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Abstract: In this paper numerical solution to system of linear Fredholm integral equations by modified midpoint method is 

considered. This method transforms the system of linear Fredholm integral equations into a system of linear algebraic 

equations that can be solved easily with any of the usual methods. Finally, some illustrative examples are presented to test this 

method and the results reveal that this method is very effective and convenient by comparison with exact solution and with 

other numerical methods such as midpoint method, trapezoidal method, Simpson's method and modified trapezoidal method. 

All results are computed by using a programs written in Matlab R2012b. 
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1. Introduction

Mathematical modeling for many problems in different 

disciplines, such as engineering, chemistry, physics and 

biology leads to integral equation, or system of integral 

equations. Most differential equations can be expressed as 

integral equations. Also, a system of differential equations 

can be written as a system of integral equations, [1, 2]. For 

these reasons the great interest for solving these equations. 

Since these equations usually cannot be solved explicitly, so 

the numerical solutions have been highly studied by many 

authors, [1-4]. 

Now we consider the following systems of linear 

Fredholm integral equation of the second kind:  

b

a
U(x) F(x) K(x, y)U(y)dy,= + ∫  x [a, b].∈      (1.1) 

where  

[ ]
[ ]

T
1 2 m

T
1 2 m

ij

U(x) u (x), u (x), , u(x) ,

F(x) f (x), f (x), , f (x) ,

K(x, y) k (x, y) , i, j 1(1)(m).

=

=

= =  

…

…
 

In system (1.1) the known kernel K(x, y) is continuous, the 

function F(x) is given, and U(x) is the solution to be 

determined. There are several numerical methods for solving 

this system. For example, Rationalized Haar functions 

method [5], Block–Pulse functions method[6], Expansion 

methods [7, 8], Decompostion method [9] and Orthogonal 

Triangular functions method [10]. 

In recent years, a new class of quadrature formulas are 

introduced called as modified (corrected) Newton-Cotes 

formula which based on derivatives of the function. The uses 

of modified quadrature formula for solving integral equations 

and their systems have been considered by many authors: 

modified trapezoidal [11-13 ], modified Simpson’s [13-16 ] 

and modified midpoint method [17].  

In this paper, we want to find the numerical solution for 

the system given by eq (1.1) by using the repeated modified 

midpoint formula for definite integral:  

[ ]
2b n

jj 1a

47h (b a) (4)
f ( ).

5760

h
f (x)dx h f (x ) f (a) f (b)

24=
−

+′ ′= + −∑∫ η  (1.2) 

where n is the number of subinterval of [a, b], 

b ah , x a ( j 1 / 2)h, j 1(1)nn j
−= = + − = and (a, b)η∈ . 

To do this, we assume the functions 
k (x,y)ij

x

∂
∂

, 
k (x,y)ij

y

∂
∂

 

and if (x)′  exist for all i, j 1(1)m= .  

For further information on formula (1.2) and other 

modified quadrature formulas, see [18-25]. 
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2. Modified Midpoint Method 
 

Consider the ith equation of system (1.1) 

m b

i i ij j
a

j 1

u (x) f (x) k (x, y)u (y)dy ,

=
= +∑∫  i 1(1)m=    (2.1) 

To solve eq. (2.1), we approximate the integral part that 

appeared in the right hand side by the repeated modified 

midpoint formula to get, 

 

)ij 0 j 0 ij n 1 j n 1 ij n 1 j n 1k (x, x )u (x ) J (x, x )u (x ) k (x, x )u (x ) ,+ + + + ′ ′+ − −
     

(2.2) 

 where, 
0 n 1

x a, x b+= =  and 
ij

ij

k (x, y)
J (x, y) ,

y

∂
=

∂  i, j 1(1)m= .  

Hence for x =
rx , r 0(1)(n 1),= +  we get the following  

system of equations: 

(2m n h
ir ir ijrs js ijr0 j024j 1 s 1

u f h k u J u
= =
= + +∑ ∑  

)ijr0 j0 ijr n 1 jn 1 ijr n 1 jn 1k u J u k u+ + + + ′ ′+ − −
       (2.3) 

where  

ir i ru u (x ),= ir i rf f (x ),=  

i0 i 0 in 1 i n 1u u (x ), u u (x ),+ +′ ′ ′ ′= =  

ijrs ij r sJ J (x ,x ),=  ijrs ij r sk k (x , x )= . 

If we differential both sides of equation (2.1) with respect 

to x and setting H (x, y)ij =  
k (x,y)ij

x

∂
∂  one can obtain: 

bm

i i ij jj 1 a
u (x) f (x) H (x, y)u (y)dy, i 1(1)m

=
′ ′= + =∑ ∫ . (2.4) 

We note that if u a solution of eq.(2.1) then it is a solution 

of eq.(2.4) too. Now, for solving eq.(2.4), we must 

consider two cases, and for simplify let L (x, y)ij =
2

y

k (x,y)ij
x∂

∂
∂

. 

 

Case 1: The partial derivatives
 ( , )L x yij  exists for each 

{ }, 1, 2,...,∈i j m . 

In this case, we approximate the integral part that appeared 

in the right hand side of eq.(2.4) by the repeated modified 

midpoint formula to get, 

(
)

2m n h
i i ij s j s ij 0 j 024j 1 s 1

ij 0 j 0 ij n 1 j n 1 ij n 1 j n 1

u (x) f (x) h H (x, x )u (x ) L (x, x )u (x )

H (x, x )u (x ) L (x, x )u (x ) H (x, x )u (x )

= =

+ + + +

′ ′= + +


′ ′+ − −


∑ ∑
 

(2.5) 

By setting x = rx , r 0(1)(n 1)= +  in eq.(2.5), one can 

get  

2m nh
ir ir ijr0 j0 ijrs js24j 1 s 1

u f L u h H u
= =
′ ′= + +∑ ∑  

( )2 2h h
ijr n 1 jn 1 ijr0 j0 ijr n 1 jn 124 24

L u H u H u+ + + +
′ ′− + − 

       

(2.6) 

where  

ir i rf f (x )′ ′= , ijrs ij r sH H (x , x )=  and ijrs ij r sL L (x , x )= . 

From eq.(2.6) and eq.(2.3) one can get the following 

system which consist of m(n+4) equations and m(n+4) 

unknowns:{ }i0 i1 in 1 i0 in 1u , u ,..., u , u , u , i 1(1)m+ +′ ′ = . 

( )
( )

2 2 2

2 2 2

2

m n
h h h

ir ir ijr0 j0 ijrs js ijr n 1 jn 1 ijr0 j0 ijr n 1 jn 124 24 24j 1 s 1

m n
h h h

i0 i0 ij00 j0 ij0s js ij0n 1 jn 1 ij00 j0 ij0n 1 jn 124 24 24j 1 s 1

h
in 1 in 1 24

u f J u h k u J u k u k u ,

u f L u h H u L u H u H u ,

u f

+ + + += =

+ + + += =

+ +

 ′ ′= + + − + − 

 ′ ′ ′ ′= + + − + − 

′ ′= +

∑ ∑

∑ ∑

( )2 2m n
h h

ijn 10 j0 ijn 1s js ijn 1n 1 jn 1 ijn 10 j0 ijn 1n 1 jn 124 24j 1 s 1
L u h H u L u H u H u+ + + + + + + + += =







  ′ ′+ − + −  ∑ ∑

     (2.7) 

By solving the above system the numerical solutions of 

eq.(2.1) are obtained. 

Case 2: The partial derivatives ( , )ijL x y  does not exist.  

In this case, we approximate the integral part that appeared 

in the right hand side of eq. (2.4) by the repeated midpoint 

formula to get, 

( )m n
i i ij s j s

j 1 s 1
u (x) f (x) h H (x, x )u (x ) , i 1 1 m.

= =
′ ′= + =∑ ∑  (2.8) 

By setting 
0 1 n 1x x ,x , ,x ,+= …  in eq.(2.8), one can get: 

m n

ir ir ijrs jsj 1 s 1
u f h H u

= =
′ ′= + ∑ ∑ , r 0(1)(n 1)= + .  (2.9) 

From eq.(2.9) and eq.(2.3) one can get the following 

system which consists of m(n+4) equations and m(n+4) 

unknowns: 

 

(2m n h
i i ij s j s ij 0 j 024j 1 s 1

u (x) f (x) h k (x, x )u (x ) J (x, x )u (x )
= =
= + +


∑ ∑
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( )

( ) ( )

2 2 2m nh h h
ir i r ijr0 j0 ijrs js ijr n 1 jn 1 ijr0 j0 ijr n 1 jn 124 24 24j 1 s 1

m n

i0 i0 ijr0 j0j 1 s 1

m n

in 1 in 1 ijr n 1 jn 1j 1 s 1

u f J u h k u J u k u k u ,

u f h H u ,

u f h H u ,

i 1 1 m, r 0 1 (n 1).

+ + + += =

= =

+ + + += =

  ′ ′= + + − + − 
 ′ ′= +

 ′ ′= +

 = = +

∑ ∑

∑ ∑

∑ ∑
      (2.10) 

By solving the system given by eq. (2.10), the numerical 

solutions of eq.(2.1) are obtained. 

3. Numerical Examples 

In this section we give three numerical examples to test the 

Modified Midpoint method for solving system of linear 

Fredholm integral equations of the second kind. All results 

are computed by using a programs written in Matlab R2012b. 

In order to show the efficiency and high accuracy of the 

present method we compared the results with the exact 

solutions numerically in the tables (1-4). Also, we compared 

the error functions which obtained by our method and other 

numerical methods such as Midpoint, Trapezoidal, Simpson’s 

and Modified Trapezoidal graphically in the figures (1-4). 

Finally, the following notations are used in the tables and 

figures. 

 
��(�) Exact Solution 

���(�) Approximation solution 

MMP(I) Modified Midpoint method case 1, eq.(2.7) 

MMP(II) Modified Midpoint method case 2, eq.(2.10) 

MT Modified Trapezoidal method 

MP Midpoint method 

T Trapezoidal method 

S Simpson’s method 

n Number of subinterval 

 

and the error function is given by : 

��(�) = |��(�) − ���(�)|. 

Example 1:  

Consider the following system of linear Fredholm integral 

equations of the second kind, [12] 

( )

( )

2 2

1 1 2

2 4 2

2 1 2

1 1
25 5
12 6 0 0

1 1
7 1

12 5 0 0

u (x) 1 x x x 1 y u (y)dy x y u (y)dy

u (x) x x x xy u (y)dy x xy u (y)dy

 = − + + + +

 = − − + + + −


∫ ∫

∫ ∫
  (3.1) 

where the exact solution ( ) ( )2 4

1 2
u (x),u (x) x 1, x= +  and the 

partial derivative ijL (x, y)  exists. Therefore, this system can 

be solved by using MMP(I) and the results presented in table 

1 and fig. 1.  

Table 1. The numerical results for example 1 with n=10 and n=30. 

x ��(
) ���(
)  ��(
) ���(
)  

  n=10 n=30  n=10 n=30 

0 1 1 1 0 0 0 

0.05 1.00250000 1.00250190 1.00250002 0.00000625 0.00000649 0.00000625 

0.15 1.02250000 1.02250586 1.02250007 0.00050625 0.00050709 0.00050626 

0.25 1.06250000 1.06251004 1.06250012 0.00390625 0.00390785 0.00390627 

0.35 1.12250000 1.12251443 1.12250018 0.01500625 0.01500876 0.01500628 

0.45 1.20250000 1.20251904 1.20250024 0.04100625 0.04100982 0.04100629 

0.55 1.30250000 1.30252386 1.30250029 0.09150625 0.09151104 0.09150631 

0.65 1.42250000 1.42252889 1.42250036 0.17850625 0.17851241 0.17850633 

0.75 1.56250000 1.56253414 1.56250042 0.31640625 0.31641394 0.31640634 

0.85 1.72250000 1.72253960 1.72250049 0.52200625 0.52201562 0.52200637 

0.95 1.90250000 1.90254527 1.90250056 0.81450625 0.81451746 0.81450639 

1 2 2.00004819 2.00000059 1 1.00001218 1.00000015 
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Fig. 1. The error function via MMP(I), MP, T, S and MT for example 1 with n=10. 

Example 2:  

Consider the following system of linear Fredholm integral 

equations of the second kind: 

1 1x x y (x 2)y
1 1 20 0

1 1x x xy (x y)
2 1 20 0

x 1e 1
x 1

x 1e 1
x 1

u (x) 2e e u (y)dy e u (y)dy

u (x) e e e u (y)dy e u (y)dy

− +

− +

+ −
+

+ −
+

 = + − −

 = + + − −


∫ ∫

∫ ∫
                                 (3.2) 

This system of integral equations has been solved by 

Block-Plus Function (BPF) in [6] and the exact solution is

( ) ( )x x
1 2u (x), u (x) e ,e .−=  Also the partial derivative ijL (x, y)  

exists. Therefore, similar to example 1 this system can be 

solved by using MMP(I) and the results presented in fig. 2 

and tables 2 and 3. 

Table 2. The numerical results for example 2 with n=10 and n=30. 

x ��(
) ���(
)  ��(
) ���(
)  

  n=10 n=30  n=10 n=30 

0 1 1.00000375 1.00000005 1 0.99999918 0.99999999 

0.05 1.05127110 1.05127492 1.05127114 0.95122942 0.95122862 0.95122941 

0.15 1.16183424 1.16183820 1.16183429 0.86070798 0.86070719 0.86070797 

0.25 1.28402542 1.28402948 1.28402547 0.77880078 0.77879998 0.77880077 

0.35 1.41906755 1.41907166 1.41906760 0.70468809 0.70468723 0.70468808 

0.45 1.56831219 1.56831628 1.56831224 0.63762815 0.63762717 0.63762814 

0.55 1.73325302 1.73325700 1.73325307 0.57694981 0.57694863 0.5769498 

0.65 1.91554083 1.91554458 1.91554088 0.52204578 0.52204428 0.52204576 

0.75 2.11700002 2.11700338 2.11700006 0.47236655 0.4723646 0.47236653 

0.85 2.33964685 2.33964963 2.33964689 0.42741493 0.42741234 0.4274149 

0.95 2.58570966 2.58571161 2.58570968 0.38674102 0.38673757 0.38674098 

1 2.71828183 2.71828325 2.71828185 0.36787944 0.36787545 0.36787939 

 

In table 3 we list the results obtained by MMP(I) with n=5 

and compared with BPF results given in [6] at m=36. As we 

see from this table, it is clear that the result obtained by the 

present method is better than the results obtained by BPF 

method.  

Moreover the Results of example 1 and 2 by MMP(I) and 

MMP(II) together are plotted in fig. 3 and show that MMP(I) 

solves system (1.1) more accurately than MMP(II), because 

in MMP(I) we use modified midpoint method for solving 

eq.(2.4) instead midpoint method. 
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Table 3. The numerical solutions for example 2 obtained by MMP(I) and 

BPF , [6] with exact solutions. 

 Exact MMP(I) with (n=5) BPF with (m=36), [6] 


 ��(
) ��(
) ���(
) ���(
) ���(
) ���(
) 

0 1 1 1.00006 0.99999 1.01047 0.98470 

0.1 1.10517 0.90484 1.10523 0.90482 1.11641 0.89657 

0.3 1.34986 0.74082 1.34992 0.74081 1.34547 0.74351 

0.5 1.64872 0.60653 1.64879 0.60651 1.6230 0.61621 

0.7 2.01375 0.49659 2.01381 0.49659 2.01982 0.49520 

0.9 2.45960 0.40657 2.45964 0.40652 2.43651 0 .41070 

1 2.71828 0.36788 2.71831 0.36782 2.67611 0 .37401 

 

Fig. 2. The error function via MMP(I), S and MT for example 2 with n=10. 

 

Fig. 3. Comparsin error functions via MMP(I), S and MT for example 1 and 2 with n=10. 

Example 3:  

Consider the following system of linear Fredholm integral 

equations of the second kind: 

3/2 2
1 1 2

4 3
2 2 2

1 1

1
0 0

1 1

1
0 0

u (x) f (x) (x y) u (y)dy (x y) u (y)dy

u (x) f (x) (x y) u (y)dy (x y) u (y)dy

 = − + − −

 = − − − −


∫ ∫

∫ ∫
              (3.3) 

where 

2 9/2

1

7 7 11 16

60 30 12 315
f (x) x x x= − + + +  

9/2 7/2 2 5/2
(x 1) x(x 1) x (x 1) ,

2 4 2

9 7 5
− + + + − +

 

2 3 4

2

1 41 3 32 1

30 60 20 12 3
f (x) x x x x= − − + + − . 

and the exact solution ( ) ( )2 2 3

1 2u (x), u (x) x , x x x= − + + . 

        In this system, we note that 
1/2

11
3

4
L (x, y) (x y)−−= +  not 

exists at (x, y) (0,0)= .  Therefore, we used MMP(II) to solve 

this system and the results presented in table 4 and fig. 4. 
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Table 4. The numerical results for example 3 with n=10 and n=30. 

x ��(
) ���(
)  ��(
) ���(
)  

  n=10 n=30  n=10 n=30 

0 0 0.00000078 0.00000001  0 -0.00001061 -0.00000013 

0.05 0.0025 0.00249936 0.00249999 -0.047375 -0.04738417 -0.04737511 

0.15 0.0225 0.02249644 0.02249996 -0.124125 -0.12413184 -0.12412508 

0.25 0.0625 0.06249333 0.06249992 -0.171875 -0.17188006 -0.17187506 

0.35 0.1225 0.12249003 0.12249988 -0.184625 -0.18462864 -0.18462505 

0.45 0.2025 0.20248653 0.20249983 -0.156375 -0.15637746 -0.15637503 

0.55 0.3025 0.30248283 0.30249979 -0.081125 -0.08112641 -0.08112502 

0.65 0.4225 0.42247895 0.42249974 0.047125 0.04712456 0.04712499 

0.75 0.5625 0.56247488 0.56249969 0.234375 0.23437545 0.23437501 

0.85 0.7225 0.72247064 0.72249965 0.486625 0.48662621 0.48662501 

0.95 0.9025 0.90246621 0.90249958 0.809875 0.80987678 0.80987502 

1 1 0.99996393 0.99999955 1 1.00000196 1.00000002 

 

 

Fig. 4. The error function via MMP(I), S and MT for example 3 with n=10. 

4. Conclusions 

Modified Midpoint method is applied to the numerical 

solution for solving system of linear Fredholm integral 

equations. Numerical results, compared with other methods 

such as the midpoint, Trapezoidal, Simpson, Modified 

Trapezoidal and Block Plus Function method, show that the 

presented method is of higher precision and from the 

illustrative tables, we conclude that when the number of 

subintervals n is increased we can obtain a very good 

accuracy. Also as can be seen from Table 3, MMP(I) is better 

than MMP(II) for solving system (1.1) . 
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