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Abstract: In present communication, a generalized fuzzy mean code word length of degree β	has been defined and its 

bounds in the term of generalized fuzzy information measure have been studied. Further we have defined the fuzzy mean 

code word length of type �α, β� and its bounds have also been studied. Monotonic behavior of these fuzzy mean code word 

lengths have been illustrated graphically by taking some empirical data. 
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1. Introduction 

Let X be a discrete random variable with probability 

distribution { }( , , ......, ) : 0; 1
1 2 1

n
P p p p p pn i i

i
= ≥ =∑

=
 in an 

experiment. [5] gave a mathematical formulation to measure 

uncertainty of the randomness in a probability distribution 

and information contained in an experiment as 

( ) log ,
1

n
H P p pi i

i
= − ∑

=
                    (1) 

which is called Shannon’s entropy. 

In many applications of the uncertainty function, the main 

problem generated by researchers is that of efficient coding 

of message to be sent over a noiseless channel, and to 

maximize the number of messages that can be sent over the 

channel in a given time. Let us consider that the messages to 

be transmitted are generated by a random variable 

{ , , ......, }
1 2

X x x xn= with the probability distribution 

1 2

1

( , , ......, ) : 0; 1 .
n

n i i

i

P p p p p p
=

 = ≥ = 
 

∑ Each i
x is called 

source symbol or alphabet and is represented by a finite 

sequence of symbols select from the set 

{ }, , ..., .
1 2

A a a a D= The set A is known as code alphabet 

or set of code characters and the sequence assigned to each 

; 1, 2, ...,
i

x i n=  is called code word. The number of code 

character used for a code word is called code word length. 

Let i
n  be the code word length of i

x , then mean code 

word length is given 

1

,
n

i i

i

L p n
=

=∑                    (2) 

where 
ip  is the probability of occurrence of i

x  satisfying 

Kraft’s inequality 

1

1,i

n
n

i

D
−

=

≤∑                    (3) 

where � is the size of code alphabet. 

In evaluating long run efficiency of communications, we 

choose codes to minimize average code word length (2). 

For uniquely decipherable codes, [5] noiseless coding 

theorem states that 

( ) ( )
1,

log log

H P H P
L

D D
≤ ≤ +            (4) 

which determines the lower and upper bounds on L  in 

terms of [5] entropy.  

To prove noiseless coding theorem, [11] inequality plays 

an important role and is uniquely determined by the 

condition for uniquely decipherability. To tackle such 

situations, instead of taking the probability, the idea of 

fuzziness can be explored.  

[10] Introduced the concept of fuzzy set in which 

imprecise knowledge can be used to define an event. 

Because of their capability to model non-statistical 

imprecision fuzzy set plays an important role in many 

systems A fuzzy set � is a subset of X and is defined as 
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( ) ( ) [ ]{ }( ) : 0,1 ;i A i A i iA x x x x X= , µ µ ∈ ∀ ∈ , 

where ( )A ixµ represents the degree of membership and is 

defined as 

( )
0, if andthereisnoambiguity

1, if andthereisnoambiguity

0.5,thereismaximumambiguity whether or

x Ai

x x Ai iA

x A x Ai i

∉

µ = ∈

∉ ∈







 

The idea of measuring fuzzy uncertainty without 

reference to probabilities began in 1972 with the work of [1] 

who defined the entropy of ( )nA P X∈  using Shannon’s 

entropy as 

[ ]
1

( ) ( ) log ( ) (1 ( )) log(1 ( ))
=

= − + − −∑
n

A i A i A i A i
i

H A x x x xµ µ µ µ   (5) 

This is called fuzzy information measure. The fuzzy 

information measure has found wide applications to 

Engineering, Fuzzy traffic control, Fuzzy aircraft control, 

Computer sciences, management and Decision making, etc. 

and those have already been studied by various authors. [6] 

Introduced a new measure of fuzzy divergence explaining its 

application to clustering problems and to an object 

extraction problem.  

In present paper, we define fuzzy mean code word lengths 

in section 2. In section 3, we also study the bounds of the 

generalized fuzzy mean code word length of degree β  in 

terms of fuzzy information measure and we study the 

bounds of the new fuzzy mean code word length of type 

( , )α β  in terms of fuzzy information measure in section 4. 

We discuss the monotonic behavior of generalized fuzzy 

mean code word lengths in section 5.  

2. Fuzzy Mean Code Word Lengths 

[12] defined fuzzy mean code word length as given 

below: 

(1 ( ))

( )
log 1 .

1

xiA
nin x Di iAL D nn j

D
j

µ

µ

− −
−

= − −
∑
=

  
  
  
  
   

          (6) 

They studied the lower and upper bounds of L in term of 

(5). 

Further based on [2], they generalized (6) as given below: 

{ }( ) (1 ( ))
log ; 0, 1,

1 1

nix x Dn i iA A
L

i

αα αα µ µ
α αα

α

−
− + −

= > ≠∑
= −

 
 
 
 

     (7) 

which was called fuzzy mean code word length of order α . 

Its lower and upper bounds were obtained in term of the 

following fuzzy information measure characterized by [6]: 

             

1
( ) log ( ) (1 ( )) ; 0, 1.

11

n
H A x xi iA Ai

α αµ µ α αα α
= + − > ≠∑

=−
      (8) 

[12] also defined fuzzy mean code word length of degree β  

as given below: 

{ }
1

1
( ) (1 ( )) 1 ; 0, 1,

11

nn i
L x x Di iA Ai

β
β ββ βµ µ β β

β

 
 
 
 

−

= + − − > ≠∑
=−

 
 
 
 

 (9) 

which was called fuzzy mean code word length of degree 

β  and studied its lower and upper bounds in term of fuzzy 

information defined by [9] and is given as 

1
( ) ( ) (1 ( )) 1 ; 0, 1.

11

n
H A x xi iA Ai

β β βµ µ β β
β

= + − − > ≠∑
=−
 
    (10) 

Corresponding to [3], [8] proposed and studied the 

measure of fuzzy entropy as given below:  

{ }( 1) ( )log ( ) (1 ( ))log(1 ( ))
1 1( ) 2 1 ,

1

n
x x x xi i i iA A A A

iH A

β µ µ µ µ
β

β

− + − −∑
== −

−

 
 
 
 

 

where 

0, 1.β β> ≠                           (11) 

Corresponding to [4], [7] studied generalized sub additive 

fuzzy information of type ( , )α β given by 

1
( ) ( ) (1 ( )) ( ) (1 ( )) ,

11 12 2

n
H A x x x xi i i iA A A Ai

β β βα αµ µ µ µα βα= + − − − −∑−− =−
 
   (12) 

where 
0 1, 1α β< < ≥  or 0 1, 1.β α< < ≥  

3. Bounds of a Generalized Fuzzy Mean 

Code Word Length of Degree β  

It may be noted that (6) can be generalized in various 

ways; however, we consider the following generalization: 

(1 ( ))

( )
(1 ) log 1

1

1
1

2 1 ;
1

xiA
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− −
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− −∑ −= ∑
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 
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where 
0, 1β β> ≠

 

and study its bounds in terms of (11).  

Theorem 1. For all uniquely decipherable codes, noiseless 

coding theorem states: 

(1 ) (1 )1
( ) ( )2 (1 ) (2 1),H A L H A

β β ββ β β− −−≤ ≤ + − −    (14) 

with equality if and only if 
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( ) ,

1

niD
x niA n j

D
j
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∑
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where ( )H A
β

 is given by (11). 

Proof.  [7] have given the following expression for 

directed divergence: 
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( ) log
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Using Kraft’s inequality, that is 
1
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( ) .H A L
ββ ≤  

For uniquely decipherable code, [5] noiseless coding 

theorem for fuzzy information measure as 

( ) ( ) 1.H A L H A≤ ≤ +  

Then we have  
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Thus (13) can be called the generalized fuzzy mean code 

word length of degree β . 

4. Bounds of Fuzzy Mean Code Word 

Length of Type ( , )α β  

In this section, we defined fuzzy mean code word length 

of type ( , )α β . 

{ } { }
11

1
( ) (1 ( )) ( ) (1 ( ))

11 12 2

nnn ii
L x x D x x Di i i iA A A Ai

βα
β α ββ βα αµ µ µ µα βα

  
     

   

−−

= + − − + −∑−− =−

 
 
 
 

 

where 0 1, 1α β< < ≥  or 0 1, 1.β α< < ≥         (17) 

Theorem 2. For all uniquely decipherable codes, noiseless 

coding theorem states: 
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where ( )H Aβ
α  is given by (12). 

Proof. By Hölder’s inequality, we have 
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Subtracting n from both sides, we get 
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Changing α  to β , we get 
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It implies 
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From (25) and (27), we have 
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Particular Cases 

1. When 1α = and 1, L
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Thus (17) can be called fuzzy mean code word length of 

type ( , )α β . 

5. Monotonic Behavior of Fuzzy Mean 

Code Word Lengths 

In this section, we study analytically the monotonic 

behavior of fuzzy mean code word length L
β

.  
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Equation (30) can be rewritten as  
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Differentiating (31) with respect to ,β we have 
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Here two cases arise: 

Case 1: When 1<β , we have 0,
d L
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β

β
<  

which shows that L
β

is a monotonically decreasing 

function of β and 1.β <  

The above result is verified by plotting the graphs on 

MATLAB for different values of β and 1.β <  

From below figure we can generalize that the value of 

L
β

decreases with respect to .β   

 

Figure 1. Relation between L
β

and ( 0)β < . 

Case 2: When 1β > , we have 0,
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which shows that L
β

is a monotonically decreasing 

function of .β  

The above result is verified by plotting the graphs on 

MATLAB for different values of β and 1.β >

 

Figure 2. Relation between L
β

and ( 0)β > . 

From above figure we can generalize that the value of 

L
β

monotonically decreases with respect to β  and 1.β >  

We have also studied the monotonic behavior of fuzzy 

mean code word length L
β
α .  

From equation (17), we have 
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Equation (32) can be rewritten as  

1
(1 ) (1 ) ,

11
2 2

L L L
β

α βα α ββα= − − −−− −
          (33) 

where 



133 Dhara Singh Hooda et al.:  On Generalized Fuzzy Mean Code Word Lengths 

 

{ }
1 1

1
( ) (1 ( )) 1

11

nn i
L x x Di iA Ai

αα αµ µα
α

 
  
 

−
= + − −∑

=−

 
 
 
 

 

and 

{ }
1 1

1
( ) (1 ( )) 1 .

11

nn i
L x x Di iA Ai

ββ βµ µβ
β

 
 
 
 

−
= + − −∑

=−

 
 
 
 

 

Differentiating (33) with respect to ,α we have 
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Here two cases arise: 

Case 1: When 0 1, 1, ,L Lα β α β< < > > we get 

0
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∂
, 

which shows that L
β
α is a monotonically increasing 

function of .α  The above result is verified by plotting the 

graphs on MATLAB for different values of ( 1)α α < and 

fixed value of β . 

 

Figure 3. Relation between L
β
α and ( 0)α < . 

Case 2: When 1,0 1, ,L Lα β α β> < < < we have 

0
L

β
α
α

∂
>

∂
, 

which shows that L
β
α is a monotonically decreasing 

function of .α  The above result is verified by plotting the 

graphs on MATLAB for different values of ( 1)α α > and 

fixed values of β . 

 

Figure 4. Relation between L
β
α and ( 0)α > . 

Again differentiating (33) with respect to ,β we have 

( )
1

2 log 2
(1 ) (1 )

2
11

2 2

1
(1 ) .

11
2 2

L
L L

d L
L

d

β βα α βα β
β βα

ββ ββα α

−∂ −
= − − −

∂ −− −

− − −−− −

  

 
 
 

 

{ }

( )
1 11

2 (1 ) log2 1 2 2 (1 ) log2

2
11

2 2

(1 )
.

11
2 2

L L LL

dL

d

β β βαβ αβ β αα
β βα

β β
βα β

− −−− − + − −∂
=

∂ −− −

−
− −− −

 

Here two cases arise: 
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Case 2: When 1,0 1, ,L Lα β α β> < < < we have 
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which shows that L
β
α  is a monotonically increasing 

function of .β   
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