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Abstract: Application of the method of moments for the parametric distribution is common in the construction of a 
suitable parametric distribution. However, moment method of parameter estimation does not produce good results. An 
alternative approach when constructing an appropriate parametric distribution for the considered data file is to use the 
so-called order statistics. This paper deals with the use of order statistics as the methods of L-moments and TL-moments of 
parameter estimation. L-moments have some theoretical advantages over conventional moments. L-moments have been 
introduced as a robust alternative to classical moments of probability distributions. However, L-moments and their 
estimations lack some robust features that belong to the TL-moments. TL-moments represent an alternative robust version of 
L-moments, which are called trimmed L-moments. This paper deals with the use of L-moments and TL-moments in the 
construction of models of wage distribution. Three-parametric lognormal curves represent the basic theoretical distribution 
whose parameters were simultaneously estimated by three methods of point parameter estimation and accuracy of these 
methods was then evaluated. There are method of TL-moments, method of L-moments and maximum likelihood method in 
combination with Cohen’s method. A total of 328 wage distribution has been the subject of research. 

Keywords: Order Statistics, L-Moments, Tl-Moments, Maximum Likelihood Method, Probability Density Function, 
Distribution Function, Quantile Function, Lognormal Curves, Model of Wage Distribution 

1. Introduction 

Moments and cumulants are traditionally used to 
characterize the probability distribution or the observed data 
set in statistics. It is sometimes difficult to determine exactly 
what information about the shape of the distribution is 
expressed by its moments of third and higher order. 
Especially in the case of a small sample, numerical values of 
sample moments can be very different from the values of 
theoretical moments of the probability distribution from 
which the random sample comes. Particularly in the case of 
small samples, parameter estimations of the probability 
distribution obtained using the moment method are often 
markedly less accurate than estimates obtained using other 
methods, such as maximum likelihood method.  

2. L-Moments 

An alternative approach is to use the order statistics. Let X 
be a random variable having a distribution with distribution 

function F(x) and with quantile function x(F), and let X1, 
X2, …, Xn is a random sample of sample size n from this 
distribution. Then X...XX nnnn ::2:1 ≤≤≤  are the order 
statistics of random sample of sample size n, which comes 
from the distribution of random variable X. 

L-moments are analogous to conventional moments and 
are estimated based on linear combinations of order statistics, 
i.e. L-statistics. L-moments are an alternative system 
describing the shape of the probability distribution.  

L-moments present the basis for a general theory, which 
includes the characterization and description of the 
theoretical probability distribution, characterization and 
description of the obtained sample data sets, parameter 
estimation of theoretical probability distribution and 
hypothesis testing of parameter values for the theoretical 
probability distribution. The theory of L-moments includes 
such established procedures such as the use of order 
statistics and Gini’s middle difference and leads to some 
promising innovations in the area of measuring skewness 
and kurtosis of the distribution and provides relatively new 
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methods of parameter estimation for individual distribution. 
L-moments can be defined for any random variable whose 
expected value exists. The main advantage of the 
L-moments than conventional moments consists in the fact 
that L-moments can be estimated on the basis of linear 
functions of the data and are more resistant to the influence 
of sample variation. Compared to conventional moments, 
L-moments are more robust to the existence of outliers in the 
data and allow better conclusions obtained on the basis of 
small samples for basic probability distribution. L-moments 
often bring even more efficient parameter estimations of 
parametric distribution than the estimations obtained using 
maximum likelihood method, especially for small samples. 
Theoretical advantages of L-moments over conventional 
moments lie in the ability to characterize a wider range of 
distribution and in greater resistance to the presence of 
outliers in the data when estimating from the sample. 
Compared with conventional moments, experience also 
shows that L-moments are less prone to bias estimation and 
approximation by asymptotic normal distribution is more 
accurate in finite samples. 

2.1. L-Moments of Probability Distribution 

Let X be a continuous random variable that has a 
distribution with distribution function F(x) and with quantile 

function x(F). Let X...XX nnnn ::2:1 ≤≤≤  are the order 

statistics of random sample of sample size n, which comes 
from the distribution of random variable X. L-moment of the 
r-th order of random variable X is defined 
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Expected value of the r-th order statistic of random 
sample of sample size n has the form 
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If we substitute equation (2) into equation (1), we obtain 
after adjustments  
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and )]([ xFP r
∗  represents the r-th shifted Legendre 

polynomial. We also obtain substituting (2) into equation (1)  
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The letter “L” in the name of “L-moments” stresses that 

the r-th L-moment λr is a linear function of the expected 
value of certain linear combination of order statistics. Own 

estimation of the r-th L-moment λr based on the obtained 
data sample is then linear combination of ordered sample 
values, i.e. L-statistics. The first four L-moments of the 
probability distribution in now defined 
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The probability distribution can be specified by its 

L-moments, even if some its conventional moments do not 
exist, but the opposite is not true. It can be proved that the 
first L-moment λ1 is the level characteristic of the probability 
distribution, the second L-moment λ2 is the variability 
characteristic, of a random variable X. It is convenient to 
standardize the higher L-moments λr, r ≥ 3, to be 
independent on specific units of the random variable X. The 
ratio of L-moments of the r-th order of random variable X is 
defined 
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It is also possible to define such a function of L-moments, 
which is analogous to the classical coefficient of variation, 
i.e. the so-called L-coefficient of variation 
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The ratio of L-moments τ3 is the skewness characteristic 
and the ratio of L-moments τ4 is the kurtosis characteristic of 
the corresponding probability distribution. Main properties 
of the probability distribution are summarized very well by 
the following four characteristics: L-location λ1, L-variation 
λ2, L-skewness τ3 and L-kurtosis τ4. L-moments λ1 and λ2, 
L-coefficient of variation τ and ratios of L-moments τ3 and τ4 
are the most useful measurements for characterizing the 
probability distribution. Their most important features are: 
the existence (if the expected value of the distribution exists, 
then all L-moments of the distribution exit, too) and 
uniqueness (if the expected value of the distribution exists, 
then L-moments define only one distribution, i.e. no two 
distributions have the same L-moments). 

Using equations (6)−(8) and equation (10) we obtain 
formulas for L-moments, respectively for the ratios of 
L-moments for the case of chosen probability distributions, 
see Table 1. More on the L-moments is for example in [1], [2] 
and [3]. 
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Table 1. Formulas for distribution or quantile functions, L-moments and 

their ratios for chosen probability distributions. 

Distribution 
Distribution function F(x) 
or quantile function x(F) 

L-moments and ratios 
of L-moments 
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Distribution 
Distribution function F(x) 
or quantile function x(F) 
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Source: [1]; own research 

2.2. Sample L-Moments 

We usually estimate L-moments using random sample, 
which is taken from an unknown distribution. Since the r-th 
L-moment λr is a function of the expected values of order 
statistics of random sample of sample size r, it is natural to 
estimate it using the so-called U-statistic, i.e. the 
corresponding function of sample order statistics (averaged 
over partial subsets of sample size r, which can be formed 
from the obtained random sample of sample size n). 

Let x1, x2, …, xn is a sample and x...xx nnnn ::2:1 ≤≤≤  

is an ordered sample. Then the r-th sample L-moment can be 
written as 
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Hence the first four sample L-moments have the form 
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U-statistics are widely used especially in nonparametric 
statistics. Their positive features are:  the absence of bias, 
asymptotic normality and some slight resistance due to the 
influence of outliers. 

When calculating the r-th sample L-moment it is not 
necessary to repeat the calculation across all partial subsets 
of sample size r, but this statistic can be expressed directly as 
linear combination of order statistics of random sample of 
sample size n. If we consider the estimation of E(Xr:r), which 
is taken using U-statistics, this  estimate can  be written as 
r ·br−1, where 
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Therefore the first four sample L-moments can be written as 
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Application of sample L-moments is similar to the 
application of sample conventional moments. Sample 
L-moments summarize the basic properties of the sample 
distribution, which are the location (level), variability, 
skewness and kurtosis. Thus, sample L-moments estimate 
the corresponding properties of the probability distribution 
from which the sample comes and can be used in estimating 
the parameters of the relevant theoretical probability 
distribution. Under such applications, we often prefer the 
L-moments before conventional  moments, since as a linear 
function of data, sample L-moments are less sensitive to a 
sample variability than conventional moments or to the size 
of errors in the case of  existence of outliers. L-moments 
therefore lead to more accurate and robust estimations of the 
parameters or characteristics of a basic probability 
distribution, see for example [4]–[12]. 

Sample L-moments were used already previously in the 
statistics, although not as a part of a unified theory. The first 
sample L-moment l1 is a sample L-location (sample average), 

the second sample L-moment l2 is a sample L-variability. 
Natural estimation of the ratio of L-moments (10) is the 
sample ratio of L-moments 
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Hence t3 is a sample L-skewness and t4 is a sample 
L-kurtosis. Sample ratios of L-moments t3 and t4 can be used 
as characteristics of skewness and kurtosis of the sample 
data file. Gini’s middle difference is related to sample 
L-moments, which has the form 
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and Gini’s coefficient, which depends only on a single 
parameter σ in the case of two-parametric lognormal 
distribution, but it depends on the values of all three 
parameters in the case of three-parametric lognormal 
distribution. Table 2 presents the formulas for estimation of 
parameters of chosen probability distributions, which were 
obtained using the method of L-moments. 

Table 2. Formulas for parameter estimations made by the method of 

L-moments of chosen probability distributions. 

Distribution Parameter estimation 

Exponential 
(ξ known) 

lˆ =α 1  

Gumbel 2ln
2lˆ ====α

 

α⋅−=ξ ˆelˆ
1  

Logistic 

lˆ =α 2  
lˆ =ξ 1  

Normal 
lˆ ⋅π=σ 2

1

2  
lˆ =µ 1  

Generalized 

Pareto 

(ξ known) 
2

2

1 −=
l

l
k̂  

lk̂ˆ ⋅+=α )(1 1  

Generalized 

extreme 

value 

3ln

2ln

3

2

3

−
+

=
t

z  

zzk̂ 2,9554,85907
2

+=  

)(1)21(

2

k̂

k̂l
ˆ

k̂ +Γ⋅−

⋅
=α

−  

k

k
l ˆ

1)ˆ(1
ˆˆ

1

−+Γ⋅+= αξ  

Generalized 

logistic 

tk̂ −= 3  

)(1)(1
2

k̂k̂

lˆ
−Γ⋅+Γ

=α  

k̂

ˆl
lˆ α−

+=ξ 2
1  



40  Diana Bílková:  Robust Parameter Estimations Using L-moments, TL-moments and the order Statistics 
 

Distribution Parameter estimation 
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3. TL-Moments 

Alternative robust version of L-moments will be now 
presented. This robust modification of L-moments is called 
„trimmed L-moments“, and labeled „TL-moments“. 

This is a relatively new category of moment 
characteristics of the probability distribution. There are the 
characteristics of the level, variability, skewness and 
kurtosis of probability distributions constructed using 
TL-moments that are robust extending of L-moments. 
L-moments alone were introduced as a robust alternative to 
classical moments of probability distributions. However, 
L-moments and their estimations lack some robust 
properties that belong to the TL-moments. 

Sample TL-moments are linear combinations of sample 
order statistics, which assign zero weight to a predetermined 
number of sample outliers. Sample TL-moments are 
unbiased estimations of the corresponding TL-moments of 
probability distributions. Some theoretical and practical 
aspects of TL-moments are still under research or remain for 
future research. Efficiency of TL-statistics depends on the 
choice of α proportion, for example, the first sample 
TL-moments lll
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highest efficiency) among other estimations from random 
samples from normal, logistic and double exponential 
distribution. 

When constructing the TL-moments, the expected values 
of order statistics of random sample in the definition of 
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L-moments of probability distributions are replaced by the 
expected values of order statistics of a larger random sample, 
where the sample size grows like this, so that it will 
correspond to the total size of modification, as shown below. 

TL-moments have certain advantages over conventional 
L-moments and central moments. TL-moment of probability 
distribution may exist even if the corresponding L-moment 
or central moment of the probability distribution does not 
exist, as it is the case of Cauchy’s distribution. Sample 
TL-moments are more resistant to existence of outliers in the 
data. The method of TL-moments is not intended to replace 
the existing robust methods, but rather as their supplement, 
especially in situations where we have outliers in the data. 

3.1. TL-Moments of Probability Distribution 

In this alternative robust modification of L-moments, the 
expected value E(Xr-j:r) is replaced by the expected value 
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This modification is called the r-th trimmed L-moment 

(TL-moment) and is marked .), 21(λ tt
r  Thus, TL-moment of 

the r-th order of random variable X is defined 
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It is apparent from equations (30) and (1) that the 
TL-moments simplify to L-moments, when t1 = t2 = 0. 
Although we can also consider applications, where the 
values of trimming are not equal, i.e. t1 ≠ t2, we focus here 
only on symmetric case t1 = t2 = t. Then equation (30) can be 
rewritten 
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Thus, form example, )( 21:1
(
1

)
XE tt

t
++=λ  is the 

expected value of median from conceptual random sample 

of sample size 1 + 2t. It is necessary here to note that λ )(
1
t is 

equal to zero for distributions, which are symmetrical 
around zero. 

First four TL-moments have the form for t = 1 

,)( 3:2
)1(

1 XE=λ  (32) 

,)(
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1
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6:263:6:46:5

)1(
4 XXXXE −+−=λ  (35) 

Note that the measures of location (level), variability, 
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skewness and kurtosis of the probability distribution 
analogous to conventional L-moments (6)−(9) are based on 

.a,, )))) 1(
4

1(
3

1(
2

1(
1 λλλλ  

Expected value E(Xr:n) can be written using the formula 
(2). Using equation (2) we can re-express the right side of 
equation (31)  
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(36) 

It is necessary to be noted here that λ=λ rr
)0(  is 

a normal the r-th L-moment without any trimming. 
Expressions (32)-(35) for the first four TL-moments, 

where t = 1, can be written in an alternative manner 
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(40) 
Distribution may be identified by its TL-moments, 

although some of its L-moments or conventional central 

moments do not exit; for example λ )1(
1  (expected value of 

median of conceptual random sample of sample size three) 
exists for Cauchy’s distribution, although the first L-moment 
λ1 does not exist. 

TL-skewness τ )(
3
t  and TL-kurtosis τ )(

4
t  are defined 

analogously as L-skewness τ3
 and L-kurtosis τ4
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3.2. Sample TL-Moments 

Let x1, x2, …, xn is a sample and x...xx nnnn ::2:1 ≤≤≤  

is an ordered sample. Expression 
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is considered to be an unbiased estimation of expected value 
of the (j + 1)-th order statistic Xj+1:j+l+1 in conceptual random 
sample of sample size (j + l + 1). Now we will assume that 

we replace the expression E(Xr+t−j:r+2t ) by its unbiased 

estimation in the definition of the r-th TL-moment λ )(t
r  in 

(31)  
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XÊ nitrjtr

n

i

⋅








+
−

⋅








−−+
−

⋅










+

= ∑
=

− ++
 (44) 

which we gain by assigning j → r + t − j − 1 a l → t + j in 
(43). Now we obtain the r-th sample TL-moment 
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i.e.  
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which is unbiased  estimation of the r-th TL-moment .t
rλ )(  

Note that for each j = 0, 1, …, r − 1, values xi:n in (46) are 
nonzero only for r + t − j ≤ i ≤ n − t −j due to the 
combinatorial numbers. Simple adjustment of the equation 
(46) provides an alternative linear form 
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For example, we obtain for r = 1 for the first sample 
TL-moment 
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where the weights are given by 
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The above results can be used to estimate TL-skewness 
and TL-kurtosis by simple ratios 
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(51) 

We can choose t = nα representing the amount of the 
adjustment from each end of the sample, where α is a certain 
proportion, where 0 ≤ α < 0,5. 

Table 3 contains the formulas for TL-moments and for the 
ratios of TL-moments and the formulas for parameter 
estimations obtained using the method of TL-moments of 
chosen probability distributions. More on the TL-moments 
is for example in [13]. 
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Table 3. Formulas for TL-moments and their ratios and parameter 

estimations made by the method of TL-moments of the chosen probability 

distributions (t = 1). 

Distribution 
TL-moments and ratios of 
TL-moments 

Parameter 
estimation 

Normal 

µ=λ(1)
1  

σ=λ ,2970(1)
2  

0(1)
3 =τ  

,0620(1)
4 =τ  

lˆ =µ (1)
1  

0,297

(1)
2lˆ =σ  

Logistic 

µ=λ(1)
1  

σ=λ ,5000(1)
2  

0(1)
3 =τ  

,0830(1)
4 =τ  

lˆ =µ (1)
1  

lˆ 2 (1)
2=σ  

Cauchy 

µ=λ(1)
1  

σ=λ ,6980(1)
2  

0(1)
3 =τ  

,3430(1)
4 =τ  

lˆ =µ (1)
1  

0,698

(1)
2l

ˆ =σ  

Exponential 

6

5(1)
1

α=λ  

4
(1)
2

α=λ  
9

2(1)
3 =τ  

9

2(1)
3 =τ  12

1(1)
4 =τ  

5

6 (1)
1lˆ =α  

Source: [13]; own research 

4. Lognormal Curves 

4.1. Three-Parametric Lognormal Curves 

Random variable X has three-parametric lognormal 
distribution with parameters µ, σ2 and θ, where –∞ < µ < ∞, 
σ2 > 0, –∞ < θ < ∞, if its probability density function have 
the form  

f(x; µ, σ2, θ) 
,

2 2
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π⋅θ−⋅σ
=

x

x
 

,> θx  

 ,0=
 

else. (52) 

Lognormal distribution with parameters µ, σ2 and θ 
(beginning of distribution, theoretical minimum) is marked 
LN(µ, σ2, θ). Probability density function of 
three-parametric lognormal distribution is asymmetric, 
positively skewed. Figures 1 and 2 show the graphs of the 
probability density function of three-parametric lognormal 
distribution depending on the values of the parameters of 
this distribution.  

Probability density function of three-parametric 
lognormal distribution is sometimes presented in the form 

f(x; γ, δ, θ) [ ] ,)(ln 2
2

1
exp

2)( 





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π⋅θ−
δ= x

x
 

,> θx  
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else, (53) 

where it is valid 
δ

=σ
δ
γ−=µ 1

and  between the 

expressions for probability density function (52) and (53). 
If we substitute θ = 0 (distribution minimum) into 

expressions for the probability density function of 
three-parametric lognormal distribution (52) and (53), we 
obtain formulas for the probability density function of 
two-parametric lognormal distribution. 

Distribution function of three-parametric lognormal 
distribution has the form 

.>,
)(ln

)( θ
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σ
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Φ= x
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xF  (54) 

If the random variable X has three-parametric lognormal 
distribution LN(µ, σ2, θ), then the random variable  

)(ln θ−= XY  (55) 

has normal distribution N(µ, σ2) and the random variable  

)(ln
)(ln θ−⋅δ+γ=

σ
µ−θ−= X

X
U  (56) 

has standardized normal distribution N(0; 1). Parameter µ is 
the expected value of random variable (55) and parameter σ2 
is the variance of this random variable. Parameter θ is the 
beginning of the distribution, i.e. theoretical minimum of the 
random variable X. 

For )(exp 2σ=ω  the r-th common and central moments of 

three-parametric lognormal distribution have the form 
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specifically 
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Figure 1. Probability density function of three-parametric lognormal 

distribution for the values of parameters σ = 2 (σ2 = 4); θ = 2. 

[Source: Own research] 
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Figure 2. Probability density function of three-parametric lognormal 

distribution for the values of parameters µ = 3; θ = 2 

[Source: Own research] 

We obtain the expressions for the expected value and 
variance of random variable X having three-parametric 
lognormal distribution from (57) and (58)  
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The expression for median 

)(exp)( µ+θ=XMedian  (63) 

comes from the expression for 100 · P% quantile of this 
distribution 

).(exp ux PP ⋅σ+µ+θ=  (64) 

Three-parametric lognormal distribution is unimodal with 
one mode 

.
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)(exp)( 2
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The relationship between the expected value, median and 
mode follows from the equations (61), (63) and (65)  
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which is typical just for positively skewed distribution. 
The coefficient of variation of three-parametric lognormal 

distribution is a function of all three parameters µ, σ2 and θ 
of this distribution 
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Gini’s coefficient of three-parametric lognormal 
distribution depends on all three parameters µ, σ2 and θ of 
this distribution, too 
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Moment measurement of skewness and kurtosis depend 
on a single parameter σ2 
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4.2. Four-Parametric Lognormal Curves 

Random variable X has four parametric lognormal 
distribution with parameters µ, σ2, θ a τ, where –∞ < µ < ∞, 
σ2 > 0, –∞ < θ < τ < ∞, if its probability density function has 
the form  

f(x; µ, σ2, θ, τ) 
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else. 

Lognormal distribution with parameters µ, σ2, θ a τ is 
marked LN(µ, σ2, θ, τ). The probability density function of 
four-parametric lognormal distribution can have very 
different shapes depending on the values of the parameters 
of the distribution, see Figures 3–5. Distribution may be also 
bimodal for σ2 > 2 and 
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density function of four-parametric lognormal distribution is 
often presented in the form  
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else. 

where it is valid between the expressions for probability 
density function (71) and (72) 
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Figure 3. Probability density function of four-parametric lognormal 

distribution for the values of parameters σ = 2 (σ2 = 4); θ = 2; τ = 20 

[Source: Own research] 
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Figure 4. Probability density function of four-parametric lognormal 

distribution for the values of parameters σ = 2 (σ2 = 4); θ = 2; τ = 20 

[Source: Own research] 
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Figure 5. Probability density function of four-parametric lognormal 

distribution for the values of parameters µ = –1; θ = 2; τ = 20 

[Source: Own research] 

If the random variable X has four-parametric lognormal 
distribution LN(µ, σ2, θ, τ), then the random variable 

X

X
Y

−τ
θ−= ln  

(73) 

has normal distribution N(µ, σ2) and the random variable 
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(74) 

has standardized normal distribution N(0; 1). Parameter µ is 
therefore the expected value of a random variable (73) and 
the parameter σ2 is the variance of this random variable. The 
parameter θ is the beginning of the distribution (theoretical 
minimum) of a random variable X and the parameter τ 
represents the end point of the distribution (theoretical 
maximum) of the random variable X. 

More on the lognormal distribution is for example in [9] 
or [14]−[17]. 

5. Methods of Point Parameter 
Estimation 

We focus here only on the parameter estimation of 
three-parametric lognormal distribution, which is the basic 
theoretical probability distribution of this research. Various 
methods of parametric estimation can be used for estimating 
the parameters of three-parametric lognormal distribution. 
There are for example the maximum likelihood method, 
moment method, quantile method, Kemsley’s method, 
Cohen’s method, L-moment method, TL-moment method, 
graphical method, etc. We focus on maximum likelihood 
method and on lesser-known methods of parametric 
estimation, i.e. Kemsley’s method and Cohen’s method. 

5.1. Maximum Likelihood Method 

Let the random sample of the sample size n comes from 
three-parametric lognormal distribution with probability 
density function (52) or (53). Then the likelihood function 
have the form 
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We determine the logarithm of the likelihood function 
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We put in the equality to zero the first partial derivation of 

the logarithm of the likelihood function according to µ and 
according to σ2 by 
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We obtain maximum likelihood estimations of the 
parameters µ and σ2 for the given parameter θ after treatment 
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If the value of the parameter θ in known, we get the 
maximum likelihood estimations of the remaining two 
parameters of three-parametric lognormal distribution using 
the expressions (79) and (80). However, if the value of the 
parameter θ is unknown, the problem is more complicated. It 
can be proved that if the parameter θ closes to min{X1, X2, …, 

Xn}, then the maximum likelihood approaches to infinity. 
The maximum likelihood method is also often combined 
with Cohen’s method, where we put the smallest sample 
value to be equal to the 100 ⋅ (n + 1)− 1 -percentage quantile 

.)(exp )1(min 1uˆˆˆx n
V

+ −⋅σ+µ+θ=  (81) 

Equation (81) is then combined with a szstem of 
equations (79) and (80). 

For solving of maximum likelihood equations (79) and 
(80) it is also possible to use θ satisfying the equation 
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where 
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where )ˆ(ˆand)ˆ(ˆ θσθµ  satisfy equations (79) and (80) 

with the parameter θ replaced by .θ̂  We may also obtain the 

limits of variances 
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Especially difficulties related with the use of the 
equations (79), (80) and (82) lead us to think about other 
methods. 

5.2. Kemsley
\
s Method 

Kemsley used the estimation method, which is a 
combination of moment and quantile methods of parametric 

estimation. This method of parametric estimation put into 

equality the sample quantiles xx PP
V

11
V

1 and −  and the 

corresponding theoretical quantiles of the probability 
distribution. We get the last equation so that we put sample 
average equal to the expected value of the probability 
distribution (“K” means Kemsley’s estimation)  
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Now we solve a similar system of equations as in the case 
of quantile method of parameter estimation and 
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The proposal for the solution of equation (90) 

σ 2 K determines approximately using Figure 6. 
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Figure 6. Graph σ 2 K
 for Kemsley\s method of parametric estimation 

for p1 = 0,05; 0,10 and 0,20. 

[Source: Own research] 

Then we obtain the values of the remaining two 
parameters using the expressions 
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5.3. Cohen
\
s Method of the Smallest Sample Value 

It is known that parameter θ determines the beginning of 
three-parametric lognormal distribution. In this case, an 
appropriate estimation would be a function of the smallest 
sample value. This method constitutes an alternative to the 
method of maximum likelihood. This keeps the equations 
(79) and (80) and needed the third equation is based on the 
smallest sample value xmin. If the value xmin is contained 
nmin-times in the sample, then the sample quantile of order 
nmin/n in the third equation is putted into equality to the 
corresponding theoretical quantile of the distribution. Thus, 
Cohen’s method represents a combination of maximum 
likelihood method and the quantile method. We can get the 
parameter estimations obtained by Cohen’s method with the 
system of equations (“C” means Cohen’s estimation)  
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6. Appropriateness of the Model 

It is also necessary to assess the suitability of constructed 
model or choose a model from several alternatives, which is 
made by some criterion, which can be a sum of absolute 
deviations of the observed and theoretical frequencies for all 
intervals 
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where ni are the observed frequencies in individual intervals, 
πi are the theoretical probabilities of membership of 
statistical unit into the i-th interval, n is the total sample size 
of corresponding statistical file, n ⋅ πi are the theoretical 
frequencies in individual intervals, i = 1, 2, ..., k, and k is the 
number of intervals. 

The question of the appropriateness of the given curve for 
model of the distribution of wage is not entirely 
conventional mathematical-statistical problem in which we 
test the null hypothesis 

H0: The sample comes from the supposed theoretical 
distribution against the alternative hypothesis 

H1: non H0, because in goodness of fit tests in the case of 
wage distribution we meet frequently with the fact that we 
work with large sample sizes and therefore the tests would 
almost always lead to the rejection of the null hypothesis. 
This results not only from the fact that with such large 
sample sizes the power of the test is so high at the chosen 
significance level that the test uncovers all the slightest 
deviations of the actual wage distribution and a model, but 
it also results from the principle of construction of the test. 
But practically we are not interested in such small 
deviations, so only gross agreement of the model with 
reality is sufficient and we so called “borrow” the model 
(curve). Test criterion χ2 can be used in that direction only 
tentatively. When evaluating the suitability of the model 
we proceed to a large extent subjective and we rely on 
experience and logical analysis.  

7. Data Base 

The data base of the research consists in employees of 
the Czech Republic. There are a total set of all employees 
of the Czech Republic together and further the partial sets 
broken down by various demographic and socio-economic 
factors. Figures 7 and 8 provide information on the 
geographic position of the Czech Republic in Europe and 
look at the map of the Czech Republic. The researched 
variable is the gross monthly wage in CZK (nominal wage). 
Data come from the official website of the Czech Statistical 
Office. The data was in the form of interval frequency 
distribution, since the individual data is not currently 
available.  

Researched period represents years 2003−2010. 
Employees of the Czech Republic were classified 
according to gender, job classification (CZ-ISCO), the 
classification of economic activities, age and educational 
attainment. Branch Classification of Economic Activities 
(OKEC) has been replaced by Classification of Economic 
Activities (CZ-NACE) during researched period. This fast 
therefore disrupts the continuity of the obtained time series 
during the analysis period.  

The main classes of Job Classification CZ-ISCO form: 
Managers (code 1000); Professionals (code 2000); 
Technicians and Associate Professionals (code 3000); 
Clerical Support Workers (code 4000); Service and Sales 
Workers (code 5000); Skilled Agricultural, Forestry and 
Fishery Workers (code 6000); Craft and Related Trades 
Workers (code 7000); Plant and Machine Operators, and 
Aassemblers (code 8000); Elementary Occupations (code 
9000). 

The main classes of Branch Classification of Economic 
Activities − OKEC (years 2003-2008) are: A-B − 
Agriculture, Fishing; C-E − Industry; F − Construction; G 
− Trade, Repairs; H − Hotels and Restaurants; I − Transport, 
Storage; J − Financial intermediation; K − Real Estate, 
Renting; L − Public Administration; M − Education; N − 
health; O − Other Services. 

The main classes of Classification of Economic 
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Activities − CZ-NACE (years 2009-2010)  represent: A − 
Agriculture, Forestry and Fishing; B-E − Industry;  F − 
Construction;  G − Wholesale  and  Retail Trade, Repair 
of Motor Vehicles and Motorcycles; H − Transportion and 
Storage; I − Accomodation and Food Service Activities; J 
− Information and Communication; K − Financial and 
Insurance Activities; L − Real Estate activities; M − 
Professional, Scientific and Technical Activities; N − 
Administrative and Support Service Activities; O − Public 
Administration and Defence, Compulsory Social Security;  
P − Education; Q − Human Health and Social Work 
Activities; R − Arts, Entertainment and Recreation; S − 
Other Service Activities. 

Classification by age include the following age intervals: 
to 19 years; from 20 to 24 years; from 25 to 29 years; from 
30 to 34 years; from 35 to 39 years; from 40 to 44 years; 
from 45 to 49 years; from 50 to 54 years; from 55 to 59 
years; from 60 to 64 years; from 65 years. 

Classification according to educational attainment 
distinguishs the fpllowing five levels of educational 
attainment of the employee: Primary education; 
Apprenticeship; Secondary with GCE; Higher 
post-secondary schools; University.  

Tables 4−9 provide information on the sample sizes of 
sample sets of employees of single researched wage 
distribution. 

 
Figure 7. Position of the Czech Republic in Europe. 

[Source: https://www.google.cz] 

 

 
Figure 8. Map of the Czech Republic 

[Source: https://www.google.cz] 

Table 4. Sample sizes of wage distribution by gender. 

Gender 
Year 

2003 2004 2005 2006 2007 2008 2009 2010 

Total 1,018,934 1,404,496 1,515,527 1,614,372 1,673,498 1,711,811 1,651,506 1,662,829 

Men 559,863 711,551 769,802 813,821 858,656 875,139 846,028 850,788 

Women 459,071 692,945 745,725 800,551 814,842 836,672 805,478 812,041 

Source: http://www.czso.cz 

Table 5. Sample sizes of wage distribution by Job Classification CZ-ISCO. 

CZ-ISCO code 
Year 

2003 2004 2005 2006 2007 2008 2009 2010 

1000 60,300 84,264 91,302 96,382 104,516 107,599 109,281 110,155 

2000 109,779 241,959 248,320 270,252 273,497 285,880 289,894 295,775 

3000 250,639 355,319 383,730 402,651 402,553 413,067 399,798 401,402 

4000 77,565 95,552 101,920 111,470 118,124 122,083 123,784 125,778 

5000 63,685 95,247 108,172 122,661 128,053 134,127 134,560 134,370 

6000 9,912 10,697 11,417 10,098 8,859 7,877 7,630 7,250 

7000 193,715 211,356 226,527 232,399 243,246 243,390 221,308 225,420 

8000 192,378 214,229 240,057 258,177 282,001 284,634 260,355 256,472 

9000 60,961 95,873 104,082 110,282 112,649 113,154 104,896 106,207 

Source: http://www.czso.cz 
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Table 6. Sample sizes of wage distribution by Branch Classification of Economic Activities OKEC. 

OKEČ 
Year 

2003 2004 2005 2006 2007 2008 2009 2010 
A+B 28,132 31,055 33,004 27,502 24,296 21,537 − − 
C-E 431,534 479,817 522,097 554,783 600,924 603,951 − − 
F 38,261 42,223 45,242 43,941 50,073 50,437 − − 
G 52,070 63,221 74,232 93,353 111,944 120,464 − − 
H 8,556 11,188 12,020 15,447 16,858 16,997 − − 
I 161,895 157,881 142,185 141,819 143,612 144,536 − − 
J 47,932 52,140 48,601 51,893 53,506 55,993 − − 
K 35,911 43,758 49,080 59,836 67,604 79,003 − − 
L 68,971 192,993 217,590 235,536 232,800 233,438 − − 
M 33,508 173,477 183,277 189,068 187,325 188,730 − − 
N 93,480 125,784 149,429 160,700 144,471 155,533 − − 
O 18,684 30,959 38,770 40,494 40,085 41,192 − − 

Source: http://www.czso.cz 

Table 7. Sample sizes of wage distribution by Classification of Economic Activities CZ-NACE. 

CZ-NACE 
Year 

2003 2004 2005 2006 2007 2008 2009 2010 
A − − − − − − 20,560 18,659 
B-E − − − − − − 558,904 560,299 
F − − − − − − 50,789 52,769 
G − − − − − − 125,373 130,348 
H − − − − − − 147,328 141,193 
I − − − − − − 17,132 16,673 
J − − − − − − 42,058 43,602 
K − − − − − − 57,149 57,715 
L − − − − − − 5,540 5,093 
M − − − − − − 20,922 22,978 
N − − − − − − 41,588 44,533 
O − − − − − − 208,606 212,765 
P − − − − − − 185,453 186,092 
Q − − − − − − 143,595 143,877 
R − − − − − − 23,756 23,033 
S − − − − − − 2,753 3,200 

Source: http://www.czso.cz 

Table 8. Sample sizes of wage distribution by age. 

Age 
(in years) 

Year 
2003 2004 2005 2006 2007 2008 2009 2010 

  − 19 2,805 3,567 4,314 5,887 6,879 6,455 4,245 3,927 
20 − 24 63,496 76,595 86,317 97,025 105,523 106,958 94,097 91,160 
25 − 29 129,298 166,682 178,259 188,289 193,222 190,866 177,961 177,044 
30 − 34 121,054 173,799 197,020 217,720 227,325 231,284 220,500 216,899 
35 − 39 122,324 170,268 183,513 198,609 210,780 226,740 233,095 246,619 
40 − 44 123,278 184,904 204,368 218,373 225,528 226,265 216,461 218,695 
45 − 49 148,936 198,188 205,107 208,653 209,454 217,468 220,087 227,237 
50 − 54 166,456 221,988 222,759 220,744 220,894 216,944 201,687 194,387 
55 − 59 113,813 163,222 182,059 194,592 200,682 207,352 201,606 203,674 
60 − 64 22,019 36,571 42,151 52,473 60,501 66,795 66,452 68,220 
65 + 5,455 8,712 9,660 12,007 12,710 14,684 15,315 14,967 

Source: http://www.czso.cz 

Table 9. Sample sizes of wage distribution by educational attainment. 

 
Education 

Year 
2003 2004 2005 2006 2007 2008 2009 2010 

Primary education 95,112 119,480 125,972 129,027 135,399 137,190 120,254 116,383 
Apprenticeship 377,347 470,688 523,744 553,522 587,081 591,669 557,780 555,266 
Secondary with GCE 408,562 560,237 575,668 621,306 629,447 644,576 625,631 627,073 
Higher post-secondary schools 15,749 29,144 40,055 42,856 47,967 54,439 57,747 64,684 
University 122,164 224,947 250,088 267,661 273,604 283,937 290,094 299,423 

Source: http://www.czso.cz 



 American Journal of Applied Mathematics 2014; 2(2): 36-53  49 
 

 

8. Results and Discussion 

All calculations were made using the statistical program 
packages Statgraphics and SAS, spreadsheet Microsoft 
Excel and mathematical program R.  

Figures 9 and 10 provide an overview of the development 
of the annual growth rate of the level of gross monthly wage 
in the Czech Republic in the period and the overview of the 
development of the average annual inflation. Because the 
growth rate is calculated from the growth coefficient, which 
is the ratio of two consecutive values of the time series, we 
would have data for 2002 to calculate the growth rate for the 
year 2003. Since 2002 is not included in the analysis period, 
the growth rate for 2003 is not presented here. The impact of 
the global economic crisis on the development of the wage 
level in the Czech Republic and on the development of 
inflation is clearly evident from these figures. It is apparent 
from Figure 9 that the annual growth rate of middle gross 
monthly wage in the Czech Republic dropped to almost zero 
in 2009. It has increased slightly over the next year, but it is 
far below the values before crisis. It is plainly evident from 
Figure 10 that the average annual inflation rate fell sharply 
in 2009, but it again slightly increase during the next year, 
too. 

Figure 11 presents the dependence of the value of 
criterion (96) on the sample size. A similar situation exists in 
term of the criterion (97). This is the wage distribution 
broken down by classification of economic activities 
CZ-NACE, i.e. a total of 32 wage distributions of the years 
2009–2010. This is only a chosen file of wage distribution 
for clear visibility, since we obtain similar results also in 
terms of all surveyed wage distribution. The linear 
dependence of the value of criterion S on the sample size 
follows from Figure 11. Figure 12 presents the results of 
significance tests for the linear dependence. We can see from 
Figure 12 that both significance tests of regression 
coefficient are significant at 5%, but even at 1% significance 
level (t-test and F-test of regression coefficient provide 
equivalent results form the linear dependence between two 
variables). Linear dependence of the value of criterion S on 
sample size is therefore proved even at 1% significance 
level. 

0

1

2

3

4

5

6

7

8

2004 2005 2006 2007 2008 2009 2010g
ro

w
th

 r
a

te
 o

f 
m

e
d

ia
n

 o
f 

th
e

 
g

ro
s

s
 m

o
n

th
ly

 w
a

g
e

 (
 %

)

year
 

Figure 9. Annual growth rate of the median of gross monthly wage in the Czech 

Republic in 2003−2010 (in %t). 

[Source: Own research] 
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Figure 10. Average annual inflation rate in 2003−2010 (in %). 
[Source: Own research] 

The determination coefficient in Figure 12 says that 
86.57 % of the variability of criterion S in given 32 wage 
distributions can be explained by the chosen regression line. 
The correlation coefficient in Figure 12 shows a very tight 
direct linear dependence of the criterion S on sample size of 
wage distribution. Table 10 presents parameter estimations 
obtained using the various three methods of point parameter 
estimation and the value of criterion S for the total wage 
distribution of the Czech Republic. This table describes 
approximately the research results of all 328 wage 
distribution. We obtained in total research that the method of 
TL-moments provided the most accurate results in almost all 
cases of wage distribution with minor exceptions, deviations 
occur mainly at both ends of the wage distribution due to the 
extreme open intervals of interval frequency distribution. In 
the results of Table 10 for total sets of wage distribution of 
the Czech Republic in 2003–2010 method of TL-moments 
always brings the most accurate results in terms of criterion 
S. In terms of research of all 328 wage distribution, method 
of L-moments brought the second most accurate results in 
more than in half of the cases. Deviations occur again 
especially at both ends of the distribution. In the results of 
Table 10 method of L-moments brought the second most 
accurate results in terms of all total sets of wage distribution 
of the Czech Republic in 2003–2010. 
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Figure 11. Dependence of the value of criterion S (in 1,000) on sample 

size (in 1,000) - broken down by educational attainment, years 2003–2010 

[Source: Own research] 
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Regression Analysis - Linear model: Y = a + b*X

-----------------------------------------------------------------------------

Dependent variable: criterion S

Independent variable: sample size

-----------------------------------------------------------------------------

                               Standard          T

Parameter       Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

Intercept        3,20675        2,71914        1,17933         0,2475

Slope           0,222708      0,0160139        13,9071         0,0000

-----------------------------------------------------------------------------

                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                     28734,2      1      28734,2     193,41       0,0000

Residual                  4457,03     30      148,568

-----------------------------------------------------------------------------

Total (Corr.)             33191,2     31

Correlation Coefficient = 0,930439

R-squared = 86,5717 percent

Standard Error of Est. = 12,1888  

Figure 12. Dependence of the value of criterion S (in 1,000) on sample size 

(in 1,000) - broken down by educational attainment, years 2003–20103) 
[Source: Own research] 
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Figure 13. Development of sample and theoretical median of 

three-parametric lognormal curves with parameters estimated using three 

various methods of parameter estimation. 

[Source: Own research] 
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Figure 14. Development of probability density function of three-parametric 

lognormal curves with parameters estimated using the method of 

TL-moments. 

[Source: Own research] 

                                                             

 
3) Output of the statistical program Statgraphics; decimal comma is used instead 
decimal point in this output 
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Figure 15. Development of probability density function of three-parametric 

lognormal curves with parameters estimated using the method of L-moments. 

[Source: Own research] 
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Figure 16. Development of probability density function of three-parametric 

lognormal curves with parameters estimated using the maximum likelihood 

method. 

[Source: Own research] 
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Figure 17. The values of S criterion for model three-parametric lognormal 

curves with parameters estimated by methods of point parameter estimation 

(year 2010, broken down by codes of job classification). 

[Source: Own research] 



 American Journal of Applied Mathematics 2014; 2(2): 36-53  51 
 

0.00

5 000.00

10 000.00

15 000.00

20 000.00

25 000.00

30 000.00

35 000.00

40 000.00

45 000.00

from 19

from 20 to 24

from 25 to 29

from 30 to 34

from 35 to 39

from 40 to 44from 45 to 49

from 50 to 54

from 55 to 59

from 60 to 64

from 65

method of TL-moments

method of L-moments

maximum likelihood method

 

Figure 18. The values of S criterion for model three-parametric lognormal 

curves with parameters estimated by methods of point parameter estimation 

(year 2010, broken down by age intervals in years). 

[Source: Own research] 

Overall, maximum likelihood method was the third in 

most cases in terms of accuracy of the results obtained (in all 
cases in Table 10). Figure 13 also gives some idea of the 
accuracy of the researched methods of point parameter 
estimation. This figure shows the development of the sample 
median of gross monthly wage for the total set of all 
employees of the Czech Republic together in the period 
2003–2010 and the development of corresponding 
theoretical median of model three-parametric lognormal 
curves with parameters estimated by three various methods 
of point parameter estimation. We can observe from this 
figure that the curve characterizing the course of theoretical 
median of three-parametric lognormal distribution with 
parameters estimated using the method of TL-moments 
adheres the most to the curve showing the development of 
the sample median. The other two curves articulating the 
development of the theoretical median of three-parametric 
lognormal curves with parameters estimated by method of 
L-moments and by maximum likelihood method are 
relatively remote from the course of sample median of wage 
distribution. 

Table 10. Parameter estimations obtained using the various three methods of point parameter estimation and the value of criterion S for the total wage 

distribution of the Czech Republic. 

Year 

Method 

Method of TL-moments Method of L-moments 
Maximum likelihood method in 

combination with Cohen’s method 
Parameter estimation Parameter estimation Parameter estimation 

µ σ2 θ µ σ2 θ µ σ2 θ 
2003 9.059 747 0.630 754 9,065.52 9.017 534 0.608 369 7,664.46 9.741 305 0.197 395 2.07 
2004 9.215 324 0.581 251 8,552.10 9.241 235 0.507 676 6,541.16 9.780 008 0.232 406 0.22 
2005 9.277 248 0.573 002 8,872.54 9.283 399 0.515 290 6,977.45 9.833 604 0.228 654 0.27 
2006 9.313 803 0.577 726 9,382.66 9.283 883 0.543 225 7,868.21 9.890 594 0.210 672 0.59 
2007 9.382 135 0.680 571 10,027.84 9.387 739 0.601 135 7,902.64 9.950 263 0.268 224 0.16 
2008 9.438 936 0.688 668 10,898.39 9.423 053 0.624 340 8,754.64 10.017 433 0.264 124 0.19 
2009 9.444 217 0.703 536 10,640.53 9.431 478 0.631 013 8,684.51 10.019 787 0.269 047 0.20 
2010 9.482 060 0.681 258 10,616.80 9.453 027 0.621 057 8,746.20 10.033 810 0.269 895 0.20 
2003 Criterion S Criterion S Criterion S 
2004  108,437.01   133,320.79   248,331.74  
2005  146,509.34   248,438.78   281,541.41  
2006  137,422.05   231,978.79   311,008.23  
2007  149,144.68   216,373.24   325,055.67  
2008  198,670.74   366,202.87   370,373.62  
2009  206,698.93   357,668.48   391,346.02  
2010  193,559.55   335,999.20   359,736.37  

Source: Own research 

Figures 14–16 represents the development of probability 
density function of three-parametric lognormal curves with 
parameters estimated using the method of TL-moments, 
method of L-moments and maximum likelihood method. This 
is again a development of model distributions of the total 
wage distribution of the Czech Republic for all employees of 
the Czech Republic together in the period 2003––2010. We 
can see that the shapes of the lognormal curves with 
parameters estimated using the method of L-moments and 
maximum likelihood method (Figures 15 and 16) are similar 
mutually and they are very different from the shape of 

three-parametric lognormal curves with parameters estimated 
by the method of TL-moments (Figure 14). 

Figure 17 shows the values of criterion S of wage 
distributions broken down by job classification in 2010 and 
Figure 18 presents the same of wage distributions broken 
down by five-year age intervals in 2010. High accuracy of 
the method of TL-moments against the other two methods of 
point parameter estimation is evident from these two figures, 
too. 

Other methods usable for processing of the economic data 
are presented for example in [18]–[21]. 
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9. Conclusions 

Alternative category of moment characteristics of 
probability distributions was introduced here. There are the 
characteristics in the form of L-moments and TL-moments. 
Accuracy of the methods of L-moments and TL-moments 
was compared with the accuracy of the maximum likelihood 
method using such criterion as the sum of all absolute 
deviations of the observed and theoretical frequencies for all 
intervals. Higher accuracy of the method of TL-moments 
due to the method of L-moments and to the maximum 
likelihood method was proved by studying of the set of 328 
wage distribution. However, the advantages of the method of 
L-moments to the maximum likelihood method were 
demonstrated here, too. The values of χ2 criterion were also 
calculated for each wage distribution, but this test led always 
to the rejection of the null hypothesis about the supposed 
shape of the distribution due to the large sample sizes, which 
are typical for wage distribution. The dependence the value 
of criterion χ2 and the value of criterion of the sum of all 
absolute deviations of observed and theoretical frequencies 
on the sample size follows from the construction of the test. 
The linear dependence of the value of criterion of the sum of 
all absolute deviations of observed and theoretical 
frequencies on the sample size was proved even at 1% 
significance level. 
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