

(22) δ 2/1−i /h 2/1−i +δ 2/1+i /h 2/1+i , 2 2 δ 2/1+i /h i )- 

-v
1

1

−
−

k

i
p i /h 2/1−i -v

1

1

−
+

k

i
p i /h 2/1+i , 

v
k

j = v
1−k

J
=0,  2v

k

J
=3δ 2/1−J -v

1

1

−
−

k

I
.            (23) 

We have mentioned above that this iteration should 

preserve some limitations. Let next relations are true for the 

iteration number k-1: 

0 ≤ v
1−k

i ≤ 1.5 2 min(δ 2/1−i , δ 2/1+i ), j+1 ≤ i ≤ J-1, (24) 

0 ≤  v
1−k

J
 ≤  1.5 2 δ 2/1−J .          (25) 

Zero starting values of the first derivative may be used in 

this iteration v
0

i =0, j ≤ i ≤ J, which satisfies to relations 

(24)-(25). We should prove that these relations are true for the 

iteration number k too:  

0 ≤ v
k

i ≤ 1.5 2 min(δ 2/1−i , δ 2/1+i ), j+1 ≤ i ≤ J-1,  (26) 

0 ≤  v
k

J
 ≤  1.5 2 δ 2/1−J .              (27) 

To prove these relations we need in next auxiliary 

inequalities 
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v
1

1

−
+

k

i
 ≤  1.5 2 δ 2/1+i ,               (28) 

v
1

1

−
−

k

i
 ≤  1.5 2 δ 2/1−i .               (29) 

Really, if the index relation i+1≠J is true, then inequality (28) 

follows from the relation (24) and obvious property of the 

function min, min(a,b) ≤ a,  min(a,b) ≤ b, else this 

inequality is a part of the double inequality (25). Similarly, if 

the index relation i-1 ≠j is true, then the inequality (29) follows 

from the relation (24) and mentioned above property of the 

function min, else this inequality follows from the first relation 

(23), v
1−k

J =0. Inequalities (28)-(29) are proved. 

If to replace discrete parameters δ 2/1−i , δ 2/1+i  in the 

relation (22) by their least value min(δ 2/1−i , δ 2/1+i )  and if to 

take into account the definition h i = 

=2h 2/1−i h 2/1+i /( h 2/1−i +h 2/1+i ),  next relation may be 

received 

v
k

i
2(3-p i )/h i ≥  min(δ 2/1−i , δ 2/1+i )× 

×3min(2 2 /h i ,2/h i ,2 2 /h i )- 

-v
1

1

−
−

k

i
p i /h 2/1−i -v

1

1

−
+

k

i
p i /h 2/1+i , 

If to use the obvious relation min(2 2 /h i , 

2/h i ,2 2 /h i )=2/h i  and if to replace subtrahends by 

their maximum values, which are given by inequalities 

(28),(29), next relation may be derived 

v
k

i
 2(3-p i )/h i ≥  min(δ 2/1−i , δ 2/1+i )6/h i -1.5 2 × 

(δ 2/1−i /h 2/1−i + δ 2/1+i /h 2/1+i )p i . 

The definition (18) yealds the relation p i ≤  

≤ 2 min(δ 2/1+i , δ 2/1−i ) z i /(δ 2/1+i /h 2/1+i  + 

+δ 2/1−i /h 2/1−i ). If to increase the subtrahend in the last 

formulae by usage of this relation, we have 

v
k

i
2 (3-p i )/h i ≥  min(δ 2/1−i , 

δ 2/1+i )6/h i -3 2 2 min(δ 2/1+i , δ 2/1−i )/h i =0. 

Thus, left parts of relations (26), namely, positivity of 

parameters v i  is proved for inner knots. We should prove 

it’s positivity for the end knot J, that is to say, we should prove 

left part of the relation (27). If to increase the subtrahend in the 

second formulae (23) by usage of the relation (25), we have 

2v
k

J
 ≥ 3 δ 2/1−J - 1.5 2 δ 2/1−J . 

Since the right side of this relation is positive, new value of 

the spline derivative v i  
is positive at the end knot i=J. We 

have the steady condition v i =0 at the end knot i=j. Thus, 

new values of the spline derivative v i  are positive at all 

knots. 

To prove right sides of inequalities (26)-(27), we should 

take away positive subtrahend and take away the second 

argument of the function min in the relation (22). Since both 

operations may only increase this expression, we have 

v
k

i
2 (3-p i )/h i ≤  3 min(2 2 δ 2/1−i /h i ,2 2 × 

×δ 2/1+i /h i ). 

If to replace the parameter p i by the most possible value 1 

at the left side of this relation, we may only decrease this side. 

As a result we have 

v
k

i ≤  1.5 2   min(δ 2/1−i , δ 2/1+i ). 

So, the right inequality (26) is true at inner knots. If to take 

away the positive subtrahend at the right side of the second 

equality (23), we have  

v
k

J
 ≤  1.5 δ 2/1−J . 

Hence the right inequality (27), containing the coefficient 

1.5 2  instead of the coefficient 1.5 here, is true too. 

So, the considered iteration preserves necessary evaluations. 

This iteration may be written by the formulae V k =AV 1−k +B, 

where V is a vector-column with components v i , A={ }ila , 

j ≤ i ≤ J, J ≤ l ≤ J, is a matrix, which has only two diagonals, 

where elements differ from zero. They are placed near the 

main diagonal. The diagonal above the main diagonal contains 

elements 0, q 1+j ,...,q 1−J , where q i =-p i h i /[2h 2/1+i  

(3-p i )]. The diagonal under the main diagonal contains 

elements r 1+j ,…,r 1−J , -1/2, where  r i = -p i h i /[2h 2/1−i  

(3-p i )]. 

It is easy to establish, that the matrix norm may be written 

as A ∞ = max Jij ≤≤ ∑ Jl

jl

=
= |a il | =max 

(0,w 1+j ,...,w 1−J ,1/2), where w i =|r i |+|q i |=h i [1/ 

h 2/1−i +1/h 2/1+i ]/[2 (3-p i )]=p i /(3-p i ). Since the most 

possible value of w i  is ½ (this value is achieved when 

p i =1), then A ∞  ≤½<1, hence this iteration converges. 

The proof of convergence and neseccary limitations 

preservation is nearly the same for splines with end conditions 

(19) and (21), but the matrix norm may be written as A ∞ = 

max (1/2,w 1+j ,...,w 1−J ,0) ≤ 1/2 and  A ∞ = max 

(0,w 1+j ,...,w 1−J ,0) ≤ 1/2, correspondingly. 

Since evaluations (26)-(27) for spline derivative values are 
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true for each iteration number k, these evaluations are true for 

the iteration consequence limit. 

Now we should prove that inequalities (26)-(27) provide 

necessary sign of the spline derivative at any point. Again we 

consider the case of increasing data, δ 2/1−i ≥0, δ 2/1+i ≥0. The 

differentiation of the formulae (1) gives the result that 

s’=6ξ (1-ξ ) δ 2/1−i +v 1−i (1-ξ )(1-3ξ )+ v i ξ (3ξ -2),   0 

≤ ξ ≤  1. 

After some algebra this relation may be rewritten as follows 

s’= ξ (1-ξ )[6 δ 2/1−i  -2.5 v 1−i ξ  -2.5× 

×v i (1-ξ )]+v 1−i (1-ξ )(1-3ξ +2.5ξ 2 )+ 

+v i ξ (2.5ξ 2 -2ξ +.5). 

All three terms in this expression are positive. Necessary 

sign of last two terms follows from positivity of polynomials, 

which are factors of these terms. To show positivity of the first 

term, most dangerous values of parameters v 1−i , v i should 

be considered. These values are given by next inequalities, 

which are resulted from relations (24)-(25) (the proof of these 

inequalities is similar to the proof of inequalities (28)-(29) and 

so is omitted):  

v 1−i ≤  1.5 2  δ 2/1−i , v i ≤  1.5 2 δ 2/1−i . 

It should be noted, that if i-1=j, then v 1−i =0 (see form.(20)), 

but this case is not considered here since more dangerous case, 

which is given by inequalities, written above, is investigated. 

If to multiply the first inequality by the factor 2.5 ξ , the 

second inequality by the factor 2.5(1-ξ ) and to sum up, the 

resulting inequality may be written as follows 

2.5 v 1−i ξ  +2.5 v i (1-ξ ) ≤ 2.5×1.5 2  δ 2/1−i ≤ 6δ 2/1−i . 

The first term is thus positive too. So, the spline derivative 

is positive at each point in the increasing data interval. 

Negativity of the spline derivative in the decreasing data 

interval may be proved similarly. Theorem 2 is proved. 

 

Fig. 6. Positivity preserving C¹ spline, the composite function (see fig. 3) 

Figs. 6,7 shows results of a positivity preserving spline 

scheme application to the composite function (form. (11)-(13), 

fig.3) and to Radio chemical data, reported in table 2. Splines 

are monotonic in each interval of data monotonisity, thus data 

positivity is preserved in agreement with the proved above 

theorem. 

Radio chemical data include little scale region near the start 

of coordinate system, containing four knots and shown in the 

additional fragment of fig. 7.  

Table 2. Radio chemical data 

x i  u i  

7.99 0. 

8.09 2.76429e-5 

8.19 4.37498e-2 

8.7 0.169183 

9.2 0.469428 

10. 0.943740 

12. 0.998636 

15. 0.999916 

20. 0.999994 

 

Fig. 7. Positivity preserving C¹ spline, radio chemical data. 

C
2

modification of positivity preserving spline is also 

considered with usage of formulas (14)-(16). It is observed, 

that fifth degree spline scheme produces positive curves when 

this scheme is applied to positive radio chemical data and to 

the composite function (see form. (11)-(13)). These curves are 

closed to those produced by positivity preserving C¹ spline 

(figs. 6,7) and so are omitted here. 

6. Conclusion 

We consider positivity and monotonisity preserving splines, 

which are linear and thus do not require iteration to calculate 

spline coefficients. For comparison, rational splines [8-10] 

require solving systems of nonlinear equations or linear 

equations containing shape parameters depending globally on 

unknowns, thus nonlinear systems are solved in both cases. 

Cubic splines, considered here, are proved to preserve 

monotonisity or positivity of monotonic or positive data. 

These splines may be considered as classical cubic spline C¹ 

modifications. Fifth degree polynomial splines are developed 

to provide continuity of the second derivative. These splines 

are constructed as a sum of base cubic C¹ splines mentioned 
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above and fifth degree terms, which are chosen to get 

C
2

smoothness. These splines and base cubic splines applied 

to monotonic or positive data are observed to have the same 

shape preservation properties. 
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